Logo Passei Direto
Buscar
Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Prévia do material em texto

<p>8o</p><p>Matemática</p><p>3o bimestre – Aula 29</p><p>Ensino Fundamental: Anos Finais</p><p>Como calcular a área de triângulos, quadriláteros e círculos?</p><p>ANO</p><p>2024_AF_V1</p><p>Área de figuras planas.</p><p>Distinguir os diversos tipos de quadriláteros (quadrados, retângulos, losangos, paralelogramos e trapézios);</p><p>Calcular a área de triângulos, quadriláteros e círculos por meio de expressões em situações-problema.</p><p>Conteúdo</p><p>Objetivos</p><p>2024_AF_V1</p><p>(EF08MA19) Resolver e elaborar situações-problema que envolvam medidas de área de figuras geométricas, utilizando expressões de cálculo de área (quadriláteros, triângulos e círculos), em situações como determinar medida de terrenos.</p><p>Tangram é um conhecido quebra-cabeça chinês composto por 7 peças.</p><p>Construa um tangram</p><p>conforme o modelo ao</p><p>lado, corte as peças e</p><p>crie diferentes figuras</p><p>utilizando todas as peças.</p><p>Compartilhe o resultado obtido com o restante da turma e responda:</p><p>A área das figuras que criou é menor, igual ou maior que o tangram inicial?</p><p>Você conhece o tangram?</p><p>10 MINUTOS</p><p>Para começar</p><p>2024_AF_V1</p><p>Apesar de todas as variações de formas, as áreas serão rigorosamente iguais.</p><p>Resposta esperada:</p><p>Para começar</p><p>2024_AF_V1</p><p>Área de figuras planas</p><p>CONTINUA</p><p>10 MINUTOS</p><p>gettyimages – ID: 514005854</p><p>Diego vai colocar gramado no jardim de sua casa. O jardim possui um formato retangular com dimensões 8 x 5, em metros. A grama é vendida em placas quadradas com lados de 1 metro de comprimento.</p><p>Quantas placas de grama Diego vai precisar comprar?</p><p>Foco no conteúdo</p><p>2024_AF_V1</p><p>Área de figuras planas</p><p>CONTINUA</p><p>Diego fez um esquema do gramado e percebeu que cabem 8 fileiras, cada uma com 5 placas quadradas de grama.</p><p>Logo, ao todo cabem 40 (8 5) placas.</p><p>Diego percebeu também que a área ocupada por todas as placas equivale à área da superfície retangular do seu jardim.</p><p>8 placas</p><p>5 placas</p><p>Foco no conteúdo</p><p>2024_AF_V1</p><p>O retângulo é um paralelogramo, ou seja, possui lados opostos, paralelos e congruentes entre si. Seus lados são chamados de comprimento (ou base) e largura (ou altura). Além disso, possui os quatro ângulos retos (90º).</p><p>Para calcular a área (A) de um retângulo, vamos considerar:</p><p>b: comprimento (ou base)</p><p>h: largura (ou altura)</p><p>Área de uma superfície retangular</p><p>A = b . h</p><p>CONTINUA</p><p>Foco no conteúdo</p><p>2024_AF_V1</p><p>O quadrado é um caso particular do retângulo, pois possui todos os lados com medidas iguais (b = h).</p><p>Para calcular a área (A) de um quadrado, vamos considerar:</p><p>L: medidas dos lados</p><p>Área de um quadrado</p><p>A = L²</p><p>CONTINUA</p><p>Foco no conteúdo</p><p>2024_AF_V1</p><p>O losango também é um paralelogramo, como o retângulo, porém seus lados sempre possuem medidas iguais e não necessariamente seus ângulos internos são retos.</p><p>Observe que a área (A) de um losango equivale à metade da área do retângulo. Note, também, que a base b do retângulo equivale à diagonal maior do losango, enquanto a altura h do retângulo equivale à diagonal menor do losango. Vamos considerar:</p><p>D: diagonal maior</p><p>d: diagonal menor</p><p>A =</p><p>Área de um losango</p><p>Foco no conteúdo</p><p>2024_AF_V1</p><p>O paralelogramo é um quadrilátero que possui lados opostos, paralelos e congruentes entre si. Para calcular a área (A) de um paralelogramo, vamos considerar:</p><p>b: base ()		h: altura ()</p><p>Observe que os lados AD e BC são congruentes. Deslocando o triângulo ADH, como indicado nas imagens a seguir, forma-se um retângulo.