Prévia do material em texto
A série de Fourier é uma combinação infinita de senos e cossenos. Algumas funções podem ter uma série dependendo apenas de senos ou apenas de cossenos. Se uma função é ímpar, então sua série de Fourier é dada apenas em função de senos, sabendo que a função O Teorema da translação eixo-s utiliza a Transformada de Laplace de uma função já conhecida para determinar a Transformada de Laplace de outra função. Podemos afirmar que a Transformada de Laplace da função Uma série é dita ser convergente se a sua soma for um número finito, já se a soma for infinita dizemos que a série é divergente. Uma série de potência é uma soma infinita de potências de x, dependendo do valor de x a série pode ou não convergir. Determine o intervalo de convergência da série Sabemos que se uma função é de ordem exponencial, podemos utilizar o Teorema da Transformada da derivada para calcular a Transformada de Laplace de uma função derivada sem saber a sua derivada, utilizando a fórmula: Uma forma de encontrar soluções de Equações Diferenciais é por meio da substituição da variável y. Com a substituição, também é possível transformar equações de primeira ordem que não possuem variáveis separáveis em equações com variáveis separáveis. Uma das aplicações de série de potência é encontrar a solução de uma equação diferencial ordinária. Utilizando a série de potência para resolver a EDO O Delta de Dirac é uma ferramenta utilizada quando trabalhamos com fenômenos de alta magnitude que ocorrem em um curto período de tempo. A principal aplicação do Delta de Dirac é em Equações Diferenciais. Sobre o Delta de Dirac, classifique V para sentenças verdadeiras e F para falsas: ( ) É muito usado em aplicações físicas. ( ) É utilizado para modelar uma fonte impulsiva. ( ) Calculando o limite da função impulso quando a tende ao infinito, obtemos a definição do delta de Dirac. Assinale a alternativa que apresenta a sequência CORRETA: