Prévia do material em texto
08/09/2021 12:31 AVA https://ava2.uniasselvi.com.br/subject/grades-and-tests/answer-book/eyJ0ZXN0Ijp7InRlc3RDb2RlIjoiNjg3NTQ1IiwiZGVzY3JpcHRpb24iOiJBdmFsaWHDp8OjbyBGaW5hbCAoT2JqZXRpdmEpIC0gSW5kaXZpZHVhb… 1/8 Com relação à integração numérica, o método do Trapézio Generalizado consiste em aplicar o método do Trapézio tantas vezes quantas forem os pontos em que conheçamos o valor da função f. Consideremos então o intervalo [0, 2], considerando n = 4. O valor encontrado para a integral de f (x) = 3x + 1 é igual a: Atenção: h = (b - a)/n A O valor encontrado para a integral é 8. B O valor encontrado para a integral é 16. C O valor encontrado para a integral é 4. D O valor encontrado para a integral é 24. Muitas situações-problema, como consumo de água, produção de uma empresa, entre outras, são resolvidas por meio de funções. Neste processo, com o auxílio da representação gráfica, busca-se um entendimento dos fenômenos dos mais variados. Dependendo de algumas características da função, tem-se métodos distintos de resolução. Um dos métodos de resolução que definem o consumo de água num determinado tempo ou quantas horas a mais os funcionários terão que trabalhar para suprir um funcionário ausente pode ser solucionado pelo método de interpolação linear. Sobre a interpolação polinomial linear, analise as sentenças a seguir: I- Pode ser utilizada desde que f seja uma função monótona, crescente ou decrescente. II- Depende da restrição do intervalo, a fim de obtermos um polinômio de grau 1. III- É eficiente quando, para o mesmo conjunto de valores de x, queremos interpolar duas funções distintas. IV- É utilizado quando estamos interessados no valor de f em apenas um ponto x. Assinale a alternativa CORRETA: A As sentenças II e IV estão corretas. B As sentenças I e IV estão corretas. C As sentenças II e III estão corretas. D As sentenças I e III estão corretas. 2 08/09/2021 12:31 AVA https://ava2.uniasselvi.com.br/subject/grades-and-tests/answer-book/eyJ0ZXN0Ijp7InRlc3RDb2RlIjoiNjg3NTQ1IiwiZGVzY3JpcHRpb24iOiJBdmFsaWHDp8OjbyBGaW5hbCAoT2JqZXRpdmEpIC0gSW5kaXZpZHVhb… 2/8 Quando se torna inviável resolver uma equação diferencial ordinária, lançamos mão dos métodos numéricos para encontrar uma aproximação f a esta solução y. O método de Euler é um destes métodos numéricos. Neste contexto, considere a EDO dada por y' = y - x definida no intervalo [0, 1] tal que y(0) = 2. Tomando h = 0,2, a equação de iteração é: A Somente a opção II está correta. B Somente a opção III está correta. C Somente a opção IV está correta. D Somente a opção I está correta. A equação fracionária diferencia-se das demais equações pelo fato de que pelo menos um dos termos é uma fração algébrica, isto é, a incógnita aparece no denominador de uma fração. Sabendo que uma fração jamais pode ter denominador zero, devemos sempre analisar os denominadores para verificar em quais casos a equação não é definida. Sobre as equações reais fracionárias, classifique V para as sentenças verdadeiras e F para as falsas: ( ) As equações reais fracionárias são, na verdade, equações reais de segundo grau. ( ) O maior expoente que aparece em uma equação real fracionária determina seu grau. ( ) As equações reais fracionárias podem ter raízes complexas. Agora, assinale a alternativa que apresenta a sequência CORRETA: A F - V - F. 3 4 08/09/2021 12:31 AVA https://ava2.uniasselvi.com.br/subject/grades-and-tests/answer-book/eyJ0ZXN0Ijp7InRlc3RDb2RlIjoiNjg3NTQ1IiwiZGVzY3JpcHRpb24iOiJBdmFsaWHDp8OjbyBGaW5hbCAoT2JqZXRpdmEpIC0gSW5kaXZpZHVhb… 