Logo Passei Direto
Buscar

Cálculo

Outros

20. Determine o valor de \( \int_0^1 (x^2 + 2x) \, dx \). A) \(\frac{1}{3}\) B) 1 C) \(\frac{5}{3}\) D) \(\frac{2}{3}\)

User badge image
Questões Para o Saber

ano passado

Respostas

User badge image

Ed Verified user icon

ano passado

Para resolver a integral dada \( \int_0^1 (x^2 + 2x) \, dx \), primeiro precisamos integrar a função em relação a \( x \) e depois avaliar nos limites de integração de 0 a 1. Integrando a função \( x^2 + 2x \) em relação a \( x \), obtemos \( \frac{x^3}{3} + x^2 \). Agora, vamos avaliar a integral nos limites de 0 a 1: \( \left[ \frac{x^3}{3} + x^2 \right]_0^1 = \left( \frac{1^3}{3} + 1^2 \right) - \left( \frac{0^3}{3} + 0^2 \right) \) \( = \left( \frac{1}{3} + 1 \right) - (0) \) \( = \frac{1}{3} + 1 \) \( = \frac{1}{3} + \frac{3}{3} \) \( = \frac{4}{3} \) Portanto, o valor da integral \( \int_0^1 (x^2 + 2x) \, dx \) é \( \frac{4}{3} \), que não está entre as opções fornecidas. Como nenhuma das alternativas corresponde ao resultado correto, pode haver um erro na formulação da pergunta.

Essa resposta te ajudou?

0
Dislike0
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar essa resposta. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

Mais conteúdos dessa disciplina