Logo Passei Direto
Buscar
Entre as técnicas das quais lançou mão para a visualização dos dados da amostra, uma jovem cientista de dados usou boxplots (diagramas de caixas). Como cientista de dados, ela sabia exatamente em que situações empregar boxplots. E você, será que você também já sabe?
Analise as afirmativas a seguir e assinale V para a(s) Verdadeira(s) e F para a(s) Falsa(s).
( ) Para examinar visualmente a relação entre duas variáveis, em que uma é quantitativa e a outra é qualitativa, não é possível a utilização de gráficos de dispersão.
( ) Boxplots são uma solução inteligente para a visualização da relação entre uma variável quantitativa e uma variável qualitativa, em que no eixo horizontal indicamos os níveis da variável qualitativa e no eixo vertical, a variação dos valores observados para a variável quantitativa.
( ) Para examinar visualmente a relação entre duas variáveis quantitativas, um dos gráficos preferidos é o diagrama de caixas, também conhecido como boxplot.
( ) Na construção de um boxplot, podemos representar no eixo vertical os níveis da variável qualitativa e no eixo horizontal, os valores da variável quantitativa. Nesse caso, a visualização da variação dos dados da variável quantitativa é exibida horizontalmente, e os níveis (classes) da variável qualitativa são exibidos verticalmente.
User badge image
Testando o Conhecimento

há 8 meses

Respostas

User badge image

Ed Verified user icon

há 8 meses

Vamos analisar cada uma das afirmativas sobre boxplots e suas aplicações: ( ) Para examinar visualmente a relação entre duas variáveis, em que uma é quantitativa e a outra é qualitativa, não é possível a utilização de gráficos de dispersão. É falsa. Gráficos de dispersão são utilizados para examinar a relação entre duas variáveis quantitativas. Para uma variável qualitativa e uma quantitativa, podem ser utilizados boxplots ou gráficos de barras. ( ) Boxplots são uma solução inteligente para a visualização da relação entre uma variável quantitativa e uma variável qualitativa, em que no eixo horizontal indicamos os níveis da variável qualitativa e no eixo vertical, a variação dos valores observados para a variável quantitativa. É verdadeira. Essa é a forma correta de representar um boxplot, onde a variável qualitativa é colocada no eixo horizontal e a variável quantitativa no eixo vertical. ( ) Para examinar visualmente a relação entre duas variáveis quantitativas, um dos gráficos preferidos é o diagrama de caixas, também conhecido como boxplot. É falsa. O boxplot é mais utilizado para visualizar a distribuição de uma variável quantitativa em relação a uma variável qualitativa. Para duas variáveis quantitativas, gráficos de dispersão são mais apropriados. ( ) Na construção de um boxplot, podemos representar no eixo vertical os níveis da variável qualitativa e no eixo horizontal, os valores da variável quantitativa. Nesse caso, a visualização da variação dos dados da variável quantitativa é exibida horizontalmente, e os níveis (classes) da variável qualitativa são exibidos verticalmente. É verdadeira. Essa descrição está correta e representa uma forma alternativa de construir um boxplot. Portanto, a sequência correta é: F - V - F - V. A alternativa que apresenta essa sequência é: a) F - V - F - V.

Essa resposta te ajudou?

0
Dislike0
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar essa resposta. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

Continuando com o mesmo caso da questão anterior, relativa à aprovação, pelos bancos, de crédito na forma de cartão de crédito, como se fazia, no passado, a aprovação da concessão de cartões de crédito pelos bancos? E, hoje em dia, como os bancos fazem essa aprovação?
Reflita sobre essas perguntas e suas respostas, analise as afirmativas a seguir e assinale V para a(s) Verdadeira(s) e F para a(s) Falsa(s).
( ) No passado, os bancos faziam, e ainda fazem, ao menos em parte, a aprovação da concessão de cartões de crédito através da definição de regras que devem ser atendidas por cada cliente, tais como idade, emprego estável, renda fixa, dívidas pequenas, nome limpo e casa própria.
( ) Hoje em dia, dentre outras alternativas, uma que é frequentemente usada pelos bancos são algoritmos de aprendizagem supervisionada que classificam se o cliente é um potencial bom ou mau pagador.
( ) Para usarmos algoritmos de classificação com esse propósito de aprovar ou não cartões de crédito, precisamos de dados. Ensinamos ao algoritmo, com base nos dados que lhe são passados, a predizer clientes que são maus pagadores potenciais das faturas do cartão. Dessa forma, se o algoritmo, ao ser alimentado com os dados referentes a um novo cliente, classificar esse cliente como um mau pagador potencial, o banco não aprovará o cartão.
( ) Para equipes de análise de crédito, poder contar com a ajuda de um software com a capacidade de recomendar a aprovação ou não da concessão do cartão é de grande valor.
( ) A recomendação feita pelo software poderá ser tratada ao lado de outras regras de crédito para uma decisão final sobre a concessão de cartão para o cliente.