3/8 B V - V - F. C V - F - V. D F - F - V. A matemática fornece métodos formais que permitem a determinação exata das raízes de uma função em diversos casos. Os métodos mais conhecidos permitem a determinação das raízes de polinômios de até quarto grau, ou grau maior em certas condições. Em muitas situações, a resolução matemática necessita de intuição para que elas sejam transformadas em casos resolvíveis através dos métodos conhecidos. Sobre zeros de funções, classifique V para as sentenças verdadeiras e F para as falsas: ( ) Chamamos de zero de uma função f ao ponto f(0). ( ) Zero de uma função e raiz de uma função são nomes diferentes para o mesmo conceito. ( ) Toda função real possui pelo menos um zero. ( ) Toda função polinomial real tem, pelo menos, um zero. Assinale a alternativa que apresenta a sequência CORRETA: A F - F - V - F. B V - F - V - V. C V - V - F - V. D F - V - F - F. (ENADE, 2008) A Matemática no Ensino Médio tem papel formativo - contribui para o desenvolvimento de processos de pensamento e para a aquisição de atitudes - e caráter instrumental - pode ser aplicada às diversas áreas do conhecimento -, mas deve ser vista também como ciência, com suas características estruturais específicas. OCNEM (com adaptações). Ao planejar o estudo de funções no Ensino Médio, o professor deve observar que: A o estudo de funções polinomiais deve contemplar propriedades de polinômios e de equações algébricas. 5 6 08/09/2021 12:31 AVA https://ava2.uniasselvi.com.br/subject/grades-and-tests/answer-book/eyJ0ZXN0Ijp7InRlc3RDb2RlIjoiNjg3NTQ1IiwiZGVzY3JpcHRpb24iOiJBdmFsaWHDp8OjbyBGaW5hbCAoT2JqZXRpdmEpIC0gSW5kaXZpZHVhb… 4/8 B as funções logarítmicas podem ser usadas para transformar soma em produto. C a função quadrática é exemplo típico de comportamento de fenômenos de crescimento populacional. D o objetivo do estudo de exponenciais é encontrar os zeros dessas funções. Durante a resolução numérica de um problema matemático podem ocorrer certos erros que farão com que o resultado encontrado não coincida exatamente com o resultado esperado. Um erro de resolução pode ser justificado por: A Escolha inadequada do modelo matemático que deve descrever e resolver a situação-problema. B Troca de um sinal ou erro de cálculo cometido no decorrer da resolução do problema. C Impossibilidade de representar todos os algarismos significativos dos números na resolução numérica do problema. D Limitação do modelo matemático escolhido para solucionar numericamente o problema. (ENADE, 2014) Em uma loja de material escolar, as mercadorias caneta, lápis e borracha, de um único tipo, cada uma, são vendidas para três estudantes. O primeiro comprou uma caneta, três lápis e duas borrachas pagando R$ 10,00; o segundo adquiriu duas canetas, um lápis e uma borracha pagando R$ 9,00; o terceiro comprou três canetas, quatro lápis e três borrachas pagando R$ 19,00. Os estudantes, após as compras, sem verificarem os valores de cada mercadoria, procuraram resolver o problema: " A partir das compras efetuadas e dos respectivos valores totais pagos por eles, qual o preço da caneta, do lápis e da borracha?". Para isso, montaram um sistema de equações lineares cujas incógnitas são os preços das mercadorias. Esse sistema de equações é: A possível determinado, sendo o preço da borracha mais caro que o do lápis. B possível indeterminado, de forma que a soma dos valores possíveis da caneta, do lápis e da borracha é igual a 1/5 da adição do preço da borracha com R$ 28,00. C possível determinado, podendo admitir como solução, o valor do preço da caneta, do lápis e da borracha. D impossível, pois saber os totais das compras não garante a existência de solução. 