Prévia do material em texto
Prof. Andreas K. Gombert TA918C - Microbiologia e Fermentações Aula 4 - 04/04/2024 A CURVA DE CRESCIMENTO MICROBIANO 374 MONOD phases may often be suppressed (see p. 388). The retardation phase is frequently so short as to be imperceptible. The same is sometimes true of the stationary phase. Conversely, more complex growth cycles are not infrequently observed (see p. 389). i 6 TIME FzG. 1.--Phases o[ growth. Lower curve: log bacterial density. Upper curve: variations of growth rate. Vertical dotted lines mark the limits of phases. Figures refer to phases as defined in text (see p. 373). GROWTH CONSTANTS The growth of a bacterial culture can be largely, if not com- pletely, characterized by three fundamental growth constants which we shall define as follows: Total growth: 2 difference between initial (xo) and maximum (x~) bacterial density: G -- Xm~- Exponential growth rate: growth rate during the exponential phase (R). It is given by the expression log2x2- log2x2 R= t2 -- tx s "Croissanee totale," Monod 1941. www.annualreviews.org/aronline Annual Reviews A nn u. R ev . M ic ro bi ol . 1 94 9. 3: 37 1- 39 4. D ow nl oa de d fr om a rjo ur na ls .a nn ua lre vi ew s.o rg by C al ifo rn ia In st itu te o f T ec hn ol og y on 0 9/ 17 /0 7. F or p er so na l u se o nl y. Cul$vos em BIORREATORES Cul$vos em FRASCOS Cinética de crescimento, consumo de substrato e formação de produto Etanol: metabólito primário ou produto catabólicoAntibiótico: metabólito secundário Curva de crescimento típica 1 do livro Brock Biology of Microorganisms Mas como são construídos esses gráficos? 🤔 Como medir concentração celular? Meio líquido X Meio sólido © 2004 Pearson Education, Inc. CAPÍTULO 5 NUTRIÇÃO, CULTIVO LABORATORIAL E METABOLISMO DOS MICRORGANISMOS PARTE I PRINCÍPIOS DE MICROBIOLOGIA fissão binária (bactérias)[ uma duplicação ou uma geração © 2004 Pearson Education, Inc. Brotamento (leveduras) uma duplicação ou uma geração Fungos filamentosos ou bolores zoom Bolores em cultivo submerso Crescimento de bolores (fungos filamentosos): - alongamento e ramificação de hifas - esporulação - germinação de esporos http://www.youtube.com/watch?v=GQIi4KAN1QM http://www.youtube.com/watch?v=sbaWbiFt_Go&feature=related http://youtu.be/IRiwXMeKoGk CÉLULAS ANIMAIS Chinese Hamster Ovary (CHO) cells http://leelab.org/research/biomolecular http://www.gembio.com/research-area-interest/ insect-cell-culture-products de mamíferos de insetos Como medir concentração celular? ©!2004!Pearson!Education,! Inc. Contagem!direta!de!células unidade: no. de células/volume resposta rápida funciona para seres unicelulares não funciona para fungos filamentosos impreciso para suspensões muito diluídas permite uso de corantes para viáveis/não-viáveis requer operadores muito bem treinados ©!2004!Pearson!Education,! Inc. Contagem!de! células!viáveis!(I) unidade: UFC*/volume resposta demorada trabalhoso funciona para seres unicelulares não funciona para fungos filamentosos Vantagens: - extremamente sensível - mede somente células viáveis e capazes de formar colônias *Unidades Formadoras de Colônia Filtração!a!vácuo! (massa!seca!de!céls.) … ou centrifugação vácuo Medida de massa seca de células unidade: massa seca de células/volume resposta em alguns minutos funciona para seres unicelulares funciona para fungos filamentosos não distingue células viáveis de não-viáveis exige uma quantidade mínima de amostra e não funciona para suspensões muito diluídas Todos os nutrientes devem estar em solução Extremamente reprodutível (erro < 2%) ©!2004!Pearson!Education,! Inc. Fissão!binária!em!procariotos Para bolores, faz-se raciocínio análogo, com base na medida da massa seca de células da população! Duplicação do número de células da população Métodos automáticos medida rápida e automática unidade: no. de partículas/volume somente para unicelulares desvantagem: alto preço Microscopia “automatizada"Contador Coulter Citômetro de Fluxo ©!2004!Pearson!Education,! Inc. Medida!da!turbidez! (absorbância) Medida do Espalhamento de Luz também conhecido como: - Turbidimetria - Medida da Densidade Óptica (método indireto!) Pode ser feita num espectrofotômetro simples! C al ib ra çã o: !T ur bi di m et ria ! (m ét od o! in di re to )! X ! C on ta ge m !( m ét od o! di re to ) todos esses métodos são offline… :-( voltando à curva de crescimento… 26 A value of k = 0.24 h-1 would describe most of the data, although it would slightly under- estimate the initial growth rate. Another approach would be to take the log of the above equation to give: and to fit the data to this equation and estimate k from the intercept. In this case k would be about 0.25 h-1. b) The yields are estimated directly from the data as: The above estimate of YX/S is only approximate, as maintenance effects and endogenous metabolism have been neglected. Y g g Y g g / / P S X S P S P S X S X S = - = - - - = = - = - - - = D D D D ( ) ( ) . ( . . ) ( ) . 