Prévia do material em texto
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/303922287 Solutions Manual for "MATLAB Guide to Finite Elements - Second Edition," (Reduced Version) Book · January 2007 CITATIONS 0 READS 4,103 1 author: Some of the authors of this publication are also working on these related projects: A Simple Method of Vector Exponentiation: A Preliminary Investigation View project Peter I. Kattan Researcher 182 PUBLICATIONS 2,340 CITATIONS SEE PROFILE All content following this page was uploaded by Peter I. Kattan on 13 June 2016. The user has requested enhancement of the downloaded file. https://www.researchgate.net/publication/303922287_Solutions_Manual_for_MATLAB_Guide_to_Finite_Elements_-_Second_Edition_Reduced_Version?enrichId=rgreq-603d2c893ede534c3e789e53318225b1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyMjI4NztBUzozNzIzOTgyNzc4NDA4OTZAMTQ2NTc5ODA3Njc0MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf https://www.researchgate.net/publication/303922287_Solutions_Manual_for_MATLAB_Guide_to_Finite_Elements_-_Second_Edition_Reduced_Version?enrichId=rgreq-603d2c893ede534c3e789e53318225b1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyMjI4NztBUzozNzIzOTgyNzc4NDA4OTZAMTQ2NTc5ODA3Njc0MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf https://www.researchgate.net/project/A-Simple-Method-of-Vector-Exponentiation-A-Preliminary-Investigation?enrichId=rgreq-603d2c893ede534c3e789e53318225b1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyMjI4NztBUzozNzIzOTgyNzc4NDA4OTZAMTQ2NTc5ODA3Njc0MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf https://www.researchgate.net/?enrichId=rgreq-603d2c893ede534c3e789e53318225b1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyMjI4NztBUzozNzIzOTgyNzc4NDA4OTZAMTQ2NTc5ODA3Njc0MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf https://www.researchgate.net/profile/Peter-Kattan?enrichId=rgreq-603d2c893ede534c3e789e53318225b1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyMjI4NztBUzozNzIzOTgyNzc4NDA4OTZAMTQ2NTc5ODA3Njc0MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf https://www.researchgate.net/profile/Peter-Kattan?enrichId=rgreq-603d2c893ede534c3e789e53318225b1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyMjI4NztBUzozNzIzOTgyNzc4NDA4OTZAMTQ2NTc5ODA3Njc0MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf https://www.researchgate.net/profile/Peter-Kattan?enrichId=rgreq-603d2c893ede534c3e789e53318225b1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyMjI4NztBUzozNzIzOTgyNzc4NDA4OTZAMTQ2NTc5ODA3Njc0MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf https://www.researchgate.net/profile/Peter-Kattan?enrichId=rgreq-603d2c893ede534c3e789e53318225b1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyMjI4NztBUzozNzIzOTgyNzc4NDA4OTZAMTQ2NTc5ODA3Njc0MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf Solutions Manual (Reduced Version) To Accompany the Book MATLAB Guide to Finite Elements An Interactive Approach Second Edition By Peter I. Kattan The solutions to all the problems are given below with each command ending with a semi-colon to suppress the output except at key locations where the result is given like the global stiffness matrix, the displacements, and the reactions. Problem 2.1: » k1=SpringElementStiffness(200); » k2=SpringElementStiffness(250); » K=zeros(3,3); » K=SpringAssemble(K,k1,1,2); » K=SpringAssemble(K,k2,2,3) K = 200 -200 0 -200 450 -250 0 -250 250 » k=K(2,2); » f=[10]; » u=k\f u = 0.0222 » U=[0 ; u ; 0]; » F=K*U F = -4.4444 10.0000 -5.5556 » u1=[0;u]; » f1=SpringElementForces(k1,u1); » u2=[u ; 0]; » f2=SpringElementForces(k2,u2); Problem 2.2: » k1=SpringElementStiffness(170); » k2=SpringElementStiffness(170); » k3=SpringElementStiffness(170); » k4=SpringElementStiffness(170); » K=zeros(4,4); » K=SpringAssemble(K,k1,1,2); » K=SpringAssemble(K,k2,2,3); » K=SpringAssemble(K,k3,2,3); » K=SpringAssemble(K,k4,3,4) K = 170 -170 0 0 -170 510 -340 0 0 -340 510 -170 0 0 -170 170 » k=K(2:4,2:4); » f=[0 ; 0 ; 25]; » u=k\f u = 0.1471 0.2206 0.3676 » U=[0;u]; » F=K*U F = -25.0000 0.0000 0.0000 25.0000 » u1=[0;U(2)]; » f2=SpringElementForces(k1,u1); » u2=[U(2);U(3)]; » f2=SpringElementForces(k2,u2); » u3=[U(2);U(3)]; » f3=SpringElementForces(k3,u3); » u4=[U(3);U(4)]; » f4=SpringElementForces(k4,u4); Problem 3.1: » E=70e6; » A=0.005; » L1=1; » L2=2; » L3=1; » k1=LinearBarElementStiffness(E,A,L1); » k2=LinearBarElementStiffness(E,A,L2); » k3=LinearBarElementStiffness(E,A,L3); » K=zeros(4,4); » K=LinearBarAssemble(K,k1,1,2); » K=LinearBarAssemble(K,k2,2,3); » K=LinearBarAssemble(K,k3,3,4) K = 350000 -350000 0 0 -350000 525000 -175000 0 0 -175000 525000 -350000 0 0 -350000 350000 » k=K(2:4,2:4); » f=[-10 ; 0 ; 15]; » u=k\f u = 1.0e-003 * 0.0143 0.1000 0.1429 » U=[0;u]; » F=K*U F = -5.0000 -10.0000 -0.0000 15.0000 » u1=[0;U(2)]; » sigma1=LinearBarElementStresses(k1,u1,A); » u2=[U(2);U(3)]; » sigma2=LinearBarElementStresses(k2,u2,A); » u3=[U(3);U(4)]; » sigma3=LinearBarElementStresses(k3,u3,A); Problem 3.2: » E=210e6; » L=3/10; » A1=0.002+(0.01*0.15/3); » A2=0.002+(0.01*0.45/3); » A3=0.002+(0.01*0.75/3); » A4=0.002+(0.01*1.05/3); » A5=0.002+(0.01*1.35/3); » A6=0.002+(0.01*1.65/3); » A7=0.002+(0.01*1.95/3); » A8=0.002+(0.01*2.25/3); » A9=0.002+(0.01*2.55/3); » A10=0.002+(0.01*2.85/3); » k1=LinearBarElementStiffness(E,A1,L); » k2=LinearBarElementStiffness(E,A2,L); » k3=LinearBarElementStiffness(E,A3,L); » k4=LinearBarElementStiffness(E,A4,L); » k5=LinearBarElementStiffness(E,A5,L); » k6=LinearBarElementStiffness(E,A6,L); » k7=LinearBarElementStiffness(E,A7,L); » k8=LinearBarElementStiffness(E,A8,L); » k9=LinearBarElementStiffness(E,A9,L); » k10=LinearBarElementStiffness(E,A10,L); » K=zeros(11,11); » K=LinearBarAssemble(K,k1,1,2); » K=LinearBarAssemble(K,k2,2,3); » K=LinearBarAssemble(K,k3,3,4); » K=LinearBarAssemble(K,k4,4,5); » K=LinearBarAssemble(K,k5,5,6); » K=LinearBarAssemble(K,k6,6,7); » K=LinearBarAssemble(K,k7,7,8); » K=LinearBarAssemble(K,k8,8,9); » K=LinearBarAssemble(K,k9,9,10); » K=LinearBarAssemble(K,k10,10,11) K = 1.0e+007 * Columns 1 through 7 0.1750 -0.1750 0 0 0 0 0 -0.1750 0.4200 -0.2450 0 0 0 0 0 -0.2450 0.5600 -0.3150 0 0 0 0 0 -0.3150 0.7000 -0.3850 0 0 0 0 0 -0.3850 0.8400 -0.4550 0 0 0 0 0 -0.4550 0.9800 -0.5250 0 0 0 0 0 -0.5250 1.1200 0 0 0 0 0 0 -0.5950 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Columns 8 through 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.5950 0 0 0 1.2600 -0.6650 0 0 -0.6650 1.4000 -0.7350 0 0 -0.7350 1.5400 -0.8050 0 0 -0.8050 0.8050 » k=K(1:10,1:10); » f=[-18;0;0;0;0;0;0;0;0;0]; » u=k\f u = 1.0e-004 * -0.4582 -0.3554 -0.2819 -0.2248 -0.1780 -0.1385 -0.1042 -0.0739 -0.0469 -0.0224 It is clear from the results above that the displacement at