Logo Passei Direto
Buscar
Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Prévia do material em texto

Prova Impressa
GABARITO | Avaliação I - Individual (Cod.:955139)
Peso da Avaliação 2,00
Prova 78243078
Qtd. de Questões 10
Acertos/Erros 9/1
Nota 9,00
O mesmo método da chave usado para dividir números pode ser utilizado para dividir um 
polinômio por outro de menor grau. O dividendo será dividido pelo divisor e resultará no quociente 
mais o resto. Utilizando esse método ou outro que preferir, determine o resto da divisão do polinômio.
A 8.
B - 4.
C 12x.
D 6x.
Analise a seguinte situação:
Uma prova com duas questões foi dada a uma classe de quarenta alunos:
Dez alunos acertaram as duas questões;
15 acertaram a primeira questão;
10 acertaram a segunda questão.
Quantos alunos erraram as duas questões?Assinale a alternativa CORRETA:
A 5 alunos.
B 20 alunos.
C 25 alunos.
D 10 alunos.
 VOLTAR
A+ Alterar modo de visualização
1
2
06/07/2024, 11:37 Avaliação I - Individual
about:blank 1/5
Para podermos resolver as expressões numéricas e algébricas precisamos obedecer às ordens de 
resolução. De acordo com esta ordem, determine o valor numérico da expressão a seguir:
(-10) - (-23) + (-92) - (+6) . (-7) - (+98)Análise as sentenças:
I) +931.
II) -135.
III) +693.
IV) -219.
Assinale a alternativa CORRETA:
A Somente a opção II está correta.
B Somente a opção I está correta.
C Somente a opção III está correta.
D Somente a opção IV está correta.
Racionalizar uma fração cujo denominador é um radical significa determinar uma fração equivalente 
com denominador inteiro, ou seja, reescrever a fração eliminando do denominador os radicais. De 
acordo com a fração:
Qual das opções a seguir representa a fração equivalente:
Assinale a alternativa CORRETA:
A Somente a opção I está correta.
B Somente a opção III está correta.
C Somente a opção IV está correta.
D Somente a opção II está correta.
3
4
06/07/2024, 11:37 Avaliação I - Individual
about:blank 2/5
A radiciação é o inverso da potenciação, neste caso, podemos interpretar como consequência de uma 
potenciação em que não conhecemos o valor da base. Utilizando as propriedades da potenciação, 
classifique V para as sentenças verdadeiras e F para as falsas:
Assinale a alternativa que apresenta a sequência CORRETA:
A F - F - V - F.
B F - V - V - F.
C F - V - F - V.
D V - F - V - V.
Na Matemática, existem muitos atalhos que podem facilitar a resolução de algumas operações. Entre 
esses atalhos, pode-se destacar a racionalização de frações.
Com base nas propriedades de racionalização de frações, assinale a alternativa INCORRETA:
A Quando o denominador é uma raiz quadrada, multiplica-se os termos da fração pela própria raiz.
B Racionalizar o denominador de uma expressão significa eliminar a raiz do denominador de uma
fração.
C Quando o denominador é uma soma ou diferença de dois termos, em que um deles, ou ambos,
são raízes, devemos multiplicar pelo conjugado.
D Quando o denominador é uma raiz de grau maior que 2, multiplica-se os termos da fração pela
própria raiz.
Um número expresso na forma decimal também pode ser reescrito na forma de número fracionário. 
Na hora de reescrevê-lo, podem ocorrer três situações, uma delas é o número decimal ser uma dízima 
periódica composta. Sobre a representação na forma de fração irredutível do número decimal 2,533..., 
analise as opções a seguir:
5
6
7
06/07/2024, 11:37 Avaliação I - Individual
about:blank 3/5
Assinale a alternativa CORRETA:
A Somente a opção IV está correta.
B Somente a opção I está correta.
C Somente a opção II está correta.
D Somente a opção III está correta.
Na teoria de Cálculo, estudamos limites e para calcularmos, muitas vezes, precisamos utilizar 
recursos como divisão de polinômios ou produtos notáveis. Utilizando estes recursos, simplifique a 
fração algébrica
A x(x² + x).
B x² + x - 1.
C x² - x.
D x² + 2x + 1.
Um múltiplo de um número A qualquer é todo valor que resulta da multiplicação de um número 
natural com o número A. Então podemos pensar que os múltiplos de um número são aqueles que 
estão na "tabuada" desse número.
Sobre o exposto, assinale a alternativa CORRETA:
A O 3 é múltiplo de 14.
B O mínimo múltiplo comum de 6 e 16 é 48.
C O 3 e 12 são números primos.
8
Revisar Conteúdo do Livro
9
06/07/2024, 11:37 Avaliação I - Individual
about:blank 4/5
D O máximo divisor comum de dois números primos entre si é 2.
Na matemática, os conceitos da Teoria dos Conjuntos nos auxiliam a desenvolver a ideia de 
organização de itens e proporcionam a inter-relação de elementos com conjuntos e de conjuntos com 
conjuntos. Utilizando esses conceitos sobre a Teoria de Conjuntos e a linguagem de pertinência e 
inclusão, classifique V para as sentenças verdadeiras e F para as falsas:
Assinale a alternativa que apresenta a sequência CORRETA:
A F - V - V - V.
B V - F - F - F.
C V - F - F - V.
D V - V - F - V.
10
Imprimir
06/07/2024, 11:37 Avaliação I - Individual
about:blank 5/5

Mais conteúdos dessa disciplina