49 0 2 100 0 5 10 7 0 5 2 100 0 104 log log log 1 1 0 X dX dt k X X = + - Ê ËÁ ˆ ¯̃• Dt (h) – X(g/L) k (h-1) 2 0.75 0.333 0.931 0.36 3 1.55 0.236 0.856 0.28 5 3.45 0.156 0.681 0.23 5 6.25 0.093 0.416 0.22 5 8.65 0.044 0.200 0.22 5 10.00 0.016 0.074 0.22 5 10.55 0.0057 0.023 0.25 1 - Ê ËÁ ˆ ¯̃• X X 1 1 X X tD D/ ( )h- Figure 6.12. Logistic growth curve. 182 How Cells Grow Chap. 6 ch06 10/11/01 5:19 PM Page 182 0 1 2 3 4 5 6 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 DO 1 Cultivo da levedura Saccharomyces cerevisiae Curva de crescimento típica 1 do livro "Brock Biology of Microorganisms” 374 MONOD phases may often be suppressed (see p. 388). The retardation phase is frequently so short as to be imperceptible. The same is sometimes true of the stationary phase. Conversely, more complex growth cycles are not infrequently observed (see p. 389). i 6 TIME FzG. 1.--Phases o[ growth. Lower curve: log bacterial density. Upper curve: variations of growth rate. Vertical dotted lines mark the limits of phases. Figures refer to phases as defined in text (see p. 373). GROWTH CONSTANTS The growth of a bacterial culture can be largely, if not com- pletely, characterized by three fundamental growth constants which we shall define as follows: Total growth: 2 difference between initial (xo) and maximum (x~) bacterial density: G -- Xm~- Exponential growth rate: growth rate during the exponential phase (R). It is given by the expression log2x2- log2x2 R= t2 -- tx s "Croissanee totale," Monod 1941. www.annualreviews.org/aronline Annual Reviews A nn u. R ev . M ic ro bi ol . 1 94 9. 3: 37 1- 39 4. D ow nl oa de d fr om a rjo ur na ls .a nn ua lre vi ew s.o rg by C al ifo rn ia In st itu te o f T ec hn ol og y on 0 9/ 17 /0 7. F or p er so na l u se o nl y. GROWTH OF BACTERIAL CULTURES 373 Although the two variables are not equivalent, it is convenient to express growth rates in the same units (i.e., number of doublings per hour) in both cases. When cell concentrations have been estimated, it is equivalent to the true division rate. When bacterial density is considered, it expresses the number of doublings of bacterial density per unit time, or the division rate of cells postu- lated to be of constant average size. In all that follows, unless specified, we shall consider growth and growth rates in terms of bacterial density. These definitions involve the implicit assumption that in a growing culture all the bacteria are viable, i.e., capable of division or at least that only an insignificant fraction of the cells are not capable of giving rise to a clone. This appears to be a fairly good assumption, provided homogeneous populations only are con- ~idered. It has been challenged however [Wilson (4)] on the basisof comparisons of total and viable counts. But the cultures ex- amined by Wilson were probably not homogeneous (see p. 378), and the value of the viable count in determining the "absolute" number of cells which should be considered viable under the conditions of the culture is necessarily doubtful (see p. 378). Direct observations by Kelly & Rahn (5) contradict these findings and justify the assumption. [See also Lemon (42) and Topley Wilson (43).] GROWTH PHASES In the growth of a bacterial culture, a succession of phases, characterized by variations of the growth rate, may be conveni- ently distinguished. This is a classical conception, but the different phases have not always been defined in the same way. The follow- ing definitions illustrated in Fig. 1 will be adopted here: 1. lag phase: growth rate null; 2. acceleration phase: growth rate increases; 3. exponential phase: growth rate constant; 4. retardation phase: growth rate decreases; 5. stationary phase: growth rate null; 6. phase of decline: growth rate negative. This is a generalized and rather composite picture of the growth of a bacterial culture. Actually, any one or several of these phases may be absent. Under suitable conditions, the lag and acceleration www.annualreviews.org/aronline Annual Reviews A nn u. R ev . M ic ro bi ol . 1 94 9. 