Logo Passei Direto
Buscar

Ferramentas de estudo

Questões resolvidas

O método da integração por partes possui fundamental importância no que diz respeito à integração de funções mais complexas em relação às habituais, que aparecem em tabelas de integração. Esse método consiste em separar a função em duas partes, de preferência de forma que uma das expressões seja mais fácil de se derivar, e a outra, mais fácil de se integrar.
Considerando essas informações e seus conhecimentos sobre a técnica de integração por partes, analise as asserções a seguir e a relação proposta entre elas.
I. A integral indefinida da função f(x) = (e^x)cos(x) é igual a (e^x)[sen(x)+cos(x)]/2 + C.
II. Consideramos a regra da integração por partes e tomando inicialmente u = e^x e dv = cos(x)dx, de forma que du = (e^x)dx e v = sen(x), ao integrar a função dada por partes, obtém-se outra expressão com uma integral parecida, e novamente é realizada a técnica de integração por partes. Após isso, se isola a integral cujo cálculo é desejado para encontrar a primitiva F(x) da função f(x).
1. As asserções I e II são proposições verdadeiras, mas a II não é uma justificativa correta da I.
2. A asserção I é uma proposição verdadeira, e a II é uma proposição falsa.
3. A asserção I é uma proposição falsa, e a II é uma proposição verdadeira.
4. Correta: As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I. Resposta correta
5. As asserções I e II são proposições falsas.

O método da integração trigonométrica possui fundamental importância no que diz respeito à integração de funções mais complexas do que as habituais, que aparecem em tabelas de integração. Esse método consiste em substituir um dos termos por uma função trigonométrica, para que se encontre alguma identidade que simplifica a expressão, possibilitando a sua integração.
Considerando essas informações e seus conhecimentos sobre a técnica de integração por substituições trigonométricas, analise as asserções a seguir e a relação proposta entre elas.
I. A integral de 1/[x²√(x²+4)] é igual a √(x²+4)/4x + C, e pode ser calculada pelo método da substituição trigonométrica, por meio da substituição x = 2sec(w).
II. Consideramos a regra da integração por substituição trigonométrica e com x = 2sec(w), temos que √(x²+4) = √[4sec²(w)+4] = √[4(sec²(w)+1), e como sec²(w) + 1 = tg²(w), √(x²+4) = 2tg(w). Substituindo na fórmula inicial e integrando, encontramos a expressão dada.
1. As asserções I e II são proposições verdadeiras, mas a II não é uma justificativa correta da I.
2. As asserções I e II são proposições falsas. Resposta correta
3. Incorreta: As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I
4. A asserção I é uma proposição verdadeira, e a II é uma proposição falsa.
5. A asserção I é uma proposição falsa, e a II é uma proposição verdadeira.

Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Questões resolvidas

O método da integração por partes possui fundamental importância no que diz respeito à integração de funções mais complexas em relação às habituais, que aparecem em tabelas de integração. Esse método consiste em separar a função em duas partes, de preferência de forma que uma das expressões seja mais fácil de se derivar, e a outra, mais fácil de se integrar.
Considerando essas informações e seus conhecimentos sobre a técnica de integração por partes, analise as asserções a seguir e a relação proposta entre elas.
I. A integral indefinida da função f(x) = (e^x)cos(x) é igual a (e^x)[sen(x)+cos(x)]/2 + C.
II. Consideramos a regra da integração por partes e tomando inicialmente u = e^x e dv = cos(x)dx, de forma que du = (e^x)dx e v = sen(x), ao integrar a função dada por partes, obtém-se outra expressão com uma integral parecida, e novamente é realizada a técnica de integração por partes. Após isso, se isola a integral cujo cálculo é desejado para encontrar a primitiva F(x) da função f(x).
1. As asserções I e II são proposições verdadeiras, mas a II não é uma justificativa correta da I.
2. A asserção I é uma proposição verdadeira, e a II é uma proposição falsa.
3. A asserção I é uma proposição falsa, e a II é uma proposição verdadeira.
4. Correta: As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I. Resposta correta
5. As asserções I e II são proposições falsas.

