Ed
há 11 meses
Para calcular a intensidade do campo magnético \( B \) gerado por um fio condutor retilíneo e longo que transporta uma corrente \( I \), utilizamos a fórmula: \[ B = \frac{\mu_0 I}{2 \pi r} \] onde: - \( B \) é a intensidade do campo magnético (em teslas), - \( \mu_0 \) é a permeabilidade do vácuo (\( 4\pi \times 10^{-7} \, \text{T·m/A} \)), - \( I \) é a corrente (em amperes), - \( r \) é a distância do fio (em metros). Substituindo os valores dados: - \( I = 5 \, \text{A} \) - \( r = 0,1 \, \text{m} \) Calculamos: \[ B = \frac{4\pi \times 10^{-7} \, \text{T·m/A} \times 5 \, \text{A}}{2 \pi \times 0,1 \, \text{m}} \] Os \( \pi \) se cancelam: \[ B = \frac{4 \times 10^{-7} \times 5}{2 \times 0,1} \] \[ B = \frac{20 \times 10^{-7}}{0,2} \] \[ B = 100 \times 10^{-7} = 1 \times 10^{-5} \, \text{T} \] Portanto, a intensidade do campo magnético a uma distância de 0,1 m do fio é: A) 1 x 10⁻⁵ T.
Já tem uma conta?
Ao continuar, você aceita os Termos de Uso e Política de Privacidade
Mais perguntas desse material