3: 37 1- 39 4. D ow nl oa de d fr om a rjo ur na ls .a nn ua lre vi ew s.o rg by C al ifo rn ia In st itu te o f T ec hn ol og y on 0 9/ 17 /0 7. F or p er so na l u se o nl y. THE GROWTH OF BACTERIAL CULTURES BY JACQUES MONOD Pasteur Institute, Paris, France INTRODUCTION The study of the growth of bacterial cultures does not consti- tute a specialized subject or branch of research: it is the basic method of Microbiology. It would be a foolish enterprise, and doomed to failure, to attempt reviewing briefly a "subject" which covers actually our whole discipline. Unless, of course, we considered the formal laws of growth for their own sake, an ap- proach which has repeatedly proved sterile. In the present review we shall consider bacterial growth as a method for the study of bacterial physiology and biochemistry. More precisely, we shall concern ourselves with the quantitative aspects of the method, with the interpretation of quantitative data referring to bacterial growth. Furthermore, we shall consider z exclusively the positive phases of growth, since the study of bacterial "death," i.e., of the negative phases of growth, involves distinct problems and meth- ods. The discussion will be limited to populations considered genetically homogeneous. The problems of mutation and selection in growing cultures have been excellently dealt with in recent review articles by Delbriick (1) and Luria (2). No attempt is made at reviewing the literature on a subject which, as we have just seen, is not really a subject at all. The papers and results quoted have been selected as illustrations of the points discussed. DEFINITION OF GROWTH PHASES AND GROWTH CONSTANTS Division RATE AND GROWTH RATE In all that follows, we shall define "cell concentration" as the number of individual cells per unit volume of a culture and "bacterial density" as the dry weight of cells per unit volume of a culture. Consider a unit volume of a growing culture containing at time t, a certain number x, of cells. After a certain time has elapsed, 371 www.annualreviews.org/aronline Annual Reviews A nn u. R ev . M ic ro bi ol . 1 94 9. 3: 37 1- 39 4. D ow nl oa de d fr om a rjo ur na ls .a nn ua lre vi ew s.o rg by C al ifo rn ia In st itu te o f T ec hn ol og y on 0 9/ 17 /0 7. F or p er so na l u se o nl y. Cinética do crescimento limitado por nutrientes � µµµµ 8/µµµµ =1> EF GF H/EF ������ �� ��� ������� �� ��� ������� �� ��� ������� �� ��� � ������ ������ ������ ������������������������������������������������������������������������������������������ H)%#')#G$,.%$%&'()*%'9#")-)'##(6#$9(+#) I.1J&#:$K+%+6 5+0#"$7()L:$FMDNNobel Prize 1965 Velocidade específica de crescimento ao longo do tempo 3 parâmetros principais: - tempo de duração da fase lag - tempo de duplicação na fase log (ou velocidade específica de crescimento) - concentração celular final 2 C ur va d e cr es ci m en to tí pi ca , c om se pa ra çã o nu m m ai or n úm er o de fa se s Reta no gráfico com escala Logarítmica = Fase exponencial de crescimento Fase de adaptação (lag): metabolismo celular em adaptação a uma nova condição (eventualmente pode não existir!) [em que casos não existirá?] Fase exponencial do crescimento (log): tempo de duplicação constante e mínimo da população, velocidade específica de crescimento máxima, crescimento ilimitado. [o que quer dizer isto?] Fase de redução de velocidade: entre o final do crescimento exponencial e a fase estacionária, inicia-se por alguma limitação nutricional e/ou por alguma inibição. Fase estacionária: concentração celular constante (depende do método de medida). Fase de declínio ou morte: diminuição da concentração celular (depende do método e pode não ser observada). Fases que eu considero importantes: 32The lag phase occurs immediately after inoculation and is a period of adaptation of cells to a new environment. Microorganisms reorganize their molecular constituents when they are transferred to a new medium. Depending on the composition of nutrients, new enzymes are synthesized, the synthesis of some other enzymes is repressed, and the inter- nal machinery of cells is adapted to the new environmental conditions. These changes re- flect the intracellular mechanisms for the regulation of the metabolic processes discussed in Chapter 4. During this phase, cell mass may increase a little, without an increase in cell number density. When the inoculum is small and has a low fraction of cells that are vi- able, there may be a pseudolag phase, which is a result, not of adaptation, but of small in- oculum size or poor condition of the inoculum. Low concentration of some nutrients and growth factors may also cause a long lag phase. For example, the lag phase of Enterobacter aerogenes (formerly Aerobacter aero- genes) grown in glucose and phosphate buffer medium increases as the concentration of Mg2+, which is an activator of the enzyme phosphatase, is decreased. As another example, even heterotrophic cells require CO2 fixation (to supplement intermediates removed from key energy-producing metabolic cycles during rapid biosynthesis), and excessive sparging can remove metabolically generated CO2 too rapidly for cellular restructuring to be ac- complished efficiently, particularly with a small inoculum. Figure 6.3. Typical growth curve for a bacterial population. Note that the phase of growth (shown here for cell number) depends on the parameter used to monitor growth. Sec. 6.2 Batch Growth 161 ch06 10/11/01 5:19 PM Page 161 ©!2004!Pearson!Education,! Inc. Crescimento!exponencial