O método da integração trigonométrica possui fundamental importância no que diz respeito à integração de funções mais complexas do que as habituais, que aparecem em tabelas de integração. Esse método consiste em substituir um dos termos por uma função trigonométrica, para que se encontre alguma identidade que simplifica a expressão, possibilitando a sua integração.
Considerando essas informações e seus conhecimentos sobre a técnica de integração por substituições trigonométricas, analise as asserções a seguir e a relação proposta entre elas.
I. A integral de 1/[x²√(x²+4)] é igual a √(x²+4)/4x + C, e pode ser calculada pelo método da substituição trigonométrica, por meio da substituição x = 2sec(w).
II. Consideramos a regra da integração por substituição trigonométrica e com x = 2sec(w), temos que √(x²+4) = √[4sec²(w)+4] = √[4(sec²(w)+1), e como sec²(w) + 1 = tg²(w), √(x²+4) = 2tg(w). Substituindo na fórmula inicial e integrando, encontramos a expressão dada.
1. As asserções I e II são proposições verdadeiras, mas a II não é uma justificativa correta da I.
2. As asserções I e II são proposições falsas. Resposta correta
3. Incorreta: As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I
4. A asserção I é uma proposição verdadeira, e a II é uma proposição falsa.
5. A asserção I é uma proposição falsa, e a II é uma proposição verdadeira.

