Prévia do material em texto
225 Resolução dos exercícios b) Mostrar que: tg 60© 2 tg 45© i tg 15© 60 45© © 152 2tg tg 3 ( 45 45 15 60 ) 1 60 60 © © © © © © © 8 2 25 5 1 5tg tg 45 tg tg tg tg 2 35 2 , ã :n3 1 2 32 i 2Como e t o 60 45 15© © ©2 itg tg tg 62. a) cos 105© 5 cos (60© 1 45©) V V cos 105© 5 cos 60© 8 cos 45© 2 sen 60© 8 sen 45© V 105© 5 8 2 8 VcosV 2 1 2 2 2 3 2 2 105© 5cos 6 V 2 4 2 b) ( ) © 5 © 5 © 2 © Vcossec15 15 60sen 1 sen 45 1 © 5 © 8 © 2 © 8 © V cossec15 60 45 45 60 V sen cos sen cos 1= 15© 5 8 2 8 VcossecV 2 3 2 2 2 2 2 1 1 © 5cossec15 4 6 4 2 2 6 2 V 2 2 1 1 2 1 6 6 4 = 5 V _ _ _ i i i 15©cossec 25V 16 c) 75 ( ) © 5 © 5 © 1 © V 75 45 cotg tg 1 tg 30 1 © 5 © © © 1 © © 1 © © 8 © 75 1 45 30 45 30 45 45 30 V 2 8 2 cotg tg tg tg tg 1 tg tg 30 1 tg tg = 5 V 75© 5 5 1 2 V 3 3 3 3 V 1 2 cotg 1 1 3 3 3 3 75© 5 3V 2cotg 2 d) 105 (60 ) © © © © sec V5 5 1cos105 1 cos 45 1 60 © 5 © 8 © 2 © 8 © V sec105 45 60 45 V cos cos sen sen 1= © 5 8 2 8 Vsec105 2 V 2 1 2 2 3 2 2 1 105©sec 6 65 5 2V 2 2 2 1 2 63. cos 165© 5 cos (135© 1 30©) 5 5 cos 135© 8 cos 30© 2 sen 135© 8 sen 30© 5 2 2 2 3 2 2 2 1 4 6 2 5 2 8 2 8 5 2 2 165 135 ) 1 135 135 30 © © © © © © © 5 1 8 1 5 2 5tg tg ( 30 tg tg 30 tg tg 1 1 1 3 3 2 3 3 3 3 3 3 35 2 2 8 2 1 5 1 2 1 5 2 1 f p 64. 1 1 1 cos cos cos cos y y y y y 5 4 25 16 25 9 1 5 V 1 5 V V 1 5 V 5 sen2 2 2 2 2 2 e o : cos y 5 2, π πy 2 5 3, ,Como temos Logo: 2 cosy y y 5 3 5 4 3 45 5 5 2tg sen a) ( )x y x y x y 1 1 3 2 3 4 3 2 3 4 1 9 8 3 2 9 17 3 2 17 6 1 5 2 8 1 5 2 8 2 1 2 5 5 1 2 5 2 5 2 tg tg tg tg tg e e o o b) ( ) 2 2x y x y x y 1 1 3 2 3 4 3 2 3 4 1 9 8 2 9 1 2 18 5 1 8 5 1 8 2 2 2 5 5 2 5 5 tg tg tg tg tg e e o o 65. tg(x 1 y) 5 30 e tg x 5 4 Então: ( )x y x y x y y y y y 30 1 30 1 4 4 30 4 30 120 1 5 V 2 8 1 5 V V 2 1 5 V 1 5 2 V tg tg tg tg tg tg tg tg tg 121 26y y 121 26V 5 V 5tg tg Portanto: y 121 265tg