the free end is -0.04582 mm which is very close to that obtained in Example 3.2. However,the result obtained in this problem is more accurate because we have used more elements in the discretization. Problem 3.3: » E=200e6; » A=0.01; » L=2; » k1=LinearBarElementStiffness(E,A,L); » k2=SpringElementStiffness(1000); » K=zeros(3,3); » K=LinearBarAssemble(K,k1,1,2); » K=SpringAssemble(K,k2,2,3) K = 1000000 -1000000 0 -1000000 1001000 -1000 0 -1000 1000 » k=K(2,2); » f=[25]; » u=k\f u = 2.4975e-005 » U=[0;u;0]; » F=K*U F = -24.9750 25.0000 -0.0250 » u1=[0;u]; » sigma1=LinearBarElementStresses(k1,u1,A); » u2=[u;0]; » f2=SpringElementForces(k2,u2); Problem 4.1: » E=210e6; » L=3/2; » A1=0.002+(0.01*0.75/3); » A2=0.002+(0.01*2.25/3); » k1=QuadraticBarElementStiffness(E,A1,L); » k2=QuadraticBarElementStiffness(E,A2,L); » K=zeros(5,5); » K=QuadraticBarAssemble(K,k1,1,3,2); » K=QuadraticBarAssemble(K,k2,3,5,4) K = 1.0e+006 * 1.4700 -1.6800 0.2100 0 0 -1.6800 3.3600 -1.6800 0 0 0.2100 -1.6800 4.5733 -3.5467 0.4433 0 0 -3.5467 7.0933 -3.5467 0 0 0.4433 -3.5467 3.1033 » k=K(1:4,1:4); » f=[-18 ; 0 ; 0 ; 0]; » u=k\f u = 1.0e-004 * -0.4211 -0.2782 -0.1353 -0.0677 Thus it is clear that the displacement at the free end is -0.4211 x 10-4 m or -0.04211 mm which is very close to that obtained in Example 3.2 which was -0.04517 mm and that obtained in the solution of Problem 3.2 which was -0.04582 mm. Problem 4.2: » E=70e6; » A=0.001; » L=4; » k1=SpringElementStiffness(2000); » k2=QuadraticBarElementStiffness(E,A,L); » K=zeros(4,4); » K=SpringAssemble(K,k1,1,2); » K=QuadraticBarAssemble(K,k2,2,4,3) K = 1.0e+004 * 0.2000 -0.2000 0 0 -0.2000 4.2833 -4.6667 0.5833 0 -4.6667 9.3333 -4.6667 0 0.5833 -4.6667 4.0833 » k=K(2:4,2:4); » f=[0 ; 10 ; 5]; » u=k\f u = 0.0075 0.0079 0.0081 » U=[0 ; u]; » F=K*U F = -15.0000 0.0000 10.0000 5.0000 » u1=[0 ; U(2)]; » f1=SpringElementForces(k1,u1); » u2=[U(2) ; U(4) ; U(3)]; » sigma2=QuadraticBarElementStresses(k2,u2,A); Problem 5.1: » E=210e6; » A=0.005; » L1=PlaneTrussElementLength(0,0,5,7); » L5=PlaneTrussElementLength(0,0,5,-7); » L9=PlaneTrussElementLength(0,0,5,-7); » theta1=atan(7/5)*180/pi; » theta2=0; » theta3=270; » theta4=0; » theta5=360-theta1; » theta6=0; » theta7=270; » theta8=0; » theta9=theta5; » k1=PlaneTrussElementStiffness(E,A,L1,theta1); » k2=PlaneTrussElementStiffness(E,A,5,theta2); » k3=PlaneTrussElementStiffness(E,A,7,theta3); » k4=PlaneTrussElementStiffness(E,A,5,theta4); » k5=PlaneTrussElementStiffness(E,A,L5,theta5); » k6=PlaneTrussElementStiffness(E,A,5,theta6); » k7=PlaneTrussElementStiffness(E,A,7,theta7); » k8=PlaneTrussElementStiffness(E,A,5,theta8); » k9=PlaneTrussElementStiffness(E,A,L9,theta9); » K=zeros(12,12); » K=PlaneTrussAssemble(K,k1,1,2); » K=PlaneTrussAssemble(K,k2,1,3); » K=PlaneTrussAssemble(K,k3,2,3); » K=PlaneTrussAssemble(K,k4,3,5); » K=PlaneTrussAssemble(K,k5,2,5); » K=PlaneTrussAssemble(K,k6,2,4); » K=PlaneTrussAssemble(K,k7,4,5); » K=PlaneTrussAssemble(K,k8,5,6); » K=PlaneTrussAssemble(K,k9,4,6) K = 1.0e+005 * Columns 1 through 7 2.5124 0.5773 -0.4124 -0.5773 -2.1000 0 0 0.5773 0.8082 -0.5773 -0.8082 0 0 0 -0.4124 -0.5773 2.9247 0.0000 -0.0000 -0.0000 -2.1000 -0.5773 -0.8082 0.0000 3.1165 -0.0000 -1.5000 0 -2.1000 0 -0.0000 -0.0000 4.2000 0.0000 0 0 0 -0.0000 -1.5000 0.0000 1.5000 0 0 0 -2.1000 0 0 0 2.5124 0 0 0 0 0 0 -0.5773 0 0 -0.4124 0.5773 -2.1000 0 -0.0000 0 0 0.5773 -0.8082 0 0 -0.0000 0 0 0 0 0 0 -0.4124 0 0 0 0 0 0 0.5773 Columns 8 through 12 0 0 0 0 0 0 0 0 0 0 0 -0.4124 0.5773 0 0 0 0.5773 -0.8082 0 0 0 -2.1000 0 0 0 0 0 0 0 0 -0.5773 -0.0000 -0.0000 -0.4124 0.5773 2.3082 -0.0000 -1.5000 0.5773 -0.8082 -0.0000 4.6124 -0.5773 -2.1000 0 -1.5000 -0.5773 2.3082 0 0 0.5773 -2.1000 0 2.5124 -0.5773 -0.8082 0 0 -0.5773 0.8082 » k=K(3:10,3:10); » f=[20 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0]; » u=k\f u = 1.0e-003 * 0.2083 -0.0333 0.0106 -0.0333 0.1766 0.0107 0.0212 -0.0516 » U=[0 ; 0 ; u ; 0 ; 0]; » F=K*U F = -8.8889 -9.3333 20.0000 0.0000 0.0000 0 0.0000 0 0 -0.0000 -11.1111 9.3333 » u1=[U(1) ; U(2) ; U(3) ; U(4)]; » u2=[U(1) ; U(2) ; U(5) ; U(6)]; » u3=[U(3) ; U(4) ; U(5) ; U(6)]; » u4=[U(5) ; U(6) ; U(9) ; U(10)]; » u5=[U(3) ; U(4) ; U(9) ; U(10)]; » u6=[U(3) ; U(4) ; U(7) ; U(8)]; » u7=[U(7) ; U(8) ; U(9) ; U(10)]; » u8=[U(9) ; U(10) ; U(11) ; U(12)]; » u9=[U(7) ; U(8) ; U(11) ; U(12)]; » sigma1=PlaneTrussElementStress(E,L1,theta1,u1); » sigma2=PlaneTrussElementStress(E,5,theta2,u2); » sigma3=PlaneTrussElementStress(E,7,theta3,u3); » sigma4=PlaneTrussElementStress(E,5,theta4,u4); » sigma5=PlaneTrussElementStress(E,L5,theta5,u5); » sigma6=PlaneTrussElementStress(E,5,theta6,u6); » sigma7=PlaneTrussElementStress(E,7,theta7,u7); » sigma8=PlaneTrussElementStress(E,5,theta8,u8); » sigma9=PlaneTrussElementStress(E,L9,theta9,u9); Problem 5.2: » E=70e6; » A=0.01; » L1=PlaneTrussElementLength(0,0,4,3); » L2=PlaneTrussElementLength(0,0,4,0); » L3=PlaneTrussElementLength(0,0,4,-4); » theta1=atan(3/4)*180/pi; » theta2=0; » theta3=360-atan(4/4)*180/pi; » k1=PlaneTrussElementStiffness(E,A,L1,theta1); » k2=PlaneTrussElementStiffness(E,A,L2,theta2); » k3=PlaneTrussElementStiffness(E,A,L3,theta3); » k4=SpringElementStiffness(3000); » K=zeros(9,9); » K=PlaneTrussAssemble(K,k1,1,4); » K=PlaneTrussAssemble(K,k2,2,4); » K=PlaneTrussAssemble(K,k3,3,4); » K=SpringAssemble(K,k4,7,9) K = 1.0e+005 * Columns 1 through 7 0.8960 0.6720 0 0 0 0 -0.8960 0.6720 0.5040 0 0 0 0 -0.6720 0 0 1.7500 0 0 0 -1.7500 0 0 0 0 0 0 0 0 0 0 0 0.6187 -0.6187 -0.6187 0 0 0 0 -0.6187 0.6187 0.6187 -0.8960 -0.6720 -1.7500 0 -0.6187 0.6187 3.2947 -0.6720 -0.5040 0 0 0.6187 -0.6187 0.0533 0 0 0 0 0 0 -0.0300 Columns 8 through 9 -0.6720 0 -0.5040 0 0 0 0 0 0.6187 0 -0.6187 0 0.0533 -0.0300 1.1227 0 0 0.0300 » k=K(7:9,7:9); » f=[0 ; 0 ; 10]; » u=k\f u = 0.0000 -0.0000 0.0034 » U=[0 ; 0 ; 0 ; 0 ; 0 ; 0 ; u]; » F=K*U F = -2.6489 -1.9866 -5.3645 0 -1.9866 1.9866 -0.0000 -0.0000 10.0000 » u1=[U(1) ; U(2) ; U(7) ; U(8)]; » u2=[U(3) ; U(4) ; U(7) ; U(8)]; » u3=[U(5) ; U(6) ; U(7) ; U(8)]; » u4=[U(7); U(9)]; » sigma1=PlaneTrussElementStress(E,L1,theta1,u1); » sigma2=PlaneTrussElementStress(E,L2,theta2,u2);» sigma3=PlaneTrussElementStress(E,L3,theta3,u3); » f4=SpringElementForces(k4,u4); Problem 6.1: » E=200e6; » A=0.003; » L1=SpaceTrussElementLength(0,0,-3,0,5,0); » L2=SpaceTrussElementLength(-3,0,0,0,5,0); » L3=SpaceTrussElementLength(0,0,3,0,5,0); » L4=SpaceTrussElementLength(4,0,0,0,5,0); » theta1x=acos(0/L1)*180/pi; » theta1y=acos(5/L1)*180/pi; » theta1z=acos(3/L1)*180/pi; » theta2x=acos(3/L2)*180/pi; » theta2y=acos(5/L2)*180/pi; » theta2z=acos(0/L2)*180/pi; » theta3x=acos(0/L3)*180/pi; » theta3y=acos(5/L3)*180/pi; » theta3z=acos(-3/L3)*180/pi; » theta4x=acos(-4/L4)*180/pi; » theta4y=acos(5/L4)*180/pi; » theta4z=acos(0/L4)*180/pi; » k1=SpaceTrussElementStiffness(E,A,L1,theta1x,theta1y,theta1z); » k2=SpaceTrussElementStiffness(E,A,L2,theta2x,theta2y,theta2z); » k3=SpaceTrussElementStiffness(E,A,L3,theta3x,theta3y,theta3z); » k4=SpaceTrussElementStiffness(E,A,L4,theta4x,theta4y,theta4z); » K=zeros(15,15); » K=SpaceTrussAssemble(K,k1,1,5); » K=SpaceTrussAssemble(K,k2,2,5); » K=SpaceTrussAssemble(K,k3,3,5); » K=SpaceTrussAssemble(K,k4,4,5) K = 1.0e+005 * Columns 1 through 7 0.0000 0.0000 0.0000 0 0 0 0 0.0000 0.7566 0.4540 0 0 0 0 0.0000 0.4540 0.2724 0 0 0 0 0 0 0 0.2724 0.4540 0.0000 0 0 0 0 0.4540 0.7566 0.0000 0 0 0 0 0.0000 0.0000 0.0000 0 0 0 0 0 0 0 0.0000 0 0 0 0 0 0 0.0000 0 0 0 0 0 0 -0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.0000 -0.0000 -0.0000 -0.2724 -0.4540 -0.0000 -0.0000 -0.0000 -0.7566 -0.4540 -0.4540 -0.7566 -0.0000 -0.0000 -0.0000 -0.4540 -0.2724 -0.0000 -0.0000 -0.0000 0.0000 Columns 8 through 14 0 0 0 0 0 -0.0000 -0.0000 0 0 0 0 0 -0.0000 -0.7566 0 0 0 0 0 -0.0000 -0.4540 0 0 0 0 0 -0.2724 -0.4540 0 0 0 0 0 -0.4540 -0.7566 0 0 0 0 0 -0.0000 -0.0000 0.0000 -0.0000 0 0 0 -0.0000 -0.0000 0.7566 -0.4540 0 0 0 -0.0000 -0.7566 -0.4540 0.2724 0 0 0 0.0000 0.4540 0 0 0.3657 -0.4571 -0.0000 -0.3657 0.4571 0 0 -0.4571 0.5714 0.0000 0.4571 -0.5714 0 0 -0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000 0.0000 -0.3657 0.4571 0.0000 0.6381 -0.0031 -0.7566 0.4540 0.4571 -0.5714 -0.0000 -0.0031 2.8412 0.4540 -0.2724 0.0000 -0.0000 -0.0000 -0.0000 0.0000 Column 15 -0.0000 -0.4540 -0.2724 -0.0000 -0.0000 -0.0000 0.0000 0.4540 -0.2724 0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.5448 » k=K(13:15,13:15); » f=[15 ; 0 ; -20]; » u=k\f u = 1.0e-003 * 0.2351 0.0003 -0.3671 » U=[0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; u]; » F=K*U F = 0.0000 16.6471 9.9883 -6.4151 -10.6919 -0.0000 -0.0000 -16.6862 10.0117 -8.5849 10.7311 0.0000 15.0000 -0.0000 -20.0000 » u1=[U(1) ; U(2) ; U(3) ; U(13) ; U(14) ; U(15)]; » u2=[U(4) ; U(5) ; U(6) ; U(13) ; U(14) ; U(15)]; » u3=[U(7) ; U(8) ; U(9) ; U(13) ; U(14) ; U(15)]; » u4=[U(10) ; U(11) ; U(12) ; U(13) ; U(14) ; U(15)]; » sigma1=SpaceTrussElementStress(E,L1,theta1x,theta1y,theta1z,u1); » sigma2=SpaceTrussElementStress(E,L2,theta2x,theta2y,theta2z,u2); » sigma3=SpaceTrussElementStress(E,L3,theta3x,theta3y,theta3z,u3); » sigma4=SpaceTrussElementStress(E,L4,theta4x,theta4y,theta4z,u4); Problem 7.1: » E=200e6; » I=70e-5; » L1=3.5; » L2=2; » k1=BeamElementStiffness(E,I,L1); » k2=BeamElementStiffness(E,I,L2); » K=zeros(6,6); » K=BeamAssemble(K,k1,1,2); » K=BeamAssemble(K,k2,2,3) K = 1.0e+005 * 0.3918 0.6857 -0.3918 0.6857 0 0 0.6857 1.6000 -0.6857 0.8000 0 0 -0.3918 -0.6857 2.4918 1.4143 -2.1000 2.1000 0.6857 0.8000 1.4143 4.4000 -2.1000 1.4000 0 0 -2.1000 -2.1000 2.1000 -2.1000 0 0 2.1000 1.4000 -2.1000 2.8000 » k=[K(2,2) K(2,4) K(2,6) ; K(4,2) K(4,4) K(4,6) ; K(6,2) K(6,4) K(6,6)]; » f=[0 ; -15 ; 0]; » u=k\f u = 1.0e-004 * 0.2273 -0.4545 0.2273 » U=[0 ; u(1) ; 0 ; u(2) ; 0 ; u(3)]; » F=K*U F = -1.5584 0 -3.2143 -15.0000 4.7727 0 » u1=[U(1) ; U(2) ; U(3) ; U(4)]; » u2=[U(3) ; U(4) ; U(5) ; U(6)]; » f1=BeamElementForces(k1,u1); » f2=BeamElementForces(k2,u2); » BeamElementShearDiagram(f1,L1); » BeamElementShearDiagram(f2,L2); » BeamElementMomentDiagram(f1,L1); » BeamElementMomentDiagram(f2,L2); Problem 7.2: » E=210e6; » I=50e-6; » L1=3; » L2=3; » L3=4; » k1=BeamElementStiffness(E,I,L1); » k2=BeamElementStiffness(E,I,L2); » k3=BeamElementStiffness(E,I,L3); » K=zeros(8,8); » K=BeamAssemble(K,k1,1,2); » K=BeamAssemble(K,k2,2,3); » K=BeamAssemble(K,k3,3,4) K = 1.0e+004 * Columns 1 through 7 0.4667 0.7000 -0.4667 0.7000 0 0 0 0.7000 1.4000 -0.7000 0.7000 0 0 0 -0.4667 -0.7000 0.9333 0 -0.4667 0.7000 0 0.7000 0.7000 0 2.8000 -0.7000 0.7000 0 0 0 -0.4667 -0.7000 0.6635 -0.3063 -0.1969 0 0 0.7000 0.7000 -0.3063 2.4500 -0.3937 0 0 0 0 -0.1969 -0.3937 0.1969 0 0 0 0 0.3937 0.5250 -0.3937 Column 8 0 0 0 0 0.3937 0.5250 -0.3937 1.0500 » k=[K(4,4) K(4,6) K(4,8) ; K(6,4) K(6,6) K(6,8) ; K(8,4) K(8,6) K(8,8)]; » f=[7.5 ; -15 ; 15]; » u=k\f u = 0.0006 -0.0012 0.0020 » U=[0 ; 0 ; 0 ; u(1) ; 0 ; u(2) ; 0 ; u(3)]; » F=K*U F = 3.9946 3.9946 -8.4783 7.5000 7.7242 -15.0000 -3.2405 15.0000 » u1=[U(1) ; U(2) ; U(3) ; U(4)]; » u2=[U(3) ; U(4) ; U(5) ; U(6)]; » u3=[U(5) ; U(6) ; U(7) ; U(8)]; » f1=BeamElementForces(k1,u1); » f2=BeamElementForces(k2,u2); » f3=BeamElementForces(k3,u3); » f1=f1-[-15 ; -7.5 ; -15 ; 7.5]; » f3=f3-[-15 ; -15 ; -15 ; 15]; » BeamElementShearDiagram(f1,L1); » BeamElementShearDiagram(f2,L2); » BeamElementShearDiagram(f3,L3); » BeamElementMomentDiagram(f1,L1); » BeamElementMomentDiagram(f2,L2); » BeamElementMomentDiagram(f3,L3); Problem 7.3: » E=70e6; » I=40e-6; » k1=BeamElementStiffness(E,I,3); » k2=BeamElementStiffness(E,I,3); » k3=SpringElementStiffness(5000); » K=zeros(7,7); » K=BeamAssemble(K,k1,1,2); » K=BeamAssemble(K,k2,2,3); » K=SpringAssemble(K,k3,3,7) K = 1.0e+003 * 1.2444 1.8667 -1.2444 1.8667 0 0 0 1.8667 3.7333 -1.8667 1.8667 0 0 0 -1.2444 -1.8667 7.4889 0 -1.2444 1.8667 -5.0000 1.8667 1.8667 0 7.4667 -1.8667 1.8667 0 0 0 -1.2444 -1.8667 1.2444 -1.8667 0 0 0 1.8667 1.8667 -1.8667 3.7333 0 0 0-5.0000 0 0 0 5.0000 » k=[K(3:4,3:4) K(3:4,6) ; K(6,3:4) K(6,6)]; » f=[-10 ; 0 ; 0]; » u=k\f u = -0.0016 -0.0002 0.0009 » U=[0 ; 0 ; u(1) ; u(2) ; 0 ; u(3) ; 0]; » F=K*U F = 1.5225 2.4913 -10.0000 0.0000 0.6920 0 7.7855 » u1=[U(1) ; U(2) ; U(3) ; U(4)]; » u2=[U(3) ; U(4) ; U(5) ; U(6)]; » u3=[U(3) ; U(7)]; » f1=BeamElementForces(k1,u1); » f2=BeamElementForces(k2,u2); » f3=SpringElementForces(k3,u3); » BeamElementShearDiagram(f1,3); » BeamElementShearDiagram(f2,3); » BeamElementMomentDiagram(f1,3); » BeamElementMomentDiagram(f2,3); Problem 8.1: » E=210e6; » A=4e-2; » I=4e-6; » L=4; » k1=PlaneFrameElementStiffness(E,A,I,L,90); » k2=PlaneFrameElementStiffness(E,A,I,L,0); » K=zeros(9,9); » K=PlaneFrameAssemble(K,k1,1,2); » K=PlaneFrameAssemble(K,k2,2,3) K = 1.0e+006 * Columns 1 through 7 0.0002 0.0000 -0.0003 -0.0002 -0.0000 -0.0003 0 0.0000 2.1000 0.0000 -0.0000 -2.1000 0.0000 0 -0.0003 0.0000 0.0008 0.0003 -0.0000 0.0004 0 -0.0002 -0.0000 0.0003 2.1002 0.0000 0.0003 -2.1000 -0.0000 -2.1000 -0.0000 0.0000 2.1002 0.0003 0 -0.0003 0.0000 0.0004 0.0003 0.0003 0.0017 0 0 0 0 -2.1000 0 0 2.1000 0 0 0 0 -0.0002 -0.0003 0 0 0 0 0 0.0003 0.0004 0 Columns 8 through 9 0 0 0 0 0 0 0 0 -0.0002 0.0003 -0.0003 0.0004 0 0 0.0002 -0.0003 -0.0003 0.0008 » k=[K(4:7,4:7) K(4:7,9) ; K(9,4:7) K(9,9)]; » f=[0 ; 0 ; 15 ; 20 ; 0 ]; » u=k\f u = 0.1865 0.0000 -0.0298 0.1865 0.0149 » U=[0 ; 0 ; 0 ; u(1:4) ; 0 ; u(5)]; » F=K*U F = -20.0000 -4.6875 46.2501 0.0000 0 15.0000 20.0000 4.6875 -0.0000 » u1=[U(1) ; U(2) ; U(3) ; U(4) ; U(5) ; U(6)]; » u2=[U(4) ; U(5) ; U(6) ; U(7) ; U(8) ; U(9)]; » f1=PlaneFrameElementForces(E,A,I,L,90,u1); » f2=PlaneFrameElementForces(E,A,I,L,0,u2); » PlaneFrameElementAxialDiagram(f1,L); » PlaneFrameElementAxialDiagram(f2,L); » PlaneFrameElementShearDiagram(f1,L); » PlaneFrameElementShearDiagram(f2,L); » PlaneFrameElementMomentDiagram(f1,L); » PlaneFrameElementMomentDiagram(f2,L); Problem 8.2: » E=210e6; » A=1e-2; » I=9e-5; » L1=PlaneFrameElementLength(0,0,2,3); » L2=5; » L3=L1; » theta1=atan(3/2)*180/pi; » theta2=0; » theta3=360-theta1; » k1=PlaneFrameElementStiffness(E,A,I,L1,theta1); » k2=PlaneFrameElementStiffness(E,A,I,L2,theta2); » k3=PlaneFrameElementStiffness(E,A,I,L3,theta3); » K=zeros(12,12); » K=PlaneFrameAssemble(K,k1,1,2); » K=PlaneFrameAssemble(K,k2,2,3); » K=PlaneFrameAssemble(K,k3,3,4) K = 1.0e+005 * Columns 1 through 7 1.8256 2.6658 -0.0726 -1.8256 -2.6658 -0.0726 0 2.6658 4.0471 0.0484 -2.6658 -4.0471 0.0484 0 -0.0726 0.0484 0.2097 0.0726 -0.0484 0.1048 0 -1.8256 -2.6658 0.0726 6.0256 2.6658 0.0726 -4.2000 -2.6658 -4.0471 -0.0484 2.6658 4.0653 -0.0030 0 -0.0726 0.0484 0.1048 0.0726 -0.0030 0.3609 0 0 0 0 -4.2000 0 0 6.0256 0 0 0 0 -0.0181 -0.0454 -2.6658 0 0 0 0 0.0454 0.0756 0.0726 0 0 0 0 0 0 -1.8256 0 0 0 0 0 0 2.6658 0 0 0 0 0 0 0.0726 Columns 8 through 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.0181 0.0454 0 0 0 -0.0454 0.0756 0 0 0 -2.6658 0.0726 -1.8256 2.6658 0.0726 4.0653 0.0030 2.6658 -4.0471 0.0484 0.0030 0.3609 -0.0726 -0.0484 0.1048 2.6658 -0.0726 1.8256 -2.6658 -0.0726 -4.0471 -0.0484 -2.6658 4.0471 -0.0484 0.0484 0.1048 -0.0726 -0.0484 0.2097 » k=K(4:9,4:9); » f=[20 ; -12.5 ; -10.417 ; 0 ; -12.5 ; 10.417]; » u=k\f u = 0.0013 -0.0009 -0.0005 0.0012 0.0008 0.0003 » U=[0 ; 0 ; 0 ; u ; 0 ; 0 ; 0]; » F=K*U F = 2.0283 8.4058 8.0296 20.0000 -12.5000 -10.4170 -0.0000 -12.5000 10.4170 -22.0283 16.5942 15.1226 » u1=[U(1) ; U(2) ; U(3) ; U(4) ; U(5) ; U(6)]; » u2=[U(4) ; U(5) ; U(6) ; U(7) ; U(8) ; U(9)]; » u3=[U(7) ; U(8) ; U(9) ; U(10) ; U(11) ; U(12)]; » f1=PlaneFrameElementForces(E,A,I,L1,theta1,u1); » f2=PlaneFrameElementForces(E,A,I,L2,theta2,u2); » f3=PlaneFrameElementForces(E,A,I,L3,theta3,u3); » f2=f2-[0 ; -12.5 ; -10.417 ; 0 ; -12.5 ; 10.417]; » PlaneFrameElementAxialDiagram(f1,L1); » PlaneFrameElementAxialDiagram(f2,L2); » PlaneFrameElementAxialDiagram(f3,L3); » PlaneFrameElementShearDiagram(f1,L1); » PlaneFrameElementShearDiagram(f2,L2); » PlaneFrameElementShearDiagram(f3,L3); » PlaneFrameElementMomentDiagram(f1,L1); » PlaneFrameElementMomentDiagram(f2,L2); » PlaneFrameElementMomentDiagram(f3,L3); Problem 8.3: » E1=70e6; » A1=1e-2; » I=1e-5; » E2=2500; » A2=10; » L2=5; » L1=4; » theta1=0; » theta2=atan(3/4)*180/pi; » k1=PlaneFrameElementStiffness(E1,A1,I,L1,theta1); » k2=PlaneTrussElementStiffness(E2,A2,L2,theta2); » K=zeros(8,8); » K=PlaneFrameAssemble(K,k1,1,2); » K=PlaneTrussAssemble(K,k2,1,4) K = 1.0e+005 * Columns 1 through 7 1.7820 0.0240 0 -1.7500 0 0 -0.0320 0.0240 0.0193 0.0026 0 -0.0013 0.0026 -0.0240 0 0.0026 0.0070 0 -0.0026 0.0035 0 -1.7500 0 0 1.7500 0 0 0 0 -0.0013 -0.0026 0 0.0013 -0.0026 0 0 0.0026 0.0035 0 -0.0026 0.0070 0 -0.0320 -0.0240 0 0 0 0 0.0320 -0.0240 -0.0180 0 0 0 0 0.0240 Column 8 -0.0240 -0.0180 0 0 0 0 0.0240 0.0180 » k=K(1:3,1:3); » f=[0 ; -10 ; 0]; » u=k\f u = 0.0001 -0.0056 0.0021 » U=[u ; 0 ; 0 ; 0 ; 0 ; 0]; » F=K*U F = -0.0000 -10.0000 -0.0000 -13.0903 0.1822 -0.7290 13.0903 9.8178 » u1=[U(1) ; U(2) ; U(3) ; U(4) ; U(5) ; U(6)]; » u2=[U(1) ; U(2) ; U(7) ; U(8)]; » f1=PlaneFrameElementForces(E1,A1,I,L1,theta1,u1); » f2=PlaneTrussElementForce(E2,A2,L2,theta2,u2); » PlaneFrameElementAxialDiagram(f1,L1); » PlaneFrameElementShearDiagram(f1,L1); » PlaneFrameElementMomentDiagram(f1,L1); Problem 9.1: » E=210e6; » G=84e6; » I=20e-5; » J=5e-5; » L1=GridElementLength(4,0,0,3); » L2=GridElementLength(4,0,0,-3); » theta1=180+atan(3/4)*180/pi; » theta2=180-atan(3/4)*180/pi; » k1=GridElementStiffness(E,G,I,J,L1,theta1); » k2=GridElementStiffness(E,G,I,J,L2,theta2); » K=zeros(9,9); » K=GridAssemble(K,k1,1,2); » K=GridAssemble(K,k2,1,3) K = 1.0e+004 * Columns 1 through 7 0.8064 0.0000 -1.6128 -0.4032 0.6048 -0.8064 -0.4032 0.0000 2.5267 0.0000 -0.6048 0.5510 -0.8467 0.6048 -1.6128 0.0000 4.3613 0.8064 -0.8467 1.0450 0.8064 -0.4032 -0.6048 0.8064 0.4032 -0.6048 0.8064 0 0.6048 0.5510 -0.8467 -0.6048 1.2634 -1.5725 0 -0.8064 -0.8467 1.0450 0.8064-1.5725 2.1806 0 -0.4032 0.6048 0.8064 0 0 0 0.4032 -0.6048 0.5510 0.8467 0 0 0 0.6048 -0.8064 0.8467 1.0450 0 0 0 0.8064 Columns 8 through 9 -0.6048 -0.8064 0.5510 0.8467 0.8467 1.0450 0 0 0 0 0 0 0.6048 0.8064 1.2634 1.5725 1.5725 2.1806 » k=K(1:3,1:3); » f=[-10 ; 0 ; 0]; » u=k\f u = -0.0048 0.0000 -0.0018 » U=[u ; 0 ; 0 ; 0 ; 0 ; 0 ; 0]; » F=K*U F = -10.0000 0.0000 0 5.0000 -13.8905 20.0000 5.0000 13.8905 20.0000 » u1=[U(1) ; U(2) ; U(3) ; U(4) ; U(5) ; U(6)]; » u2=[U(1) ; U(2) ; U(3) ; U(7) ; U(8) ; U(9)]; » f1=GridElementForces(E,G,I,J,L1,theta1,u1); » f2=GridElementForces(E,G,I,J,L2,theta2,u2); Problem 10.1: » E=210e6; » G=84e6; » A=2e-2; » Iy=10e-5; » Iz=20e-5; » J=5e-5; » k1=SpaceFrameElementStiffness(E,G,A,Iy,Iz,J,0,0,0,0,5,0); » k2=SpaceFrameElementStiffness(E,G,A,Iy,Iz,J,0,0,4,0,5,4); » k3=SpaceFrameElementStiffness(E,G,A,Iy,Iz,J,4,0,4,4,5,4); » k4=SpaceFrameElementStiffness(E,G,A,Iy,Iz,J,4,0,0,4,5,0); » k5=SpaceFrameElementStiffness(E,G,A,Iy,Iz,J,0,5,0,0,5,4); » k6=SpaceFrameElementStiffness(E,G,A,Iy,Iz,J,0,5,4,4,5,4); » k7=SpaceFrameElementStiffness(E,G,A,Iy,Iz,J,4,5,4,4,5,0); » k8=SpaceFrameElementStiffness(E,G,A,Iy,Iz,J,0,5,0,4,5,0); » K=zeros(48,48); » K=SpaceFrameAssemble(K,k1,1,5); » K=SpaceFrameAssemble(K,k2,2,6); » K=SpaceFrameAssemble(K,k3,3,7); » K=SpaceFrameAssemble(K,k4,4,8); » K=SpaceFrameAssemble(K,k5,5,6); » K=SpaceFrameAssemble(K,k6,6,7); » K=SpaceFrameAssemble(K,k7,7,8); » K=SpaceFrameAssemble(K,k8,5,8); » k=K(25:48,25:48); » f=[0;0;0;0;0;0;0;0;0;0;0;0;-15;0;0;0;0;0;0;0;0;0;0;0]; » u=k\f u = -0.0004 0.0000 -0.0006 0.0000 -0.0004 0.0000 -0.0021 0.0000 -0.0006 0.0000 -0.0004 0.0002 -0.0021 0.0000 0.0006 0.0000 -0.0004 0.0002 -0.0004 0.0000 0.0006 0.0000 -0.0004 0.0000 » U=[0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;u]; » F=K*U F = 1.1599 2.5054 1.0091 2.6719 0.3008 -3.2737 6.3324 5.7484 1.0091 2.6719 0.3008 -17.6937 6.3481 -5.7484 -1.0091 -2.6719 0.3019 -17.7439 1.1596 -2.5054 -1.0091 -2.6719 0.3019 -3.2733 0 0.0000 0 0.0000 0.0000 0.0000 0 0.0000 0 0.0000 0.0000 0.0000 -15.