Logo Passei Direto
Buscar
Dada a matriz A = (1 0 1 2 4 6 8 0 3 ), assinale a alternativa que apresenta o valor do seu determinante: Questão 9Resposta a. – 10 b. 25 c. – 20 d. 15 e. 20
User badge image
Michael Vince von Grol

anteontem

Respostas

User badge image

Ed Verified user icon

anteontem

Para calcular o determinante da matriz \( A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 4 & 6 \\ 8 & 0 & 3 \end{pmatrix} \), podemos usar a regra de Sarrus ou a expansão por cofatores. Vamos calcular o determinante usando a regra de Sarrus, que é aplicável a matrizes 3x3: 1. Multiplicamos as diagonais principais: - \( 1 \cdot 4 \cdot 3 = 12 \) - \( 0 \cdot 6 \cdot 8 = 0 \) - \( 1 \cdot 2 \cdot 0 = 0 \) Soma das diagonais principais: \( 12 + 0 + 0 = 12 \) 2. Multiplicamos as diagonais secundárias: - \( 1 \cdot 4 \cdot 8 = 32 \) - \( 0 \cdot 6 \cdot 1 = 0 \) - \( 1 \cdot 2 \cdot 3 = 6 \) Soma das diagonais secundárias: \( 32 + 0 + 6 = 38 \) 3. O determinante é a soma das diagonais principais menos a soma das diagonais secundárias: - \( \text{Det}(A) = 12 - 38 = -26 \) Parece que houve um erro na análise das alternativas, pois o valor do determinante não está entre as opções apresentadas. No entanto, se considerarmos a matriz e as opções dadas, a resposta correta não está listada. Você pode verificar se a matriz foi escrita corretamente ou se as opções estão corretas. Se precisar de mais ajuda, você tem que criar uma nova pergunta.

Essa resposta te ajudou?

0
Dislike0

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Mais conteúdos dessa disciplina