Ed
ano passado
Para entender o foco dos números complexos \( z \), precisamos considerar suas principais aplicações e características. Os números complexos são utilizados em diversas áreas da matemática, incluindo a resolução de equações polinomiais, análise de funções e muito mais. Vamos analisar as alternativas: A) Resolver raízes quadradas somente. - Embora os números complexos possam resolver raízes quadradas de números negativos, essa não é a única aplicação deles. B) Análise de funções polinomiais. - Os números complexos são fundamentais na análise de funções polinomiais, especialmente na busca por raízes de polinômios, conforme o Teorema Fundamental da Álgebra. C) A relação |z| = 0. - Essa relação se refere apenas ao número complexo zero, que é uma parte muito específica do estudo dos números complexos. D) As somas retangulares em processos expressivos. - Essa opção não é uma descrição clara do foco dos números complexos. Diante da análise, a alternativa que melhor representa o foco dos números complexos é: B) Análise de funções polinomiais.
Já tem uma conta?
Ao continuar, você aceita os Termos de Uso e Política de Privacidade
Mais perguntas desse material