Ed
ano passado
Vamos resolver a inequação passo a passo: 1. Começamos com a inequação: \( 9x + 12 < 4x + 3 \) 2. Subtraímos \( 4x \) de ambos os lados: \( 9x - 4x + 12 < 3 \) \( 5x + 12 < 3 \) 3. Subtraímos 12 de ambos os lados: \( 5x < 3 - 12 \) \( 5x < -9 \) 4. Dividimos ambos os lados por 5: \( x < -\frac{9}{5} \) Agora, analisando as alternativas: a) \( x < -\frac{9}{5} \) - Correta. b) \( x > \frac{5}{9} \) - Incorreta. c) \( x < \frac{3}{4} \) - Incorreta. d) \( x > \frac{1}{2} \) - Incorreta. e) \( x < \frac{9}{5} \) - Incorreta. Portanto, a alternativa correta é: a) \( x < -\frac{9}{5} \).
Libere respostas sem pagar
Ajude estudantes
Ed
há 2 anos
Vamos resolver a inequação passo a passo: 9x + 12 < 4x + 3 Subtraindo 4x de ambos os lados, temos: 5x + 12 < 3 Agora, subtraindo 12 de ambos os lados, obtemos: 5x < -9 Dividindo por 5 em ambos os lados, temos: x < -9/5 Portanto, a resposta correta é: a. x < -9/5.
Mais perguntas desse material