Ed
há 2 meses
Para resolver essa questão, precisamos entender como calcular a probabilidade em uma distribuição uniforme contínua. Dado que a variável aleatória está distribuída uniformemente no intervalo [0, 5], a probabilidade de escolher um ponto em um subintervalo é dada pela razão entre o comprimento do subintervalo e o comprimento total do intervalo. 1. O intervalo total é de 0 a 5, que tem um comprimento de 5 - 0 = 5. 2. O subintervalo de interesse é de 1 a 2, que tem um comprimento de 2 - 1 = 1. Agora, calculamos a probabilidade: \[ P(1 < X < 2) = \frac{\text{comprimento do subintervalo}}{\text{comprimento do intervalo total}} = \frac{1}{5} = 0,2 \] Convertendo isso para porcentagem, temos: \[ 0,2 \times 100\% = 20\% \] Portanto, a alternativa correta é: d) 20%.
Mais perguntas desse material