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0.0000 0.0000 0.0000 0.0000 » u1=[U(1);U(2);U(3);U(4);U(5);U(6);U(25);U(26);U(27);U(28);U(29);U(30) ]; » u2=[U(7);U(8);U(9);U(10);U(11);U(12);U(31);U(32);U(33);U(34);U(35);U( 36)]; » u3=[U(13);U(14);U(15);U(16);U(17);U(18);U(37);U(38);U(39);U(40);U(41) ;U(42)]; » u4=[U(19);U(20);U(21);U(22);U(23);U(24);U(43);U(44);U(45);U(46);U(47) ;U(48)]; » u5=[U(25);U(26);U(27);U(28);U(29);U(30);U(31);U(32);U(33);U(34);U(35) ;U(36)]; » u6=[U(31);U(32);U(33);U(34);U(35);U(36);U(37);U(38);U(39);U(40);U(41) ;U(42)]; » u7=[U(37);U(38);U(39);U(40);U(41);U(42);U(43);U(44);U(45);U(46);U(47) ;U(48)]; » u8=[U(25);U(26);U(27);U(28);U(29);U(30);U(43);U(44);U(45);U(46);U(47) ;U(48)]; » f1=SpaceFrameElementForces(E,G,A,Iy,Iz,J,0,0,0,0,5,0,u1); » f2=SpaceFrameElementForces(E,G,A,Iy,Iz,J,0,0,4,0,5,4,u2); » f3=SpaceFrameElementForces(E,G,A,Iy,Iz,J,4,0,4,4,5,4,u3); » f4=SpaceFrameElementForces(E,G,A,Iy,Iz,J,4,0,0,4,5,0,u4); » f5=SpaceFrameElementForces(E,G,A,Iy,Iz,J,0,5,0,0,5,4,u5); » f6=SpaceFrameElementForces(E,G,A,Iy,Iz,J,0,5,4,4,5,4,u6); » f7=SpaceFrameElementForces(E,G,A,Iy,Iz,J,4,5,4,4,5,0,u7); » f8=SpaceFrameElementForces(E,G,A,Iy,Iz,J,0,5,0,4,5,0,u8); Problem 11.1: » E=210e6; » NU=0.3; » t=0.025; » k1=LinearTriangleElementStiffness(E,NU,t,0,0,0.25,0.125,0,0.25,1); » k2=LinearTriangleElementStiffness(E,NU,t,0,0,0.5,0,0.25,0.125,1); » k3=LinearTriangleElementStiffness(E,NU,t,0.5,0.25,0,0.25,0.25,0.125,1 ); » k4=LinearTriangleElementStiffness(E,NU,t,0.5,0,0.5,0.25,0.25,0.125,1) ; » K=zeros(10,10); » K=LinearTriangleAssemble(K,k1,1,5,4); » K=LinearTriangleAssemble(K,k2,1,2,5); » K=LinearTriangleAssemble(K,k3,3,4,5); » K=LinearTriangleAssemble(K,k4,2,3,5) K = 1.0e+007 * Columns 1 through 7 0.3462 0.1875 0.0288 -0.0072 0 0 -0.0288 0.1875 0.6274 0.0072 0.2632 0 0 -0.0072 0.0288 0.0072 0.3462 -0.1875 -0.0288 -0.0072 0 -0.0072 0.2632 -0.1875 0.6274 0.0072 -0.2632 0 0 0 -0.0288 0.0072 0.3462 0.1875 0.0288 0 0 -0.0072 -0.2632 0.1875 0.6274 0.0072 -0.0288 -0.0072 0 0 0.0288 0.0072 0.3462 0.0072 -0.2632 0 0 -0.0072 0.2632 -0.1875 -0.3462 -0.1875 -0.3462 0.1875 -0.3462 -0.1875 -0.3462 -0.1875 -0.6274 0.1875 -0.6274 -0.1875 -0.6274 0.1875 Columns 8 through 10 0.0072 -0.3462 -0.1875 -0.2632 -0.1875 -0.6274 0 -0.3462 0.1875 0 0.1875 -0.6274 -0.0072 -0.3462 -0.1875 0.2632 -0.1875 -0.6274 -0.1875 -0.3462 0.1875 0.6274 0.1875 -0.6274 0.1875 1.3846 0 -0.6274 0 2.5096 » k=[K(3:6,3:6) K(3:6,9:10) ; K(9:10,3:6) K(9:10,9:10)]; » f=[9.375 ; 0 ; 9.375 ; 0 ; 0 ; 0]; » u=k\f u = 1.0e-005 * 0.6928 0.0714 0.6928 -0.0714 0.3271 0.0000 » U=[0;0;u(1:4);0;0;u(5:6)]; » F=K*U F = -9.3750 -3.7540 9.3750 0.0000 9.3750 0.0000 -9.3750 3.7540 0 0.0000 » u1=[U(1) ; U(2) ; U(9) ; U(10) ; U(7) ; U(8)]; » u2=[U(1) ; U(2) ; U(3) ; U(4) ; U(9) ; U(10)]; » u3=[U(5) ; U(6) ; U(7) ; U(8) ; U(9) ; U(10)]; » u4=[U(3) ; U(4) ; U(5) ; U(6) ; U(9) ; U(10)]; sig1=LinearTriangleElementStresses(E,NU,t,0,0,0.25,0.125,0,0.25,1,u1) ; » sig2=LinearTriangleElementStresses(E,NU,t,0,0,0.5,0,0.25,0.125,1,u2); » sig3=LinearTriangleElementStresses(E,NU,t,0.5,0.25,0,0.25,0.25,0.125, 1,u3); » sig4=LinearTriangleElementStresses(E,NU,t,0.5,0,0.5,0.25,0.25,0.125,1 ,u4); » s1=LinearTriangleElementPStresses(sig1); » s2=LinearTriangleElementPStresses(sig2); » s3=LinearTriangleElementPStresses(sig3); » s4=LinearTriangleElementPStresses(sig4); Problem 11.2: » E=70e6; » NU=0.25; » t=0.02; » k1=LinearTriangleElementStiffness(E,NU,t,0,0,0.3,0.3,0,0.3,1); » k2=LinearTriangleElementStiffness(E,NU,t,0,0,0.3,0,0.3,0.3,1); » k3=LinearTriangleElementStiffness(E,NU,t,0.3,0,0.6,0.3,0.3,0.3,1); » k4=LinearTriangleElementStiffness(E,NU,t,0.3,0,0.6,0,0.6,0.3,1); » k5=LinearTriangleElementStiffness(E,NU,t,0.6,0,0.9,0.3,0.6,0.3,1); » k6=LinearTriangleElementStiffness(E,NU,t,0.6,0,0.9,0,0.9,0.3,1); » k7=LinearTriangleElementStiffness(E,NU,t,0,0.3,0.3,0.6,0,0.6,1); » k8=LinearTriangleElementStiffness(E,NU,t,0,0.3,0.3,0.3,0.3,0.6,1); » k9=LinearTriangleElementStiffness(E,NU,t,0.6,0.3,0.9,0.6,0.6,0.6,1); » k10=LinearTriangleElementStiffness(E,NU,t,0.6,0.3,0.9,0.3,0.9,0.6,1); » k11=LinearTriangleElementStiffness(E,NU,t,0,0.6,0.3,0.9,0,0.9,1); » k12=LinearTriangleElementStiffness(E,NU,t,0,0.6,0.3,0.6,0.3,0.9,1); » k13=LinearTriangleElementStiffness(E,NU,t,0.3,0.6,0.6,0.9,0.3,0.9,1); » k14=LinearTriangleElementStiffness(E,NU,t,0.3,0.6,0.6,0.6,0.6,0.9,1); » k15=LinearTriangleElementStiffness(E,NU,t,0.6,0.6,0.9,0.9,0.6,0.9,1); » k16=LinearTriangleElementStiffness(E,NU,t,0.6,0.6,0.9,0.6,0.9,0.9,1); K=zeros(32,32); K=LinearTriangleAssemble(K,k1,1,6,5); K=LinearTriangleAssemble(K,k2,1,2,6); K=LinearTriangleAssemble(K,k3,2,7,6); K=LinearTriangleAssemble(K,k4,2,3,7); K=LinearTriangleAssemble(K,k5,3,8,7);K=LinearTriangleAssemble(K,k6,3,4,8); K=LinearTriangleAssemble(K,k7,5,10,9); K=LinearTriangleAssemble(K,k8,5,6,10); K=LinearTriangleAssemble(K,k9,7,12,11); K=LinearTriangleAssemble(K,k10,7,8,12); K=LinearTriangleAssemble(K,k11,9,14,13); K=LinearTriangleAssemble(K,k12,9,10,14); K=LinearTriangleAssemble(K,k13,10,15,14); K=LinearTriangleAssemble(K,k14,10,11,15); K=LinearTriangleAssemble(K,k15,11,16,15); » K=LinearTriangleAssemble(K,k16,11,12,16) K = 1.0e+006 * Columns 1 through 7 1.0267 0 -0.7467 0.1867 0 0 0 0 1.0267 0.2800 -0.2800 0 0 0 -0.7467 0.2800 2.0533 -0.4667 -0.7467 0.1867 0 0.1867 -0.2800 -0.4667 2.0533 0.2800 -0.2800 0 0 0 -0.7467 0.2800 2.0533 -0.4667 -0.7467 0 0 0.1867 -0.2800 -0.4667 2.0533 0.2800 0 0 0 0 -0.7467 0.2800 1.0267 0 0 0 0 0.1867 -0.2800 -0.4667 -0.2800 0.1867 0 0 0 0 0 0.2800 -0.7467 0 0 0 0 0 0 -0.4667 -0.5600 0.4667 0 0 0 -0.4667 0 0.4667 -1.4933 0 0 0 0 0 0 -0.4667 -0.5600 0.4667 0 0 0 -0.4667 0 0.4667 -1.4933 0 0 0 0 0 0 -0.4667 -0.2800 0 0 0 0 -0.4667 0 0.1867 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Columns 8 through 14 0 -0.2800 0.2800 0 -0.4667 0 0 0 0.1867 -0.7467 -0.4667 0 0 0 0 0 0 -0.5600 0.4667 0 -0.4667 0 0 0 0.4667 -1.4933 -0.4667 0 0.1867 0 0 0 0 -0.5600 0.4667 -0.2800 0 0 0 0 0.4667 -1.4933 -0.4667 0 0 0 0 0 0 1.0267 0 0 0 0 0 0 0 2.0533 -0.4667 -1.4933 0.4667 0 0 0 -0.4667 2.0533 0.4667 -0.5600 0 0 0 -1.4933 0.4667 3.0800 -0.9333 -0.7467 0.2800 0 0.4667 -0.5600 -0.9333 3.0800 0.1867 -0.2800 0 0 0 -0.7467 0.1867 3.0800 -0.4667 0 0 0 0.2800 -0.2800 -0.4667 3.0800 0.2800 0 0 0 0 -1.4933 0.4667 -0.7467 0 0 0 0 0.4667 -0.5600 0 -0.2800 0.1867 0 0 0 0 0 0.2800 -0.7467 0 0 0 0 0 0 -0.4667 -0.2800 0.2800 0 0 0 -0.4667 0 0.1867 -0.7467 0 0 0 0 0 0 0 -0.2800 0.1867 0 0 0 0 0 0.2800 -0.7467 0 0 0 0 0 0 -0.4667 0 0 0 0 0 -0.4667 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Columns 15 through 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.4667 0 0 0 0 0 -0.4667 0 0 0 0 0 0 -0.2800 0.1867 0 0 0 0 0 0.2800 -0.7467 0 0 0 0 0 0 0 -0.2800 0.2800 0 -4667 0 0 0 0.1867 -0.7467 -0.4667 0 0 0 0 0 0 -0.2800 0.1867 0 0 0 0 0 0.2800 -0.7467 0 -1.4933 0.4667 0 0 0 0 -0.2800 0.4667 -0.5600 0 0 0 0 0.1867 2.0533 -0.4667 0 0 0 0 0 -0.4667 2.0533 0 0 0 0 0 0 0 2.0533 -0.4667 -1.4933 0.4667 0 0 0 -0.4667 2.0533 0.4667 -0.5600 0 0 0 -1.4933 0.4667 3.0800 -0.4667 -0.7467 0 0 0.4667 -0.5600 -0.4667 3.0800 0.2800 