Prévia do material em texto
Acadêmico: Valter Alves dos Santos (812221) Disciplina: Cálculo Numérico (MAT28) Avaliação: Avaliação Final (Objetiva) - Individual FLEX ( Cod.:455185) ( peso.:3,00) Prova: 12511136 Nota da Prova: 5,00 Legenda: Resposta Certa Sua Resposta Errada Parte superior do formulário 1. As equações do segundo grau, ao serem resolvidas, podem apresentar duas raízes reais e distintas, duas raízes reais e iguais ou, ainda, não apresentar raízes reais. Determine o valor de m para que a equação x(x+4)+ m = 0 apresente duas raízes reais e iguais. a) O valor de m é igual a 6. b) O valor de m é igual a 2. c) O valor de m é igual a 8. d) O valor de m é igual a 4. 2. Para que uma equação do segundo grau apresente como solução duas raízes reais e distintas, o discriminante deve ser positivo. Dada a equação x² - 4x + k = 0, para quais valores de k a equação tem duas raízes reais e distintas? a) k < 2 b) k > 2 c) k > 4 d) k < 4 3. Determinar raízes de polinômios por vezes não é simples se pensarmos em polinômios de grau maior que 3, para polinômio de grau 1 basta isolar a variável independente, polinômios de grau dois usamos Bhaskara. São métodos interativos que na maioria das vezes usamos para determinar raízes de polinômios de grau maior e igual a 3, mas para entendê-los precisamos compreender as características dos polinômios. Sobre o exposto, analise as sentenças a seguir: I- Todo polinômio de grau maior que 1 tem pelo menos uma raiz real. II- Se o polinômio tem grau impar, então ele tem pelo menos uma raiz real. III- Se um polinômio de grau n tem n - 1 raízes, então uma das raízes tem multiplicidade 2. IV- Se um polinômio de grau n tem todas n raízes distintas, então ele pode ser reescrito da seguinte forma: a) III. b) I. c) IV. d) II. 4. Para que uma equação do segundo grau apresente como solução duas raízes reais e distintas, é necessário que o discriminante seja positivo. Dada a equação x² - 4x + 2k = 0, para quais valores de k a equação tem duas raízes reais e distintas? a) k > 2 b) k < 4 c) k < 2 d) k > 4 5. Os métodos de Jacobi e Gauss-Seidel são métodos que encontram uma solução aproximada da solução de um sistema linear. Quando não temos mais um sistema linear, e sim um sistema não linear, devemos fazer uso de outros métodos para encontrar uma solução aproximada para o sistema, sendo dois deles o método da interação linear e o método de Newton. O método da interação linear, em geral, é mais fácil de ser implementado, porém requer mais condições do sistema que o método de Newton. Com base no exposto, assinale a alternativa CORRETA que apresenta a solução (com um arredondamento de 3 casas decimais) do sistema não linear depois de duas iterações (k = 2) e o ponto inicial (0,5; 0,1) usando o método de Newton: a) x = 0,5 e y = 0,1 b) x = 0,505 e y = 0,125 c) x = 0,492 e y = 0,121 d) x = 0,495 e y = 0,124 6. Com relação à integração numérica, o método 1/3 de Simpson Generalizado consiste em aplicar o método de Simpson tantas vezes quantas forem os pontos em que conheçamos o valor da função f. Consideremos então o intervalo [1, 5], e vamos aplicar este método para a função f, supondo n = 4. Se utilizarmos 4 casas decimais nos cálculos, o valor encontrado para a integral numérica de f(x) = ln(x) será: Atenção: h = (b-a)/n a) O valor encontrado para a integral será 6,2832. b) O valor encontrado para a integral será 4,0414. c) O valor encontrado para a integral será 6,1248. d) O valor encontrado para a integral será 4,8746. Anexos: CN - Regra 1/3 Simpson Gen2 7. Funções polinomiais são um caso particular de funções, em geral são bem-comportadas e apresentam várias propriedades interessantes. Uma dessas propriedades é que todo polinômio possui pelo menos uma raiz, podendo ela ser real ou complexa e se o polinômio tem grau n então ele tem no máximo n raízes. E ainda, se todos os coeficientes do polinômio forem reais e ele tiver uma raiz