Prévia do material em texto
Disciplina: Cálculo Numérico (MAT28) Avaliação: Avaliação I - Individual FLEX ( Cod.:445040) ( peso.:1,50) Prova: 11634724 Nota da Prova: 9,00 Legenda: Resposta Certa Sua Resposta Errada Parte superior do formulário 1. Equação fracionária é aquela que possui, pelo menos, um termo que é uma fração algébrica, ou seja, pelo menos um termo que apresente incógnita no denominador. A equação fracionária a seguir possui como raízes: a) Somente a opção I está correta. b) Somente a opção IV está correta. c) Somente a opção III está correta. d) Somente a opção II está correta. 2. Para que uma equação do segundo grau apresente como solução duas raízes reais e distintas, o discriminante deve ser positivo. Dada a equação x² - 4x + k = 0, para quais valores de k a equação tem duas raízes reais e distintas? a) k < 2 b) k < 4 c) k > 2 d) k > 4 3. O modelo matemático para uma situação-problema deve representar de forma eficiente o fenômeno que está ocorrendo no mundo físico. Normalmente, isso exige simplificações no modelo físico para que se possa obter um problema matemático viável de ser resolvido. O processo de simplificação é, inevitavelmente, uma fonte de erros, o que pode, ao final da resolução do problema, implicar na necessidade de reconstruir o seu modelo. Baseado nos tipos de erros que podem ocorrer durante o processo de resolução numérica de uma situação-problema, analise as seguintes sentenças: I- Os erros de modelagem podem ser evitados, desde que se faça a escolha correta do modelo matemático a ser adotado. II- Os erros de arredondamento e os erros de truncagem surgem durante o processo de resolução numérica do problema. III- A propagação dos erros se deve ao fato de um ou mais erros cometidos durante o processo ser carregado até o final, interferindo nos cálculos intermediários. IV- A classificação dos tipos de erros pode ser diferente, dependendo da forma como a situação-problema é analisada. Assinale a alternativa CORRETA: a) As sentenças III e IV estão corretas. b) As sentenças II e III estão corretas. c) As sentenças I e II estão corretas. d) As sentenças I e IV estão corretas. 4. Para que uma equação do segundo grau apresente como solução duas raízes reais e distintas, é necessário que o discriminante seja positivo. Dada a equação x² - 4x + 2k = 0, para quais valores de k a equação tem duas raízes reais e distintas? a) k > 4 b) k < 2 c) k < 4 d) k > 2 5. Os sistemas lineares de pequena dimensão raramente são resolvidos através das técnicas iterativas, a não ser que o tempo requerido para uma exatidão suficiente exceda o tempo requerido por técnicas diretas, como o método de eliminação de Gauss. No entanto, para grandes sistemas que exigem a mais baixa porcentagem de erros, estas técnicas são eficientes em termos de armazenamento de informações no campo da computação. Os sistemas lineares com estas características, frequentemente, surgem na realização da análise de circuito, nas soluções numéricas de problemas de fronteiras e nas equações diferenciais parciais. Efetue o seguinte cálculo: Segundo o critério de linhas, ou seja, método de Jacobi, verifique se o sistema linear dado pelas equações: a) O sistema não satisfaz o critério de linhas, convergência não garantida. b) O sistema satisfaz o critério de linhas, convergência garantida. c) O sistema satisfaz o critério de linhas, convergência não garantida. d) O sistema é convergente e divergente ao mesmo tempo. 6. Para que uma equação do segundo grau apresente como raízes apenas números complexos, o discriminante deve ser negativo. Dada a equação x² - 2x + t = 0, para quais valores de t a equação tem como raízes apenas números complexos? a) t > 2 b) t > 4 c) t < 1 d) t > 1 7. Gabriel Cramer foi um matemático suíço, sendo famosa a regra para solução de sistemas de equações lineares que tem o seu nome, a regra de Cramer. A regra ou método de Cramer consiste em encontrar a solução do sistema linear A.X = B através de determinantes. Neste contexto, para o sistema a seguir, assinale a alternativa CORRETA: a) Somente a opção II está correta. b) Somente a opção III está correta. c) Somente a opção IV está correta. d) Somente a opção I está correta. 8. Para que uma equação do segundo grau apresente como raízes apenas números complexos, o discriminante deve ser negativo. Dada a equação x² - 4x + 2k = 0, para quais valores de k a equação tem como raízes apenas números complexos? a) k > 16 b) k > 8 c) k < 2 d) k > 2 9. Sabendo que a Decomposição LU é um método que além de resolver sistemas lineares também pode ser usado para calcular o determinante da matriz A. Como as matrizes L e U são matrizes triangulares e o determinante das mesmas é simples de ser calculado, conseguimos calcular o determinante de A, já que A = LU. Considerando as matrizes A, L e U a seguir, qual é o determinante de A? a) 5. b) 6. c) 1. d) 7. 10. O sistema binário ou de base 2 é um sistema de numeração posicional em que todas as quantidades se representam com base em dois números, ou seja, zero e um. Um computador realizou cálculos no sistema binário, e o resultado foi (1000001). Qual é o resultado no sistema decimal? a) O resultado será 62. b) O resultado será 65. c) O resultado será 60. d) O resultado será 58. Parte inferior do formulário Parte inferior do formulário