0 0 0 0 -0.7467 0.2800 3.0800 0 0 0 0 0.1867 -0.2800 -0.9333 -0.2800 0.2800 0 0 0 0 -1.4933 0.1867 -0.7467 0 0 0 0 0.4667 0 0 -0.2800 0.1867 0 0 0 0 0 0.2800 -0.7467 0 0 0 0 0 0 -0.4667 -0.5600 0.4667 0 0 0 -0.4667 0 0.4667 -1.4933 0 0 0 0 0 0 -0.4667 -0.5600 0 0 0 0 -0.4667 0 0.4667 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.4667 Columns 22 through 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0.2800 0 -0.4667 0 0 0 0 -0.7467 -0.4667 0 0 0 0 0 0 -0.2800 0.1867 0 0 0 0 0 0.2800 -0.7467 0 0 0 0 0 0 0 -0.2800 0.2800 0 -0.4667 0 0 0 0.1867 -0.7467 -0.4667 0 0.1867 0 0 0 0 -0.5600 0.4667 -0.2800 0 0 0 0 0.4667 -1.4933 -0.9333 -1.4933 0.4667 0 0 0 0 3.0800 0.4667 -0.5600 0 0 0 0 0.4667 2.0533 -0.4667 0 0 0 0 -0.5600 -0.4667 2.0533 0 0 0 0 0 0 0 1.0267 -0.4667 -0.7467 0.2800 0 0 0 -0.4667 1.0267 0.1867 -0.2800 0 0 0 -0.7467 0.1867 2.0533 -0.4667 0 0 0 0.2800 -0.2800 -0.4667 2.0533 0.4667 0 0 0 0 -0.7467 0.1867 -1.4933 0 0 0 0 0.2800 -0.2800 -0.4667 -0.2800 0.2800 0 0 0 0 0 0.1867 -0.7467 0 0 0 0 Columns 29 through 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.4667 0 0 -0.4667 0 0 0 -0.5600 0.4667 0 -0.4667 0.4667 -1.4933 -0.4667 0 0 0 -0.2800 0.1867 0 0 0.2800 -0.7467 0 0 0 0 0 0 0 0 -0.7467 0.2800 0 0 0.1867 -0.2800 0 0 2.0533 -0.4667 -0.7467 0.2800 -0.4667 2.0533 0.1867 -0.2800 -0.7467 0.1867 1.0267 0 0.2800 -0.2800 0 1.0267 » k=[K(3:8,3:8) K(3:8,11:16) K(3:8,19:24) K(3:8,27:32) ; K(11:16,3:8) K(11:16,11:16) K(11:16,19:24) K(11:16,27:32) ; K(19:24,3:8) K(19:24,11:16) K(19:24,19:24) K(19:24,27:32) ; K(27:32,3:8) K(27:32,11:16) K(27:32,19:24) K(27:32,27:32)]; » f=[0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;-20]; » u=k\f u = 1.0e-003 * -0.0200 -0.0225 -0.0291 -0.0581 -0.0305 -0.0854 -0.0008 -0.0173 -0.0072 -0.0585 -0.0077 -0.0867 0.0001 -0.0176 0.0010 -0.0639 0.0064 -0.0960 0.0207 -0.0199 0.0346 -0.0635 0.0356 -0.1167 » U=[0;0;u(1:6);0;0;u(7:12);0;0;u(13:18);0;0;u(19:24)]; » F=K*U F = 18.8054 1.0788 0 0.0000 0.0000 0.0000 0.0000 0.0000 1.3366 9.2538 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9105 0.2247 0 0.0000 0.0000 0.0000 0.0000 0.0000 -21.0525 9.4427 0.0000 0 0 0.0000 0.0000 -20.0000 Problem 11.3: » E=200e6; » NU=0.3; » t=0.01; » k1=LinearTriangleElementStiffness(E,NU,t,0,0.4,0,0,0.7,0.4,1); » k2=LinearTriangleElementStiffness(E,NU,t,0.7,0.4,0,0,0.7,0,1); » k3=SpringElementStiffness(4000); » k4=SpringElementStiffness(4000); » K=zeros(10,10); » K=LinearTriangleAssemble(K,k1,1,3,2); » K=LinearTriangleAssemble(K,k2,2,3,4); » K=SpringAssemble(K,k3,6,9); » K=SpringAssemble(K,k4,8,10) K = 1.0e+006 * Columns 1 through 7 1.3010 -0.7143 -0.6279 0.3846 -0.6731 0.3297 0 -0.7143 2.1429 0.3297 -0.2198 0.3846 -1.9231 0 -0.6279 0.3297 1.3010 0 0 -0.7143 -0.6731 0.3846 -0.2198 0 2.1429 -0.7143 0 0.3297 -0.6731 0.3846 0 -0.7143 1.3010 0 -0.6279 0.3297 -1.9231 -0.7143 0 0 2.1469 0.3846 0 0 -0.6731 0.3297 -0.6279 0.3846 1.3010 0 0 0.3846 -1.9231 0.3297 -0.2198 -0.7143 0 0 0 0 0 -0.0040 0 0 0 0 0 0 0 0 Columns 8 through 10 0 0 0 0 0 0 0.3846 0 0 -1.9231 0 0 0.3297 0 0 -0.2198 -0.0040 0 -0.7143 0 0 2.1469 0 -0.0040 0 0.0040 0 -0.0040 0 0.0040 » k=K(1:8,1:8); » f=[0 ; 17.5 ; 0 ; 17.5 ; 0 ; 0 ; 0 ; 0]; » u=k\f Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 2.544804e-017. u = 0.0002 0.0044 0.0002 0.0044 0.0002 0.0044 0.0002 0.0044 » U=[u(1:8) ; 0 ; 0]; » F=K*U F = 0 17.5000 0 17.5000 0.0000 0.0000 0.0000 0.0000 -17.5000 -17.5000 » u1=[U(1) ; U(2) ; U(5) ; U(6) ; U(3) ; U(4)]; » u2=[U(3) ; U(4) ; U(5) ; U(6) ; U(7) ; U(8)]; » u3=[U(6) ; U(9)]; » u4=[U(8) ; U(10)]; » sigma1=LinearTriangleElementStresses(E,NU,t,0,0.4,0,0,0.7,0.4,1,u1); » sigma2=LinearTriangleElementStresses(E,NU,t,0.7,0.4,0,0,0.7,0,1,u2); » s1=LinearTriangleElementPStresses(sigma1); » s2=LinearTriangleElementPStresses(sigma2); » f3=SpringElementForces(k3,u3); » f4=SpringElementForces(k4,u4); Problem 12.1: » E=210e6; » NU=0.3; » t=0.025; » k1=QuadTriangleElementStiffness(E,NU,t,0,0,0.25,0.125,0,0.25,1); » k2=QuadTriangleElementStiffness(E,NU,t,0,0,0.5,0,0.25,0.125,1); » k3=QuadTriangleElementStiffness(E,NU,t,0.25,0.125,0.5,0.25,0,0.25,1); » k4=QuadTriangleElementStiffness(E,NU,t,0.25,0.125,0.5,0,0.5,0.25,1); » K=zeros(26,26); » K=QuadTriangleAssemble(K,k1,1,7,11,4,9,6); » K=QuadTriangleAssemble(K,k2,1,3,7,2,5,4); » K=QuadTriangleAssemble(K,k3,7,13,11,10,12,9); » K=QuadTriangleAssemble(K,k4,7,3,13,5,8,10) K = 1.0e+007 * Columns 1 through 7 0.3462 0.1875 0.0385 -0.0096 -0.0096 0.0024 -0.4615 0.1875 0.6274 0.0096 0.3510 -0.0024 -0.0877 -0.2500 0.0385 0.0096 1.0000 0 0.0385 -0.0096 -0.5385 -0.0096 0.3510 0 2.3750 0.0096 0.3510 0.2500 -0.0096 -0.0024 0.0385 0.0096 0.3462 -0.1875 0 0.0024 -0.0877 -0.0096 0.3510 -0.1875 0.6274 0 -0.4615 -0.2500 -0.5385 0.2500 0 0 1.8462 -0.2500 -0.8365 0.2500 -1.5385 0 0 0 0 0 -0.5385 -0.2500 -0.4615 0.2500 0.0769 0 0 -0.2500 -1.5385 0.2500 -0.8365 0 -0.0385 -0.0096 0 0 0 0 -0.3846 0.0096 -0.3510 0 0 0 0 0.2500 0.1154 0.0625 0 0 0.1154 -0.0625 -0.4615 0.0625 0.2091 0 0 -0.0625 0.2091 -0.2500 0 0 0 0 -0.0385 0.00960 0 0 0 0 -0.0096 -0.3510 0 0 0 0 0 0 0 -0.0769 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0096 0.0024 0 0 0 0 0 -0.0024 0.0877 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0096 -0.0024 0 0 0 0 0 0.0024 0.0877 0 Columns 8 through 14 -0.2500 0 0 -0.0385 0.0096 0.1154 0.0625 -0.8365 0 0 -0.0096 -0.3510 0.0625 0.2091 0.2500 -0.5385 -0.2500 0 0 0 0 -1.5385 -0.2500 -1.5385 0 0 0 0 0 -0.4615 0.2500 0 0 0.1154 -0.0625 0 0.2500 -0.8365 0 0 -0.0625 0.2091 0 0.0769 0 -0.3846 0.2500 -0.4615 -0.2500 3.3462 0 0.7019 0.2500 -0.1346 -0.2500 -0.8365 0 1.8462 0 0 0 -0.4615 0.2500 0.7019 0 3.3462 0 0 0.2500 -0.8365 0.2500 0 0 0.8462 0 0 0 -0.1346 0 0 0 0.9712 0 0 -0.2500 -0.4615 0.2500 0 0 1.3846 0 -0.8365 0.2500 -0.8365 0 0 0 2.5096 0 -0.3846 -0.2500 0 0 0 0 0 -0.2500 -0.1346 0 0 0 0 0 0 0 -0.3846 -0.2500 -0.4615 0.2500 -0.7019 0 0 -0.2500 -0.1346 0.2500 -0.8365 0 -0.0769 0 0 0 -0.4615 -0.2500 0 0 -0.7019 0 0 -0.2500 -0.8365 0 0 0 -0.0385 -0.0096 0.1154 -0.0625 0 0 0 0.0096 -0.3510 -0.0625 0.2091 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1154 0.0625 0 0 0 0 0 0.0625 0.2091 Columns 15 through 21 0 0 0 0 0 0 0.0096 0 0 0 0 0 0 0.0024 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.0385 -0.0096 0 0 0 0 0 0.0096 -0.3510 0 0 0 0 0 0 0 -0.0769 0 0 0 0 0 0 0 -0.7019 0 0 0 -0.3846 -0.2500 0 0 -0.0769 0 0 -0.2500 -0.1346 0 0 0 -0.7019 0 0 0 -0.3846 -0.2500 0 0 -0.0385 0 0 -0.2500 -0.1346 0 0 -0.0096 0 0 -0.4615 0.2500 -0.4615 -0.2500 0.1154 0 0 0.2500 -0.8365 -0.2500 -0.8365 -0.0625 0.8462 0 0 0 -0.3846 0.2500 0 0 0.9712 0 0 0.2500 -0.1346 0 0 0 1.8462 0 0.0769 0 -0.4615 0 0 0 3.3462 0 0.7019 0.2500 -0.3846 0.2500 0.0769 0 1.8462 0 0 0.2500 -0.1346 0 0.7019 0 3.3462 0 0 0 -0.4615 