7 8 08/09/2021 12:31 AVA https://ava2.uniasselvi.com.br/subject/grades-and-tests/answer-book/eyJ0ZXN0Ijp7InRlc3RDb2RlIjoiNjg3NTQ1IiwiZGVzY3JpcHRpb24iOiJBdmFsaWHDp8OjbyBGaW5hbCAoT2JqZXRpdmEpIC0gSW5kaXZpZHVhb… 5/8 Ao se tentar representar um fenômeno do mundo físico por meio de um modelo matemático, raramente se tem uma descrição correta deste fenômeno. Normalmente, são necessárias várias simplificações do mundo físico para que se tenha um modelo matemático com o qual se possa trabalhar. Inevitavelmente, o erro inicial ou erro de modelagem é a soma das incertezas introduzidas no equacionamento do problema, na medição dos parâmetros, nas condições iniciais etc. Sobre os erros de modelagem, classifique V para as sentenças verdadeiras eF para as falsas: ( ) Dado um problema físico, existem vários modelos que podem ser usados na sua resolução. ( ) O resultado esperado sempre coincide com o que é, de fato, encontrado ao aplicarmos um modelo no problema. ( ) O modelo que utilizamos para descrever um problema físico contemplará todas as variáveis envolvidas. ( ) Se o modelo utilizado para descrever o fenômeno for bem escolhido, não haverá erro de modelagem. Assinale a alternativa que apresenta a sequência CORRETA: A V - F - F - F. B V - V - F - V. C F - V - V - F. D F - F - V - F. 9 08/09/2021 12:31 AVA https://ava2.uniasselvi.com.br/subject/grades-and-tests/answer-book/eyJ0ZXN0Ijp7InRlc3RDb2RlIjoiNjg3NTQ1IiwiZGVzY3JpcHRpb24iOiJBdmFsaWHDp8OjbyBGaW5hbCAoT2JqZXRpdmEpIC0gSW5kaXZpZHVhb… 6/8 O método de Lagrange é um dos métodos de interpolação linear que estudamos. Com base neste método e utilizando os dados a seguir, assinale a alternativa que apresenta corretamente o polinômio: A A opção III está correta. B A opção I está correta. C A opção IV está correta. D A opção II está correta. 10 08/09/2021 12:31 AVA https://ava2.uniasselvi.com.br/subject/grades-and-tests/answer-book/eyJ0ZXN0Ijp7InRlc3RDb2RlIjoiNjg3NTQ1IiwiZGVzY3JpcHRpb24iOiJBdmFsaWHDp8OjbyBGaW5hbCAoT2JqZXRpdmEpIC0gSW5kaXZpZHVhb… 7/8 Com relação à integração numérica, o método 1/3 de Simpson Generalizado consiste em aplicar o método de Simpson tantas vezes quantas forem os pontos em que conheçamos o valor da função f. Consideremos então o intervalo [1, 5], e vamos aplicar este método para a função f, supondo n = 4. Se utilizarmos 4 casas decimais nos cálculos, o valor encontrado para a integral numérica de f(x) = ln(x) será: Atenção: h = (b-a)/n A O valor encontrado para a integral será 6,1248. B O valor encontrado para a integral será 6,2832. C O valor encontrado para a integral será 4,8746. D O valor encontrado para a integral será 4,0414. O proprietário de uma fábrica de móveis, pensando em divulgar sua marca, mandou que um dos funcionários cortasse um pedaço de tábua e construísse o símbolo da empresa. Cumprindo a ordem, o funcionário entregou ao patrão o símbolo confeccionado e, quando perguntado qual era o espaço em centímetros quadrados que seria ocupado na parede, o colaborador apresentou a seguinte integral definida: 11 12 08/09/2021 12:31 AVA https://ava2.uniasselvi.com.br/subject/grades-and-tests/answer-book/eyJ0ZXN0Ijp7InRlc3RDb2RlIjoiNjg3NTQ1IiwiZGVzY3JpcHRpb24iOiJBdmFsaWHDp8OjbyBGaW5hbCAoT2JqZXRpdmEpIC0gSW5kaXZpZHVhb… 8/8 A O valor numérico da integral definida é 11,64. B O valor numérico da integral definida é 10,64. C O valor numérico da integral definida é 11,60. D O valor numérico da integral definida é 10,60.