</p><p>Área de um paralelogramo</p><p>A = b . h</p><p>CONTINUA</p><p>Foco no conteúdo</p><p>2024_AF_V1</p><p>Ao traçar a diagonal em um paralelogramo teremos dois triângulos congruentes entre si. Assim, concluímos que a área (A) de um triângulo equivale à metade da área de um paralelogramo.</p><p>Para calcular a área (A) de um triângulo vamos considerar:</p><p>b: medida da base .</p><p>h: medida da altura .</p><p>Área de um triângulo</p><p>A =</p><p>Foco no conteúdo</p><p>2024_AF_V1</p><p>O trapézio é um quadrilátero que possui dois lados paralelos. Esses lados paralelos são conhecidos como bases do trapézio. Na imagem ao lado, temos:</p><p>: base maior (B)	 : base menor (b)	 : altura (h)</p><p>Ao traçar a diagonal em um trapézio teremos dois triângulos com a mesma altura h. Assim, concluímos que a área (A) de um trapézio equivale à soma das áreas desses triângulos.</p><p>A = área ΔABC + área ΔACD</p><p>A = + = =</p><p>Área de um trapézio</p><p>A =</p><p>CONTINUA</p><p>Foco no conteúdo</p><p>2024_AF_V1</p><p>Círculo (ou disco) é o conjunto de todos os pontos de um plano, cuja distância a um ponto fixo O é menor ou igual que uma distância r (raio) dada.</p><p>Para calcular a área (A) de um círculo:</p><p>Área de um círculo</p><p>Link para a página</p><p>A = π.r²</p><p>Foco no conteúdo</p><p>2024_AF_V1</p><p>A área do losango da figura a seguir é 80 m². Sabendo que a diagonal menor do losango mede 8 m, quanto mede a medida da diagonal maior?</p><p>Atividade 1</p><p>3 MINUTOS</p><p>?</p><p>8 m</p><p>FAÇA AGORA</p><p>Na prática</p><p>2024_AF_V1</p><p>?</p><p>8 m</p><p>Área do losango</p><p>A =</p><p>A área do losango da figura a seguir é 80 m². Sabendo que a diagonal menor do losango mede 8 m, quanto mede a medida da diagonal maior?</p><p>Correção</p><p>Na prática</p><p>2024_AF_V1</p><p>Na figura a seguir, a área do quadrado maior AEFG é 36 cm². Sabendo que mede 2 cm, determine a área do quadrado menor ABCD.</p><p>3 MINUTOS</p><p>MOSTRE-ME</p><p>Atividade 2</p><p>Na prática</p><p>2024_AF_V1</p><p>3 MINUTOS</p><p>Na figura a seguir, a área do quadrado maior AEFG é 36 cm². Sabendo que mede 2 cm, determine a área do quadrado menor ABCD.</p><p>A área do quadrado menor é 4 cm².</p><p>A = L²</p><p>Área do quadrado</p><p>Correção</p><p>Na prática</p><p>2024_AF_V1</p><p>Agora é com você!</p><p>5 MINUTOS</p><p>HÁBITOS DE DISCUSSÃO</p><p>A figura abaixo representa uma caixa com 12 cm de comprimento, 8 cm de largura e 5 cm de altura. Determine o papelão necessário para montar essa caixa. Dica: observe a planificação ao lado e calcule a área dos retângulos formados.</p><p>Aplicando</p><p>2024_AF_V1</p><p>A = 2 (12 8 + 12 5 + 5 8)</p><p>A = 2 (96 + 60 + 40)</p><p>A = 2 (196)</p><p>A = 392</p><p>Portanto, o papelão necessário para montar essa caixa equivale a 392 cm².</p><p>Para calcular o papelão necessário para montar essa caixa, basta calcular a área das 6 superfícies retangulares observadas na planificação. Temos 2 pares de retângulos congruentes entre si.</p><p>Assim, a área é:</p><p>Correção</p><p>Aplicando</p><p>2024_AF_V1</p><p>3 MINUTOS</p><p>HÁBITOS DE ATENÇÃO</p><p>(SARESP 2018) Se para cobrir cada m² de telhado são usadas 20 telhas francesas, então, para cobrir um telhado com as dimensões indicadas na figura serão necessárias quantas telhas?</p><p>A. 1 000 telhas</p><p>B. 1 200 telhas</p><p>C. 1 600 telhas</p><p>D. 1 800 telhas</p><p>Aprofundando</p><p>2024_AF_V1</p><p>(SARESP 2018) Se para cobrir cada m² de telhado são usadas 20 telhas francesas, então, para cobrir um telhado com as dimensões indicadas na figura serão necessárias quantas telhas?