Ed
há 4 dias
Para calcular a taxa real, podemos usar a fórmula da taxa real de juros, que é: \[ (1 + i) = (1 + r) \times (1 + f) \] onde: - \( i \) é a taxa nominal (18% ou 0,18), - \( r \) é a taxa real, - \( f \) é a taxa de inflação (10% ou 0,10). Rearranjando a fórmula para encontrar \( r \): \[ r = \frac{(1 + i)}{(1 + f)} - 1 \] Substituindo os valores: \[ r = \frac{(1 + 0,18)}{(1 + 0,10)} - 1 \] \[ r = \frac{1,18}{1,10} - 1 \] \[ r = 1,0727 - 1 \] \[ r = 0,0727 \text{ ou } 7,27\% \] Portanto, a taxa real é de 7,27%. A alternativa correta é: c) 7,27%.
Mais perguntas desse material