Prévia do material em texto
Semiconductor Physics and Devices: Basic Principles, 4 th edition Chapter 9 By D. A. Neamen Problem Solutions ______________________________________________________________________________________ 8 14 19 1050 1085.87.11 106.1 35.0 n d x N 2 1050 28 or 814 10251073.735.0 nd xN We have 2/1 19 14 106.1 1085.87.112 d bi n N V x and nbiV 70.0 By trial and error, we find 18105.3 dN cm 3 _______________________________________ 9.30 (b) a tpBO N N V ln 16 19 105 1004.1 ln0259.0 or 138.0BO V _______________________________________ 9.31 Sketches _______________________________________ 9.32 Sketches _______________________________________ 9.33 Electron affinity rule pnc eE For GaAs, 07.4 and for AlAs, 5.3 . If we assume a linear extrapolation between GaAs and AlAs, then for Al 3.0 Ga 7.0 As 90.3 Then 17.090.307.4 cE eV _______________________________________ 9.34 Consider an n-P heterojunction in thermal equilibrium. Poisson's equation is dx dx dx d 2 2 In the n-region, n dn n n eNx dx d For uniform doping, we have 1C xeN n dn n The boundary condition is 0 n at nxx , so we obatin n ndn xeN C 1 Then n n dn n xx eN In the P-region, P aPp eN dx d which gives 2C xeN P aP P We have the boundary condition that 0 P at Pxx , so that P PaP xeN C 2 Then xx eN P P aP P Assuming zero surface charge density at 0x , the electric flux density D is continuous, so 00 PPnn , which yields PaPndn xNxN We can determine the electric potential as dxx nn 3 2 2 C xxeNxeN n ndn n dn