</p><p>A. 1 000 telhas</p><p>B. 1 200 telhas</p><p>C. 1 600 telhas</p><p>D. 1 800 telhas</p><p>Cálculo da área lateral do telhado retangular:</p><p>Como, para cobrir cada m² de telhado são usadas 20 telhas, para sua cobertura total, são necessárias:</p><p>80 . 20 = 1600 telhas</p><p>Correção</p><p>Portanto, a área total do telhado retangular é de 40 2, ou seja, 80 m².</p><p>Aprofundando</p><p>2024_AF_V1</p><p>5 MINUTOS</p><p>PUXE MAIS</p><p>(SARESP 2017) Amélia deseja ladrilhar sua cozinha retangular de 3,45 m por 4,2 m com ladrilhos quadrados de 30 cm de lado. Qual é o número de ladrilhos necessários?</p><p>A. 49</p><p>B. 51</p><p>C. 161</p><p>D. 483</p><p>Aprofundando</p><p>2024_AF_V1</p><p>(SARESP 2017) Amélia deseja ladrilhar sua cozinha retangular de 3,45 m por 4,2 m com ladrilhos quadrados de 30 cm de lado. Qual é o número de ladrilhos necessários?</p><p>1o) Cálculo da área da cozinha retangular:</p><p>A = 3,45 . 4,2	→ A = 14,49 → A = 14,49 10 000 = 144 900</p><p>Portanto, a cozinha tem uma área de 144 900 cm².</p><p>2o) Cálculo da área ocupada por cada ladrilho:</p><p>A = 30 . 30 → A = 900</p><p>Portanto, a área ocupada por cada ladrilho é de 900 cm².</p><p>3o) Cálculo da quantidade de ladrilhos:</p><p>144 900 : 900 = 161</p><p>A. 49</p><p>B. 51</p><p>C. 161</p><p>D. 483</p><p>Correção</p><p>Aprofundando</p><p>2024_AF_V1</p><p>Distinguimos os diversos tipos de quadriláteros;</p><p>Calculamos áreas de figuras planas por meio de expressões em situações-problema.</p><p>O que aprendemos hoje?</p><p>2024_AF_V1</p><p>https://pixabay.com/pt/vectors/o-sol-tela-as-cores-alegria-amor-2027310/</p><p>DANTE, L.</p><p>R.; VIANA, F. Teláris Essencial [livro eletrônico] Matemática: 9o ano São Paulo: Ática, 2022.</p><p>LEMOV, D. Aula Nota 10 3.0: 63 Técnicas para melhorar a gestão da sala de aula. Porto Alegre: Penso, 2023.</p><p>O BARICENTRO DA MENTE. Arquimedes e a área do círculo. Disponível em: https://www.obaricentrodamente.com/2022/07/arquimedes-e-a-area-do-circulo.html. Acesso em 24 jun. 2024.</p><p>SARESP-SP. Disponível em: https://saresp.fde.sp.gov.br/. Acesso em: 24 jun. 2024.</p><p>Referências</p><p>2024_AF_V1</p><p>Lista de imagens e vídeos</p><p>Slide 1 – Imagem de capa: SEDUC</p><p>Slides 3 e 4 – © Getty Images.</p><p>Slide 5 – © GettyImages.</p><p>Slide 13 – © Getty Images.</p><p>Slide 22 – © Pixabay.</p><p>Slide 24 – © Pixabay.</p><p>Referências</p><p>2024_AF_V1</p><p>2024_AF_V1</p><p>image2.png</p><p>image3.png</p><p>image4.png</p><p>image5.png</p><p>image6.png</p><p>image13.png</p><p>image14.svg</p><p>image15.jpg</p><p>image16.jpg</p><p>image17.png</p><p>image18.png</p><p>image19.jpg</p><p>image20.png</p><p>image21.png</p><p>image22.png</p><p>image23.png</p><p>image24.png</p><p>image25.png</p><p>image26.png</p><p>image230.png</p><p>image27.png</p><p>image28.png</p><p>image29.png</p><p>image30.png</p><p>image34.png</p><p>image31.jpg</p><p>image32.png</p><p>image33.svg</p><p>image35.png</p><p>image36.png</p><p>image37.svg</p><p>image44.png</p><p>image40.png</p><p>image39.png</p><p>image400.png</p><p>image41.png</p><p>image42.png</p><p>image43.png</p><p>image45.png</p><p>image38.png</p><p>image51.png</p><p>image52.png</p><p>image53.png</p><p>image54.png</p><p>image55.png</p><p>image47.png</p><p>image48.png</p><p>image49.png</p><p>image50.png</p><p>image46.png</p><p>image56.png</p><p>image57.svg</p><p>image59.png</p><p>image58.png</p><p>image60.png</p><p>image61.svg</p><p>image62.png</p><p>image63.svg</p><p>image64.png</p><p>image65.svg</p><p>image67.png</p><p>image68.png</p><p>image66.png</p><p>image600.png</p><p>image69.png</p><p>image11.png</p><p>image12.png</p><p>image1.png</p>

Mais conteúdos dessa disciplina