Prévia do material em texto

MÚLTIPLA ESCOLHA
INCORRETO
0/0Nota: 0 de 0 pontos possível(is)
Os conhecimentos acerca dos métodos de integração são essenciais para os estudantes de Cálculo Integral. Esses métodos possibilitam a reescrita de algumas integrais que, sem eles, não seriam resolvidas. Um dos métodos importantes de integração é o método conhecido como frações parciais.
Tendo em vista o método supracitado, analise os procedimentos a seguir e ordene as etapas de acordo com a sequência na qual devem ser efetuados os passos para a utilização desse método de integração:
( ) Fragmentar a integral inicial em outras integrais solúveis e efetuar os cálculos dessas integrais.
( ) Reescrever o denominador da função racional em fatoração polinomial.
( ) Substituir os valores nas integrais.
( ) Fragmentar a fração racional em outras frações.
( ) Encontrar os numeradores de cada uma dessas frações
Agora, assinale a alternativa que representa a sequência correta:
1. 5, 2, 3, 4, 1.
2. Incorreta: 3, 4, 2, 1, 5
3. 2, 1, 3, 4, 5.
4. 5, 1, 4, 2, 3. Resposta correta
5. 2, 4, 1, 5, 3.
Pergunta 2
2
MÚLTIPLA ESCOLHA
CORRETO
0/0
Nota: 0 de 0 pontos possível(is)
O estudo dos métodos de integração é importante no uso das ferramentas do cálculo por nos possibilitar a encontrar uma função primitiva F(x) de uma certa função f(x). Além do método da substituição, outra técnica de integração importante é o da integração por partes, na qual tomamos uma função e a separamos em duas partes para acharmos sua integral indefinida.
Considerando f(x) = u e g(x) = v, de forma que f’(x)dx = du e g’(x)dx = dv e de acordo com seus conhecimentos sobre as técnicas de integração, analise as afirmativas a seguir.
I. A Regra de Substituição para a integração corresponde à Regra da Cadeia para a derivação.
II. Integrar por partes significa fazer a integral de u.dv igual a uv menos a integral de v.du.
III. A técnica da integração por partes corresponde à Regra do Quociente para a derivação.
IV. Assim como na derivação, existem regras que sempre garantem a obtenção da integral indefinida de uma função.
Está correto apenas o que se afirma em:
1. Correta: I e II. Resposta correta
2. I, II e III.
3. II e IV.
4. II e III.
5. I, e IV.
Pergunta 3
3
MÚLTIPLA ESCOLHA
CORRETO
0/0
Nota: 0 de 0 pontos possível(is)
O método da integração por partes possui fundamental importância no que diz respeito à integração de funções mais complexas em relação às habituais, que aparecem em tabelas de integração. Esse método consiste em separar a função em duas partes, de preferência de forma que uma das expressões seja mais fácil de se derivar, e a outra, mais fácil de se integrar. 
Considerando essas informações e seus conhecimentos sobre a técnica de integração por partes, analise as asserções a seguir e a relação proposta entre elas.
I. A integral indefinida da função f(x) = (e^x)cos(x) é igual a (e^x)[sen(x)+cos(x)]/2 + C.
Porque:
II. Consideramos a regra da integração por partes e tomando inicialmente u = e^x e dv = cos(x)dx, de forma que du = (e^x)dx e v = sen(x), ao integrar a função dada por partes, obtém-se outra expressão com uma integral parecida, e novamente é realizada a técnica de integração por partes. Após isso, se isola a integral cujo cálculo é desejado para encontrar a primitiva F(x) da função f(x). 
Agora, assinale a alternativa correta:
1. As asserções I e II são proposições verdadeiras, mas a II não é uma justificativa correta da I.
2. A asserção I é uma proposição verdadeira, e a II é uma proposição falsa.
3. A asserção I é uma proposição falsa, e a II é uma proposição verdadeira.
4. Correta: As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I. Resposta correta
5. As asserções I e II são proposições falsas.
Pergunta 4
4
MÚLTIPLA ESCOLHA
CORRETO
0/0
Nota: 0 de 0 pontos possível(is)
O método de integração por substituições trigonométricas é um dos mais trabalhosos e complexos métodos. Busca-se, com ele, a realização de uma substituição a partir de funções trigonométricas específicas para a eliminação de uma estrutura determinada do integrando.
Com base no seu conhecimento acerca desse método de integração, analise as afirmativas a seguir e assinale V para a(s) verdadeira(s) e F para a(s) falsa(s).
I. ( ) O método trabalha com a eliminação de radicais específicos do integrando.
II. ( ) x= asen( ) é uma das substituições possíveis.
III. ( ) O conhecimento acerca das relações trigonométricas é dispensável para resolução desse método.
IV. ( ) Há ligação entre o círculo trigonométrico e esse método de integração.
Agora, assinale a alternativa que representa a sequência correta:
1. V, V, F, F.
2. F, F, V, V.
3. Correta: V, V, F, V. Resposta correta
4. V, F, F, F.
5. V, V, V, F.
Pergunta 5
5
MÚLTIPLA ESCOLHA
INCORRETO
0/0
Nota: 0 de 0 pontos possível(is)
A matemática pauta sua construção de conhecimento com base em seus axiomas, que são premissas assumidas como verdadeiras, isto é, proposições inquestionáveis. A partir dessas proposições, outros conhecimentos são gerados, tais como teoremas, propriedades, corolários e afins. Esses conhecimentos vão gerando outros, e assim sucessivamente.
Considerando essas informações, pode-se afirmar que a propriedade da derivada do produto de duas funções é relevante para a integração por partes porque:
1. ambas são axiomas da matemática.
2. as derivadas do produto são equivalentes as integrais dos produtos.
3. Incorreta:
a propriedade derivativa é utilizada para a resolução de problemas que envolvem integral por partes.
4. deve-se derivar as funções antes de integrá-las
5. funciona como uma premissa verdadeira que serve como base para a dedução do método de integração por partes. Resposta correta
Pergunta 6
6
MÚLTIPLA ESCOLHA
CORRETO
0/0
Nota: 0 de 0 pontos possível(is)
O estudo acerca das integrais é essencial para aqueles que estudam cálculo. Por meio delas, obtém-se uma medida analítica de algumas áreas, volumes e comprimentos. Portanto, reconhecê-las e utilizá-las é essencial. Existem inúmeros métodos de integração, cada um para um fim definido. O método de integração por partes é um deles, e é extremamente útil para a integração de uma categoria de funções.
De acordo essas informações e com seus conhecimentos acerca de integração por partes, analise as afirmativas a seguir:
I. A integração por partes é útil para se integrar certos tipos de produtos de funções.
