Logo Passei Direto
Buscar
Continuando com o mesmo caso da questão anterior, relativa à aprovação, pelos bancos, de crédito na forma de cartão de crédito, como se fazia, no passado, a aprovação da concessão de cartões de crédito pelos bancos? E, hoje em dia, como os bancos fazem essa aprovação?
Reflita sobre essas perguntas e suas respostas, analise as afirmativas a seguir e assinale V para a(s) Verdadeira(s) e F para a(s) Falsa(s).
( ) No passado, os bancos faziam, e ainda fazem, ao menos em parte, a aprovação da concessão de cartões de crédito através da definição de regras que devem ser atendidas por cada cliente, tais como idade, emprego estável, renda fixa, dívidas pequenas, nome limpo e casa própria.
( ) Hoje em dia, dentre outras alternativas, uma que é frequentemente usada pelos bancos são algoritmos de aprendizagem supervisionada que classificam se o cliente é um potencial bom ou mau pagador.
( ) Para usarmos algoritmos de classificação com esse propósito de aprovar ou não cartões de crédito, precisamos de dados. Ensinamos ao algoritmo, com base nos dados que lhe são passados, a predizer clientes que são maus pagadores potenciais das faturas do cartão. Dessa forma, se o algoritmo, ao ser alimentado com os dados referentes a um novo cliente, classificar esse cliente como um mau pagador potencial, o banco não aprovará o cartão.
( ) Para equipes de análise de crédito, poder contar com a ajuda de um software com a capacidade de recomendar a aprovação ou não da concessão do cartão é de grande valor.
( ) A recomendação feita pelo software poderá ser tratada ao lado de outras regras de crédito para uma decisão final sobre a concessão de cartão para o cliente.
User badge image
Testando o Conhecimento

há 8 meses

Respostas

User badge image

Ed Verified user icon

há 8 meses

Vamos analisar cada uma das afirmações sobre a concessão de cartões de crédito: ( ) No passado, os bancos faziam, e ainda fazem, ao menos em parte, a aprovação da concessão de cartões de crédito através da definição de regras que devem ser atendidas por cada cliente, tais como idade, emprego estável, renda fixa, dívidas pequenas, nome limpo e casa própria. É verdadeira. Essa afirmação reflete práticas comuns tanto no passado quanto atualmente, onde critérios como esses são utilizados para avaliar a elegibilidade do cliente. ( ) Hoje em dia, dentre outras alternativas, uma que é frequentemente usada pelos bancos são algoritmos de aprendizagem supervisionada que classificam se o cliente é um potencial bom ou mau pagador. É verdadeira. O uso de algoritmos de aprendizagem de máquina para análise de crédito é uma prática crescente, permitindo uma avaliação mais precisa do risco de crédito. ( ) Para usarmos algoritmos de classificação com esse propósito de aprovar ou não cartões de crédito, precisamos de dados. Ensinamos ao algoritmo, com base nos dados que lhe são passados, a predizer clientes que são maus pagadores potenciais das faturas do cartão. Dessa forma, se o algoritmo, ao ser alimentado com os dados referentes a um novo cliente, classificar esse cliente como um mau pagador potencial, o banco não aprovará o cartão. É verdadeira. Essa afirmação descreve corretamente o funcionamento dos algoritmos de classificação, que dependem de dados históricos para fazer previsões sobre novos clientes. ( ) Para equipes de análise de crédito, poder contar com a ajuda de um software com a capacidade de recomendar a aprovação ou não da concessão do cartão é de grande valor. É verdadeira. A utilização de software para auxiliar na análise de crédito é extremamente valiosa, pois pode aumentar a eficiência e a precisão das decisões. ( ) A recomendação feita pelo software poderá ser tratada ao lado de outras regras de crédito para uma decisão final sobre a concessão de cartão para o cliente. É verdadeira. As recomendações dos softwares são frequentemente integradas a outras análises e critérios para chegar a uma decisão final. Portanto, a sequência correta é: V - V - V - V - V. A alternativa que apresenta essa sequência é a que contém todas as afirmações como verdadeiras.

Essa resposta te ajudou?