Vimos que uma jovem cientista de dados realizou o treino (ajuste) de um modelo de regressão logística múltipla aos dados da amostra. Os resultados que encontrou foram muito ricos, sugerindo uma série de explicações, aprendidas pelo algoritmo com base nos dados fornecidos.
Para isso, analise as afirmativas a seguir.
A probabilidade da inadimplência cresce com o aumento dos gastos médios com o cartão de crédito. Isto, que nos parece óbvio, foi o que os dados “contaram” para o algoritmo de regressão logística múltipla.
A probabilidade da inadimplência cresce com o aumento da renda média mensal das pessoas. Isto não é tão óbvio e provavelmente não teríamos coragem de generalizar para outras situações, mas foi o que os dados da amostra do gerente do banco “contaram” para o algoritmo de regressão logística múltipla.
Para duas pessoas com a mesma renda mensal e o mesmo gasto mensal com cartão de crédito, a probabilidade de inadimplência com o cartão é maior para aquela sem emprego estável. Novamente, isto foi o que os dados amostrados “contaram” para o algoritmo de regressão logística múltipla.
O modelo de regressão logística múltipla, ajustado aos dados da amostra, consegue predizer os efeitos da renda mensal da pessoa, do seu gasto médio mensal com cartão de crédito e se ela tem ou não um emprego estável, na probabilidade de a pessoa ficar inadimplente com o cartão de crédito. Um algoritmo desse tipo pode ajudar no processo decisório de um banco quanto à aprovação de cartão de crédito, ao lado de outros critérios e ferramentas analíticas disponíveis para o banco.

Os dados cedidos pelo gerente do banco estavam bem organizados e livres de erros. A nossa jovem cientista de dados não precisou, portanto, fazer uma limpeza e pré-tratamento dos dados e pode prosseguir imediatamente para uma análise descritiva deles antes do desenvolvimento do modelo.
Assinale a alternativa que apresenta a sequência correta.
( ) Chamamos de análise descritiva dos dados seus sumários (ou resumos) estatísticos dos mesmos e a sua visualização. Ambos, os sumários e as visualizações, nos ajudam a entender o comportamento dos dados e, através deles, do fenômeno ou processo estudado.
( ) São quatro as variáveis estudadas pela cientista de dados: renda mensal da pessoa, seus gastos médios com o cartão, se a pessoa tinha ou não um emprego estável ao longo do período amostrado e se ficou ou não inadimplente ao longo deste período.
( ) Para criar sumários estatísticos das variáveis quantitativas, a renda mensal da pessoa e seus gastos com o cartão, a cientista de dados usou as funções min(), mean() e max() do software estatístico R para calcular os valores mínimo, médio e máximo dos dados observados para essas variáveis.
( ) Para criar sumários estatísticos das variáveis qualitativas, se a pessoa tinha ou não um emprego estável e se tinha ou não ficado inadimplente com o pagamento das faturas do cartão ao longo do período amostrado, a cientista de dados usou a função table() do software estatístico R para calcular a frequência com que os níveis de cada uma dessas variáveis se manifestaram na amostra estudada.
Resposta Selecionada: F, V, V, F.
Resposta Correta: V, V, V, V.

Continuando com o mesmo caso da questão anterior, relativa à aprovação, pelos bancos, de crédito na forma de cartão de crédito, como se fazia, no passado, a aprovação da concessão de cartões de crédito pelos bancos? E, hoje em dia, como os bancos fazem essa aprovação?
Reflita sobre essas perguntas e suas respostas, analise as afirmativas a seguir e assinale V para a(s) Verdadeira(s) e F para a(s) Falsa(s). Assinale a alternativa que apresenta a sequência correta.
( ) No passado, os bancos faziam, e ainda fazem, ao menos em parte, a aprovação da concessão de cartões de crédito através da definição de regras que devem ser atendidas por cada cliente, tais como idade, emprego estável, renda fixa, dívidas pequenas, nome limpo e casa própria.
( ) Hoje em dia, dentre outras alternativas, uma que é frequentemente usada pelos bancos são algoritmos de aprendizagem supervisionada que classificam se o cliente é um potencial bom ou mau pagador.
( ) Para usarmos algoritmos de classificação com esse propósito de aprovar ou não cartões de crédito, precisamos de dados. Ensinamos ao algoritmo, com base nos dados que lhe são passados, a predizer clientes que são maus pagadores potenciais das faturas do cartão. Dessa forma, se o algoritmo, ao ser alimentado com os dados referentes a um novo cliente, classificar esse cliente como um mau pagador potencial, o banco não aprovará o cartão.
( ) Para equipes de análise de crédito, poder contar com a ajuda de um software com a capacidade de recomendar a aprovação ou não da concessão do cartão é de grande valor.
( ) A recomendação feita pelo software poderá ser tratada ao lado de outras regras de crédito para uma decisão final sobre a concessão de cartão para o cliente.

Mais conteúdos dessa disciplina