Logo Passei Direto
Buscar
Uma rede de lojas de equipamentos eletrônicos é conhecida por vender seus produtos a 'preços mais baixos do que os da concorrência'. Para comprovar seu slogan, o departamento de marketing elegeu um determinado equipamento e colheu seu preço de venda em 30 filiais, obtendo uma média de R$ 435,00. Pesquisas anteriores demonstraram que o desvio padrão para o preço de venda desse produto é conhecido e vale R$ 52,00. Esse mesmo produto é encontrado no seu principal concorrente por R$ 450,00. Com nível de significância de 5%, o slogan dessa empresa representa a realidade?
Assinale a alternativa correta.
a ) Sim, pois ha evidências de que a média de preços de venda seja inferior a R$ 450,00.
b ) Não, pois ha evidências de que a média de preços de venda seja inferior a R$ 450,00.
c ) Não é possível responder com exatidão, pois a média de preços de venda é exatamente igual a R$ 450,00.
d ) Sim, pois não ha evidências de que a média de preços de venda seja inferior a R$ 450,00.
e ) Não, pois não ha evidências de que a média de preços de venda seja inferior a R$ 450,00.
User badge image
Ensinando Através de Questões

há 11 meses

Respostas

User badge image

Ed Verified user icon

há 10 meses

Para resolver essa questão, precisamos realizar um teste de hipótese. O objetivo é verificar se a média dos preços de venda nas 30 filiais é realmente inferior ao preço do concorrente, que é R$ 450,00. 1. Hipóteses: - Hipótese nula (H0): A média dos preços de venda é igual ou maior que R$ 450,00. - Hipótese alternativa (H1): A média dos preços de venda é inferior a R$ 450,00. 2. Dados: - Média amostral (x̄) = R$ 435,00 - Preço do concorrente = R$ 450,00 - Desvio padrão (σ) = R$ 52,00 - Tamanho da amostra (n) = 30 - Nível de significância (α) = 0,05 3. Cálculo do valor do teste: Usamos a fórmula do teste Z: \[ Z = \frac{x̄ - \mu}{\sigma / \sqrt{n}} \] Onde: - x̄ = média amostral - μ = média sob a hipótese nula (R$ 450,00) - σ = desvio padrão - n = tamanho da amostra Substituindo os valores: \[ Z = \frac{435 - 450}{52 / \sqrt{30}} \approx \frac{-15}{9,48} \approx -1,58 \] 4. Comparação com o valor crítico: Para um teste unilateral à esquerda com α = 0,05, o valor crítico de Z é aproximadamente -1,645. Como -1,58 é maior que -1,645, não rejeitamos a hipótese nula. 5. Conclusão: Não há evidências suficientes para afirmar que a média dos preços de venda é inferior a R$ 450,00. Analisando as alternativas: a) Sim, pois há evidências de que a média de preços de venda seja inferior a R$ 450,00. (Incorreta) b) Não, pois há evidências de que a média de preços de venda seja inferior a R$ 450,00. (Incorreta) c) Não é possível responder com exatidão, pois a média de preços de venda é exatamente igual a R$ 450,00. (Incorreta) d) Sim, pois não há evidências de que a média de preços de venda seja inferior a R$ 450,00. (Incorreta) e) Não, pois não há evidências de que a média de preços de venda seja inferior a R$ 450,00. (Correta) Portanto, a alternativa correta é: e) Não, pois não há evidências de que a média de preços de venda seja inferior a R$ 450,00.

Essa resposta te ajudou?

0
Dislike0
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar essa resposta. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

Mais conteúdos dessa disciplina