0
Dislike0

Experimente
o Premium! 🤩

Libere respostas sem pagar

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

Vimos que uma jovem cientista de dados realizou o treino (ajuste) de um modelo de regressão logística múltipla aos dados da amostra. Os resultados que encontrou foram muito ricos, sugerindo uma série de explicações, aprendidas pelo algoritmo com base nos dados fornecidos.
Para isso, analise as afirmativas a seguir.
A probabilidade da inadimplência cresce com o aumento dos gastos médios com o cartão de crédito. Isto, que nos parece óbvio, foi o que os dados “contaram” para o algoritmo de regressão logística múltipla.
A probabilidade da inadimplência cresce com o aumento da renda média mensal das pessoas. Isto não é tão óbvio e provavelmente não teríamos coragem de generalizar para outras situações, mas foi o que os dados da amostra do gerente do banco “contaram” para o algoritmo de regressão logística múltipla.
Para duas pessoas com a mesma renda mensal e o mesmo gasto mensal com cartão de crédito, a probabilidade de inadimplência com o cartão é maior para aquela sem emprego estável. Novamente, isto foi o que os dados amostrados “contaram” para o algoritmo de regressão logística múltipla.
O modelo de regressão logística múltipla, ajustado aos dados da amostra, consegue predizer os efeitos da renda mensal da pessoa, do seu gasto médio mensal com cartão de crédito e se ela tem ou não um emprego estável, na probabilidade de a pessoa ficar inadimplente com o cartão de crédito. Um algoritmo desse tipo pode ajudar no processo decisório de um banco quanto à aprovação de cartão de crédito, ao lado de outros critérios e ferramentas analíticas disponíveis para o banco.

Os dados cedidos pelo gerente do banco estavam bem organizados e livres de erros. A nossa jovem cientista de dados não precisou, portanto, fazer uma limpeza e pré-tratamento dos dados e pode prosseguir imediatamente para uma análise descritiva deles antes do desenvolvimento do modelo.
Assinale a alternativa que apresenta a sequência correta.
( ) Chamamos de análise descritiva dos dados seus sumários (ou resumos) estatísticos dos mesmos e a sua visualização. Ambos, os sumários e as visualizações, nos ajudam a entender o comportamento dos dados e, através deles, do fenômeno ou processo estudado.
( ) São quatro as variáveis estudadas pela cientista de dados: renda mensal da pessoa, seus gastos médios com o cartão, se a pessoa tinha ou não um emprego estável ao longo do período amostrado e se ficou ou não inadimplente ao longo deste período.
( ) Para criar sumários estatísticos das variáveis quantitativas, a renda mensal da pessoa e seus gastos com o cartão, a cientista de dados usou as funções min(), mean() e max() do software estatístico R para calcular os valores mínimo, médio e máximo dos dados observados para essas variáveis.
( ) Para criar sumários estatísticos das variáveis qualitativas, se a pessoa tinha ou não um emprego estável e se tinha ou não ficado inadimplente com o pagamento das faturas do cartão ao longo do período amostrado, a cientista de dados usou a função table() do software estatístico R para calcular a frequência com que os níveis de cada uma dessas variáveis se manifestaram na amostra estudada.
Resposta Selecionada: F, V, V, F.
Resposta Correta: V, V, V, V.

Continuando com o mesmo caso da questão anterior, relativa à aprovação, pelos bancos, de crédito na forma de cartão de crédito, como se fazia, no passado, a aprovação da concessão de cartões de crédito pelos bancos? E, hoje em dia, como os bancos fazem essa aprovação?
Reflita sobre essas perguntas e suas respostas, analise as afirmativas a seguir e assinale V para a(s) Verdadeira(s) e F para a(s) Falsa(s). Assinale a alternativa que apresenta a sequência correta.
( ) No passado, os bancos faziam, e ainda fazem, ao menos em parte, a aprovação da concessão de cartões de crédito através da definição de regras que devem ser atendidas por cada cliente, tais como idade, emprego estável, renda fixa, dívidas pequenas, nome limpo e casa própria.
( ) Hoje em dia, dentre outras alternativas, uma que é frequentemente usada pelos bancos são algoritmos de aprendizagem supervisionada que classificam se o cliente é um potencial bom ou mau pagador.
( ) Para usarmos algoritmos de classificação com esse propósito de aprovar ou não cartões de crédito, precisamos de dados. Ensinamos ao algoritmo, com base nos dados que lhe são passados, a predizer clientes que são maus pagadores potenciais das faturas do cartão. Dessa forma, se o algoritmo, ao ser alimentado com os dados referentes a um novo cliente, classificar esse cliente como um mau pagador potencial, o banco não aprovará o cartão.
( ) Para equipes de análise de crédito, poder contar com a ajuda de um software com a capacidade de recomendar a aprovação ou não da concessão do cartão é de grande valor.
( ) A recomendação feita pelo software poderá ser tratada ao lado de outras regras de crédito para uma decisão final sobre a concessão de cartão para o cliente.

Mais conteúdos dessa disciplina