complexa, então o conjugado dessa raiz também é uma raiz do polinômio. Com base no exposto, considere o polinômio p(x) = x³ - 3x² + x + 5 Determine o valor de a sabendo que x = - 1 e x = a - i são raízes do polinômio. a) a = - 1 b) a = 2 c) a = - 2 d) a = 0 8. Um dos métodos de aproximação estudado foi o método de regressão linear simples através dos mínimos quadrados. Utilizando os pontos no quadro a seguir, calcule o coeficiente: a) - 0,0070 b) - 0,0359 c) 9,4142 d) 6,0624 Anexos: CN - Regressao Linear2 9. Quando se torna inviável resolver uma equação diferencial ordinária, lançamos mão dos métodos numéricos para encontrar uma aproximação f a esta solução y. O método de Euler é um destes métodos numéricos. Neste contexto, considere a EDO dada por y' = y - x definida no intervalo [0, 1] tal que y(0) = 2. Tomando h = 0,2, a equação de iteração é: a) Somente a opção II está correta. b) Somente a opção IV está correta. c) Somente a opção I está correta. d) Somente a opção III está correta. Anexos: CN - Metodo de Euler2 10. A equação diferencial ordinária (ou EDO) é um estudo da matemática e em particular da análise. Trata-se de uma equação que envolve as derivadas de uma função desconhecida de uma variável. Sobre Equações Diferenciais Ordinárias, analise as sentenças a seguir: I- Para uma mesma equação diferencial, existem várias soluções possíveis. II- Chamamos de Problema de Valor Inicial (PVI) a equação diferencial da qual conhecemos o seu valor inicial. III- O Teorema de Existência e Unicidade (TEU) garante que todas as equações diferenciais apresentam uma única solução. IV- Os Problemas de Valor Inicial (PVI) sempre têm solução, ao contrário dos Problemas de Valor de Contorno (PVC). Assinale a alternativa CORRETA: a) As sentenças I e II estão corretas. b) As sentenças III e IV estão corretas. c) As sentenças I e IV estão corretas. d) As sentenças II e III estão corretas. 11. (ENADE, 2008) A Matemática no Ensino Médio tem papel formativo - contribui para o desenvolvimento de processos de pensamento e para a aquisição de atitudes - e caráter instrumental - pode ser aplicada às diversas áreas do conhecimento -, mas deve ser vista também como ciência, com suas características estruturais específicas. OCNEM (com adaptações). Ao planejar o estudo de funções no Ensino Médio, o professor deve observar que: a) o objetivo do estudo de exponenciais é encontrar os zeros dessas funções. b) a função quadrática é exemplo típico de comportamento de fenômenos de crescimento populacional. c) o estudo de funções polinomiais deve contemplar propriedades de polinômios e de equações algébricas. d) as funções logarítmicas podem ser usadas para transformar soma em produto. 12. (ENADE, 2014) Em uma loja de material escolar, as mercadorias caneta, lápis e borracha, de um único tipo, cada uma, são vendidas para três estudantes. O primeiro comprou uma caneta, três lápis e duas borrachas pagando R$ 10,00; o segundo adquiriu duas canetas, um lápis e uma borracha pagando R$ 9,00; o terceiro comprou três canetas, quatro lápis e três borrachas pagando R$ 19,00. Os estudantes, após as compras, sem verificarem os valores de cada mercadoria, procuraram resolver o problema: " A partir das compras efetuadas e dos respectivos valores totais pagos por eles, qual o preço da caneta, do lápis e da borracha?". Para isso, montaram um sistema de equações lineares cujas incógnitas são os preços das mercadorias. Esse sistema de equações é: a) possível determinado, sendo o preço da borracha mais caro que o do lápis. b) impossível, pois saber os totais das compras não garante a existência de solução. c) possível determinado, podendo admitir como solução, o valor do preço da caneta, do lápis e da borracha. d) possível indeterminado, de forma que a soma dos valores possíveis da caneta, do lápis e da borracha é igual a 1/5da adição do preço da borracha com R$ 28,00. Parte inferior do formulário