II. A integração por partes pode ser concebida por meio da regra do produto das derivadas, realizando manipulações algébricas e integrando ambos lados da igualdade.
III. Esse método de integração consiste em transformar uma integral em termos de dv em outra em termos de du e um termo independente de integral.
IV. A função cos(x) é integrável por esse método.
Está correto apenas o que se afirma em:
1. I, III e IV.
2. Correta: I, II e III. Resposta correta
3. II e IV.
4. II e III.
5. I, II e IV.
Pergunta 7
7
MÚLTIPLA ESCOLHA
INCORRETO
0/0
Nota: 0 de 0 pontos possível(is)
O método da integração trigonométrica possui fundamental importância no que diz respeito à integração de funções mais complexas do que as habituais, que aparecem em tabelas de integração. Esse método consiste em substituir um dos termos por uma função trigonométrica, para que se encontre alguma identidade que simplifica a expressão, possibilitando a sua integração. 
Considerando essas informações e seus conhecimentos sobre a técnica de integração por substituições trigonométricas, analise as asserções a seguir e a relação proposta entre elas.
I. A integral de 1/[x²√(x²+4)] é igual a √(x²+4)/4x + C, e pode ser calculada pelo método da substituição trigonométrica, por meio da substituição x = 2sec(w).
Porque:
II. Consideramos a regra da integração por substituição trigonométrica e com x = 2sec(w), temos que √(x²+4) = √[4sec²(w)+4] = √[4(sec²(w)+1), e como sec²(w) + 1 = tg²(w), √(x²+4) = 2tg(w). Substituindo na fórmula inicial e integrando, encontramos a expressão dada.
Agora, assinale a alternativa correta:
1. As asserções I e II são proposições verdadeiras, mas a II não é uma justificativacorreta da I. 
2. As asserções I e II são proposições falsas. Resposta correta
3. Incorreta:
As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I
4. A asserção I é uma proposição verdadeira, e a II é uma proposição falsa.
5. A asserção I é uma proposição falsa, e a II é uma proposição verdadeira.
Pergunta 8
8
MÚLTIPLA ESCOLHA
INCORRETO
0/0Nota: 0 de 0 pontos possível(is)
As técnicas de integração servem para possibilitar a resolução do cálculo de uma integral indefinida, onde muitas vezes não há um passo direto para encontrarmos a primitiva F(x) de uma certa função f(x). Dessa forma, dependendo do arranjo algébrico dos termos de f(x), decidimos por diferentes técnicas de integração, como o método da substituição, o da integração por partes, o das frações parciais, e etc.
De acordo com as definições e propriedades do cálculo da integral indefinida e definida pelo método de integração por partes e com seus conhecimentos sobre funções trigonométricas, analise as afirmativas a seguir e assinale V para a(s) verdadeiras e F para a(s) falsa(s).
I. ( ) A integral da função f(x) = (x+1)³(x-1) só pode ser calculada pela regra da integração por partes, por se tratar do produto de duas funções.
II. ( ) A técnica de integração por partes é dada pela seguinte fórmula: 
III. ( ) A primitiva de g(x) = ln(x) é G(x) = xln(x) - x + C.
IV. ( ) A integral definida no intervalo [-pi,pi] de h(x) = xsen(x) é aproximadamente igual a 6,28.
Agora, assinale a alternativa que representa a sequência correta:
1. Incorreta:V, V, F, F.
2. F, V, V, V.
3. F, V, V, V. Resposta correta
4. F, F, V, F.
5. V, F, F, V.
Pergunta 9
9
MÚLTIPLA ESCOLHA
CORRETO
0/0
Nota: 0 de 0 pontos possível(is)
O conhecimento acerca dos métodos de integração é essencial, de forma que a integração por substituições trigonométricas possui diversas aplicações no escopo do cálculo e da física, já que, muitas vezes, essas substituições são as únicas saídas para resolver uma integral definida cujo valor numérico equivale, por exemplo, à área sob uma curva, a um volume de rotação ou translação, ao comprimento de um arco, etc.
De acordo essas informações e com seus conhecimentos sobre as técnicas de integração, analise as afirmativas a seguir:
I. O cálculo da área de elipses, da forma x²/a² + y²/b² = 1, pode ser feito substituições trigonométricas em integrais, pois isolando y encontramos a raiz de a² – x².
II. Expressões que envolvem a raiz quadrada de a² - x² podem ser integradas fazendo a substituição x = asen(w), devido ao fato de recorrerem na identidade 1-sen²w = cos²w.
III. As substituições trigonométricas consistem na aplicação da regra da substituição para integração em casos específicos, nos quais pode-se recorrer a certas substituições, baseando-se nas identidades trigonométricas, para chegar a expressões integráveis.
IV. Ao realizar o cálculo da integral indefinida de uma função por meio de substituições trigonométricas, nem sempre é preciso retornar à variável x original.
Está correto apenas o que se afirma em:
1. II e III.
2. II e IV.
3. I, II e IV.
4. Correta: I, II e III. Resposta correta
5. I e III.
Pergunta 10
10
MÚLTIPLA ESCOLHA
INCORRETO
0/0
Nota: 0 de 0 pontos possível(is)
O método da integração de funções racionais por frações parciais possui fundamental importância no que diz respeito à integração de funções mais complexas em relação às habituais, que aparecem em tabelas de integração. Esse método consiste em reescrever a função como a soma de frações cujos denominadores são fatores do denominador original e, apenas após isso, realizar a integração de fato.
Considerando essas informações e seus conhecimentos sobre a técnica de integração por frações parciais, analise as asserções a seguir e a relação proposta entre elas.
I. A integral de f(x) = (x²+x)/(x-1) é igual a x²/2 + 2x + 2ln|x-1| + C, e pode ser calculada pelo método da integração de frações parciais.
Porque:
II. Separamos f(x) = (x²+x)/(x-1) como f(x) = x²/(x-1) + x/(x+1), e depois fazemos essas divisões polinomiais, obtendo f(x) = x + 1 + 1/(x-1) + 1 + 1/(x-1) = x + 2 + 2/(x-1), para então integrar utilizando a regra da integral da soma de vários termos.
Agora, assinale a alternativa correta:
1. Incorreta:
As asserções I e II são proposições falsas.
2. A asserção I é uma proposição verdadeira, e a II é uma proposição falsa.
3. A asserção I é uma proposição falsa, e a II é uma proposição verdadeira.
4. As asserções I e II são proposições verdadeiras, mas a II não é uma justificativa correta da I.
5. As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I.  Resposta correta

Mais conteúdos dessa disciplina