Logo Passei Direto
Buscar
Vamos definir os eventos P = “campanha pronta antes do prazo” e A = “diretoria aprova campanha”. O problema dá que Pr(P) = 0,6 Pr(A) = 0,5 Pr(A ∩ P) = 0,3.
Pr(A ∪ P) = Pr(A) + Pr(P)− Pr(A ∩ P) = 0,6 + 0,5− 0,3 = 0,8.
User badge image
Aprendendo com Exercícios

há 3 dias

Respostas

User badge image

Ed Verified user icon

há 3 dias

Você está no caminho certo! A fórmula que você usou para calcular a probabilidade da união dos eventos \(A\) e \(P\) está correta. Para recapitular: 1. Definições: - \(P\): "campanha pronta antes do prazo" - \(A\): "diretoria aprova campanha" 2. Probabilidades dadas: - \(Pr(P) = 0,6\) - \(Pr(A) = 0,5\) - \(Pr(A \cap P) = 0,3\) 3. Cálculo da probabilidade da união: \[ Pr(A \cup P) = Pr(A) + Pr(P) - Pr(A \cap P) \] \[ Pr(A \cup P) = 0,5 + 0,6 - 0,3 = 0,8 \] Portanto, a probabilidade de que pelo menos um dos eventos aconteça (ou seja, a campanha esteja pronta antes do prazo ou a diretoria aprove a campanha) é \(0,8\). Se precisar de mais ajuda, é só avisar!

Essa resposta te ajudou?

0
Dislike0

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

Lançam-se três moedas. Enumerar o espaço amostral e os eventos A = {faces iguais}; B = {cara na primeira moeda}; C = {coroa na segunda e terceira moedas}.

Mais conteúdos dessa disciplina