0.2500 0 0 0.3462 0 0 0.2500 -0.8365 0 0 -0.1875 0 0 -0.5385 -0.2500 -0.5385 0.2500 0.0385 0 0 -0.2500 -1.5385 0.2500 -1.5385 0.0096 -0.0385 0.0096 0 0 -0.4615 -0.2500 -0.0096 -0.0096 -0.3510 0 0 -0.2500 -0.8365 -0.0024 Columns 22 through 26 -0.0024 0 0 0 0 0.0877 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0096 0.0024 0 0 0 -0.0024 0.0877 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0096 0 0 0 0 -0.3510 0 0 0 0 -0.0625 0 0 0.1154 0.0625 0.2091 0 0 0.0625 0.2091 0 0 0 -0.0385 -0.0096 0 0 0 0.0096 -0.3510 0.2500 -0.5385 -0.2500 0 0 -0.8365 -0.2500 -1.5385 0 0 0 -0.5385 0.2500 -0.4615 -0.2500 0 0.2500 -1.5385 -0.2500 -0.8365 -0.1875 0.0385 0.0096 -0.0096 -0.0024 0.6274 -0.0096 0.3510 0.0024 -0.0877 -0.0096 1.0000 0 0.0385 0.0096 0.3510 0 2.3750 -0.0096 0.3510 0.0024 0.0385 -0.0096 0.3462 0.1875 -0.0877 0.0096 0.3510 0.1875 0.6274 » k=[K(3:10,3:10) K(3:10,13:20) K(3:10,23:26) ; K(13:20,3:10) K(13:20,13:20) K(13:20,23:26) ; K(23:26,3:10) K(23:26,13:20) K(23:26,23:26)]; » f=[0 ; 0 ; 3.125 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 12.5 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 3.125 ; 0]; » u=k\f u = 1.0e-005 * 0.3500 0.0590 0.7006 0.0415 0.1653 0.0172 0.5286 0.0288 0.3454 0.0000 0.7080 0.0000 0.1653 -0.0172 0.5286 -0.0288 0.3500 -0.0590 0.7006 -0.0415 » U=[0;0;u(1:8);0;0;u(9:16);0;0;u(17:20)]; » F=K*U F = -3.4469 -1.5335 0 0.0000 3.1250 0.0000 0 0.0000 0.0000 0.0000 -11.8562 0.0000 0.0000 0.0000 12.5000 0.0000 0.0000 0.0000 0.0000 0 -3.4469 1.5335 0.0000 0.0000 3.1250 0 » u1=[U(1) ; U(2) ; U(13) ; U(14) ; U(21) ; U(22) ; U(7) ; U(8) ; U(17) ; U(18) ; U(11) ; U(12)]; » u2=[U(1) ; U(2) ; U(5) ; U(6) ; U(13) ; U(14) ; U(3) ; U(4) ; U(9) ; U(10) ; U(7) ; U(8)]; » u3=[U(13) ; U(14) ; U(25) ; U(26) ; U(21) ; U(22) ; U(19) ; U(20) ; U(23) ; U(24) ; U(17) ; U(18)]; » u4=[U(13) ; U(14) ; U(5) ; U(6) ; U(25) ; U(26) ; U(9) ; U(10) ; U(15) ; U(16) ; U(19) ; U(20)]; » sigma1=QuadTriangleElementStresses(E,NU,t,0,0,0.25,0.125,0,0.25,1,u1) ; » sigma2=QuadTriangleElementStresses(E,NU,t,0,0,0.5,0,0.25,0.125,1,u2); » sigma3=QuadTriangleElementStresses(E,NU,t,0.25,0.125,0.5,0.25,0,0.25, 1,u3); » sigma4=QuadTriangleElementStresses(E,NU,t,0.25,0.125,0.5,0,0.5,0.25,1 ,u4); » s1=QuadTriangleElementPStresses(sigma1); » s2=QuadTriangleElementPStresses(sigma2); » s3=QuadTriangleElementPStresses(sigma3); » s4=QuadTriangleElementPStresses(sigma4); Problem 13.1: » E=210e6; » NU=0.3; » h=0.025; » k1=BilinearQuadElementStiffness(E,NU,h,0,0,0.125,0,0.125,0.125,0,0.12 5,1); » k2=BilinearQuadElementStiffness(E,NU,h,0.125,0,0.25,0,0.25,0.125,0.12 5,0.125,1); » k3=BilinearQuadElementStiffness(E,NU,h,0.25,0,0.375,0,0.375,0.125,0.2 5,0.125,1); » k4=BilinearQuadElementStiffness(E,NU,h,0.375,0,0.5,0,0.5,0.125,0.375, 0.125,1); » k5=BilinearQuadElementStiffness(E,NU,h,0,0.125,0.125,0.125,0.125,0.25,0,0.25,1); » k6=BilinearQuadElementStiffness(E,NU,h,0.125,0.125,0.25,0.125,0.25,0. 25,0.125,0.25,1); » k7=BilinearQuadElementStiffness(E,NU,h,0.25,0.125,0.375,0.125,0.375,0 .25,0.25,0.25,1); » k8=BilinearQuadElementStiffness(E,NU,h,0.375,0.125,0.5,0.125,0.5,0.25 ,0.375,0.25,1); » K=zeros(30,30); » K=BilinearQuadAssemble(K,k1,1,2,7,6); » K=BilinearQuadAssemble(K,k2,2,3,8,7); » K=BilinearQuadAssemble(K,k3,3,4,9,8); » K=BilinearQuadAssemble(K,k4,4,5,10,9); » K=BilinearQuadAssemble(K,k5,6,7,12,11); » K=BilinearQuadAssemble(K,k6,7,8,13,12); » K=BilinearQuadAssemble(K,k7,8,9,14,13); » K=BilinearQuadAssemble(K,k8,9,10,15,14); K = 1.0e+007 * Columns 1 through 7 0.2596 0.0937 -0.1587 -0.0072 0 0 0 0.0937 0.2596 0.0072 0.0288 0 0 0 -0.1587 0.0072 0.5192 0 -0.1587 -0.0072 0 -0.0072 0.0288 0 0.5192 0.0072 0.0288 0 0 0 -0.1587 0.0072 0.5192 0 -0.1587 0 0 -0.0072 0.0288 0 0.5192 0.0072 0 0 0 0 -0.1587 0.0072 0.5192 0 0 0 0 -0.0072 0.0288 0 0 0 0 0 0 0 -0.1587 0 0 0 0 0 0 -0.0072 0.0288 -0.0072 -0.1298 0.0937 0 0 0 0.0072 -0.1587 0.0937 -0.1298 0 0 0 -0.1298 -0.0937 0.0577 0 -0.1298 0.0937 0 -0.0937 -0.1298 0 -0.3173 0.0937 -0.1298 0 0 0 -0.1298 -0.0937 0.0577 0 -0.1298 0 0 -0.0937 -0.1298 0 -0.3173 0.0937 0 0 0 0 -0.1298 -0.0937 0.0577 0 0 0 0 -0.0937 -0.1298 0 0 0 0 0 0 0 -0.1298 0 0 0 0 0 0 -0.0937 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Columns 8 through 14 0 0 0 0.0288 0.0072 -0.1298 -0.0937 0 0 0 -0.0072 -0.1587 -0.0937 -0.1298 0 0 0 -0.1298 0.0937 0.0577 0 0 0 0 0.0937 -0.1298 0 -0.3173 -0.0072 0 0 0 0 -0.1298 0.0937 0.0288 0 0 0 0 0.0937 -0.1298 0 -0.1587 -0.0072 0 0 0 0 0.5192 0.0072 0.0288 0 0 0 0 0.0072 0.2596 -0.0937 0 0 0 0 0.0288 -0.0937 0.2596 0 0 0 0 0 0 0 0.5192 0 -0.3173 0 0 0 0 0 0.5192 0 0.0577 0 0 0 -0.3173 0 1.0385 0 0 0 0 0 0.0577 0 1.0385 0.0937 0 0 0 0 -0.3173 0 -0.1298 0 0 0 0 0 0.0577 0 -0.1298 0.0937 0 0 0 0 -0.3173 0.0937 -0.1298 0 0 0 0 -0.0937 0.0288 0.0072 0 0 0 0 -0.1298 -0.0072 -0.1587 0 0 0 0 0 0 0 0.0288 -0.0072 -0.1298 0.0937 0 0 0 0.0072 -0.1587 0.0937 -0.1298 0 0 0 -0.1298 -0.0937 0.0577 0 0 0 0 -0.0937 -0.1298 0 -0.3173 0 0 0 0 0 -0.1298 -0.0937 0 0 0 0 0 -0.0937 -0.1298 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Columns 15 through 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.1298 -0.0937 0 0 0 0 0 -0.0937 -0.1298 0 0 0 0 0 0.0577 0 -0.1298 -0.0937 0 0 0 0 -0.3173 -0.0937 -0.1298 0 0 0 -0.1298 0.0937 0.0577 0 -0.1298 -0.0937 0 0.0937 -0.1298 0 -0.3173 -0.0937 -0.1298 0 0 0 -0.1298 0.0937 0.0288 -0.0072 0 0 0 0.0937 -0.1298 0.0072 -0.1587 0 0 0 0 0 0 0 0.0288 0 0 0 0 0 0 -0.0072 -0.3173 0 0 0 0 0 -0.1298 0 0.0577 0 0 0 0 0.0937 1.0385 0 -0.3173 0 0 0 0 0 1.0385 0 0.0577 0 0 0 -0.3173 0 1.0385 0 -0.3173 0 0 0 0.0577 0 1.0385 0 0.0577 0 0 0 -0.3173 0 0.5192 0 0 0 0 0 0.0577 0 0.5192 0 0 0 0 0 0 0 0.2596 0 0 0 0 0 0 -0.0937 -0.1298 0.0937 0 0 0 0 -0.1587 0.0937 -0.1298 0 0 0 0 0.0072 0.0577 0 -0.1298 0.0937 0 0 0 0 -0.3173 0.0937 -0.1298 0 0 0 -0.1298 -0.0937 0.0577 0 -0.1298 0.0937 0 -0.0937 -0.1298 0 -0.3173 0.0937 -0.1298 0 0 0 -0.1298 -0.0937 0.0288 0.0072 0 0 0 -0.0937 -0.1298 -0.0072 -0.1587 0 Columns 22 through 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0072 -0.1298 -0.0937 0 0 0 0 -0.1587 -0.0937 -0.1298 0 0 0 0 0.0937 0.0577 0 -0.1298 -0.0937 0 0 -0.1298 0 -0.3173 -0.0937 -0.12980 0 0 -0.1298 0.0937 0.0577 0 -0.1298 -0.0937 0 0.0937 -0.1298 0 -0.3173 -0.0937 -0.1298 0 0 0 -0.1298 0.0937 0.0577 0 0 0 0 0.0937 -0.1298 0 -0.3173 0 0 0 0 0 -0.1298 0.0937 0 0 0 0 0 0.0937 -0.1298 -0.0937 -0.1587 0.0072 0 0 0 0 0.2596 -0.0072 0.0288 0 0 0 0 -0.0072 0.5192 0 -0.1587 0.0072 0 0 0.0288 0 0.5192 -0.0072 0.0288 0 0 0 -0.1587 -0.0072 0.5192 0 -0.1587 0.0072 0 0.0072 0.0288 0 0.5192 -0.0072 0.0288 0 0 0 -0.1587 -0.0072 0.5192 0 0 0 0 0.0072 0.0288 0 0.5192 0 0 0 0 0 -0.1587 -0.0072 0 0 0 0 0 0.0072 0.0288 Columns 29 through 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.1298 -0.0937 -0.0937 -0.1298 0.0288 -0.0072 0.0072 -0.1587 0 0 0 0 0 0 0 0 0 0 0 0 -0.1587 0.0072 -0.0072 0.0288 0.2596 0.0937 0.0937 0.2596 » k=[K(3:10,3:10) K(3:10,13:20) K(3:10,23:30) ; K(13:20,3:10) K(13:20,13:20) K(13:20,23:30) ; K(23:30,3:10) K(23:30,13:20) K(23:30,23:30)]; » f=[0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 4.6875 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 9.375 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 4.6875 ; 0]; » u=k\f u = 1.0e-005 * 0.1768 0.0552 0.3500 0.0548 0.5284 0.0536 0.7071 0.0535 0.1648 0.0000 0.3496 0.0000 0.5287 0.0000 0.7071 0.0000 0.1768 -0.0552 0.3500 -0.0548 0.5284 -0.0536 0.7071 -0.0535 » U=[0;0;u(1:8);0;0;u(9:16);0;0;u(17:24)]; » F=K*U F = -4.9836 -1.2580 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4.6875 0.0000 -8.7829 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 9.3750 0.0000 -4.9836 1.2580 0.0000 0 0.0000 0.0000 0.0000 0.0000 4.6875 0.0000 » u1=[U(1) ; U(2) ; U(3) ; U(4) ; U(13) ; U(14) ; U(11) ; U(12)]; » u2=[U(3) ; U(4) ; U(5) ; U(6) ; U(15) ; U(16) ; U(13) ; U(14)]; » u3=[U(5) ; U(6) ; U(7) ; U(8) ; U(17) ; U(18) ; U(15) ; U(16)]; » u4=[U(7) ; U(8) ; U(9) ; U(10) ; U(19) ; U(20) ; U(17) ; U(18)]; » u5=[U(11) ; U(12) ; U(13) ; U(14) ; U(23) ; U(24) ; U(21) ; U(22)]; » u6=[U(13) ; U(14) ; U(15) ; U(16) ; U(25) ; U(26) ; U(23) ; U(24)]; » u7=[U(15) ; U(16) ; U(17) ; U(18) ; U(27) ; U(28) ; U(25) ; U(26)]; » u8=[U(17) ; U(18) ; U(19) ; U(20) ; U(29) ; U(30) ; U(27) ; U(28)]; » sigma1=BilinearQuadElementStresses(E,NU,0,0,0.125,0,0.125,0.125,0,0.1 25,1,u1); » sigma2=BilinearQuadElementStresses(E,NU,0.125,0,0.25,0,0.25,0.125,0.1 25,0.125,1,u2); » sigma3=BilinearQuadElementStresses(E,NU,0.25,0,0.375,0,0.375,0.125,0. 25,0.125,1,u3); » sigma4=BilinearQuadElementStresses(E,NU,0.375,0,0.5,0,0.5,0.125,0.375 ,0.125,1,u4); » sigma5=BilinearQuadElementStresses(E,NU,0,0.125,0.125,0.125,0.125,0.2 5,0,0.25,1,u5); » sigma6=BilinearQuadElementStresses(E,NU,0.125,0.125,0.25,0.125,0.25,0 .25,0.125,0.25,1,u6); » sigma7=BilinearQuadElementStresses(E,NU,0.25,0.125,0.375,0.125,0.375, 0.25,0.25,0.25,1,u7); » sigma8=BilinearQuadElementStresses(E,NU,0.375,0.125,0.5,0.125,0.5,0.2 5,0.375,0.25,1,u8); » s1=BilinearQuadElementPStresses(sigma1); » s2=BilinearQuadElementPStresses(sigma2); » s3=BilinearQuadElementPStresses(sigma3); » s4=BilinearQuadElementPStresses(sigma4); » s5=BilinearQuadElementPStresses(sigma5); » s6=BilinearQuadElementPStresses(sigma6); » s7=BilinearQuadElementPStresses(sigma7); » s8=BilinearQuadElementPStresses(sigma8); Problem 13.2: » E=70e6; » NU=0.25; » h=0.02; » k1=BilinearQuadElementStiffness(E,NU,h,0,0,0.3,0,0.3,0.3,0,0.3,1); » k2=BilinearQuadElementStiffness(E,NU,h,0.3,0,0.6,0,0.6,0.3,0.3,0.3,1) ; » k3=BilinearQuadElementStiffness(E,NU,h,0.6,0,0.9,0,0.9,0.3,0.6,0.3,1) ; » k4=BilinearQuadElementStiffness(E,NU,h,0,0.3,0.3,0.3,0.3,0.6,0,0.6,1) ; » k5=BilinearQuadElementStiffness(E,NU,h,0.6,0.3,0.9,0.3,0.9,0.6,0.6,0. 6,1); » k6=BilinearQuadElementStiffness(E,NU,h,0,0.6,0.3,0.6,0.3,0.9,0,0.9,1) ; » k7=BilinearQuadElementStiffness(E,NU,h,0.3,0.6,0.6,0.6,0.6,0.9,0.3,0. 9,1); » k8=BilinearQuadElementStiffness(E,NU,h,0.6,0.6,0.9,0.6,0.9,0.9,0.6,0. 9,1); » K=zeros(32,32); » K=BilinearQuadAssemble(K,k1,1,2,6,5); » K=BilinearQuadAssemble(K,k2,2,3,7,6); » K=BilinearQuadAssemble(K,k3,3,4,8,7); » K=BilinearQuadAssemble(K,k4,5,6,10,9); » K=BilinearQuadAssemble(K,k5,7,8,12,11); » K=BilinearQuadAssemble(K,k6,9,10,14,13); » K=BilinearQuadAssemble(K,k7,10,11,15,14); » K=BilinearQuadAssemble(K,k8,11,12,16,15) K = 1.0e+006 * Columns 1 through 7 0.6844 0.2333 -0.4044 -0.0467 0 0 0 0.2333 0.6844 0.0467 0.0622 0 0 0 -0.4044 0.0467 1.3689 0 -0.4044 -0.0467 0 -0.0467 0.0622 0 1.3689 0.0467 0.0622 0 0 0 -0.4044 0.0467 1.3689 0 -0.4044 0 0 -0.0467 0.0622 0 1.3689 0.0467 0 0 0 0 -0.4044 0.0467 0.6844 0 0 0 0 -0.0467 0.0622 -0.2333 0.0622 -0.0467 -0.3422 0.2333 0 0 0 0.0467 -0.4044 0.2333 -0.3422 0 0 0 -0.3422 -0.2333 0.1244 0 -0.3422 0.2333 0 -0.2333 -0.3422 0 -0.8089 0.2333 -0.3422 0 0 0 -0.3422 -0.2333 0.1244 0 -0.3422 0 0 -0.2333 -0.3422 0 -0.8089 0.2333 0 0 0 0 -0.3422 -0.2333 0.0622 0 0 0 0 -0.2333 -0.3422 -0.0467 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Columns 8 through 14 0 0.0622 0.0467 -0.3422 -0.2333 0 0 0 -0.0467 -0.4044 -0.2333 -0.3422 0 0 0 -0.3422 0.2333 0.1244 0 -0.3422 -0.2333 00.2333 -0.3422 0 -0.8089 -0.2333 -0.3422 -0.0467 0 0 -0.3422 0.2333 0.1244 0 0.0622 0 0 0.2333 -0.3422 0 -0.8089 -0.2333 0 0 0 0 -0.3422 0.2333 0.6844 0 0 0 0 0.2333 -0.3422 0 1.3689 0 -0.8089 0 0 0 0 0 1.3689 0 0.1244 0 0 0 -0.8089 0 2.0533 -0.2333 -0.4044 0.0467 0 0 0.1244 -0.2333 2.0533 -0.0467 0.0622 0.2333 0 0 -0.4044 -0.0467 2.0533 0.2333 -0.3422 0 0 0.0467 0.0622 0.2333 2.0533 0.0467 0 0 0 0 -0.8089 0 -0.4044 0 0 0 0 0 0.1244 0 0.0622 -0.0467 -0.3422 0.2333 0 0 0 0.0467 -0.4044 0.2333 -0.3422 0 0 0 -0.3422 -0.2333 0.0622 0.0467 0 0 0 -0.2333 -0.3422 -0.0467 -0.4044 0 0 0 0 0 0 0 0.0622 -0.0467 0 0 0 0 0 0.0467 -0.4044 0 0 0 0 0 -0.3422 -0.2333 0 0 0 0 0 -0.2333 -0.3422 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Columns 15 through 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.3422 -0.2333 0 0 0 0 0 -0.2333 -0.3422 0 0 0 0 0 0.0622 -0.0467 0 0 0 0 0 0.0467 -0.4044 0 0 0 0 0 0 0 0.0622 0.0467 -0.3422 -0.2333 0 0 0 -0.0467 -0.4044 -0.2333 -0.3422 0 0 0 -0.3422 0.2333 0.0622 -0.0467 0 0 0 0.2333 -0.3422 0.0467 -0.4044 0 -0.8089 0 0 0 0 0 0.0622 0 0.1244 0 0 0 0 -0.0467 1.3689 0 0 0 0 0 -0.3422 0 1.3689 0 0 0 0 0.2333 0 0 1.3689 0 -0.8089 0 0 0 0 0 1.3689 0 0.1244 0 0 0 -0.8089 0 2.0533 0.2333 -0.4044 0 0 0 0.1244 0.2333 2.0533 0.0467 -0.3422 0.2333 0 0 -0.4044 0.0467 2.0533 0.2333 -0.3422 0 0 -0.0467 0.0622 -0.2333 0.0622 0.0467 0 0 0 0 -0.8089 -0.0467 -0.4044 0 0 0 0 0 0 0 0.0622 -0.0467 -0.3422 0.2333 0 0 0 0.0467 -0.4044 0.2333 -0.3422 0 0 0 -0.3422 -0.2333 0.1244 0 -0.3422 0 0 -0.2333 -0.3422 0 -0.8089 0.2333 0 0 0 0 -0.3422 -0.2333 0.1244 0 0 0 0 -0.2333 -0.3422 0 0 0 0 0 0 0 -0.3422 0 0 0 0 0 0 -0.2333 Columns 22 through 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0467 -0.3422 -0.2333 0 0 0 0 -0.4044 -0.2333 -0.3422 0 0 0 0 0.2333 0.0622 -0.0467 0 0 0 0 -0.3422 0.0467 -0.4044 0 0 0 0 0 0 0 0.0622 0.0467 -0.3422 -0.2333 0 0 0 -0.0467 -0.4044 -0.2333 -0.3422 -0.0467 0 0 -0.3422 0.2333 0.1244 0 0.0622 0 0 0.2333 -0.3422 0 -0.8089 -0.2333 -0.8089 0 0 0 -0.3422 0.2333 2.0533 0 0.1244 0 0 0.2333 -0.3422 0 1.3689 0 0 0 0 0 0.1244 0 1.3689 0 0 0 0 0 0 0 0.6844 -0.2333 -0.4044 0.0467 0 0 0 -0.2333 0.6844 -0.0467 0.0622 0.2333 0 0 -0.4044 -0.0467 1.3689 0 -0.3422 0 0 0.0467 0.0622 0 1.3689 0 -0.3422 0.2333 0 0 -0.4044 -0.0467 -0.8089 0.2333 -0.3422 0 0 0.0467 0.0622 -0.2333 0.0622 0.0467 0 0 0 0 -0.3422 -0.0467 -0.4044 0 0 0 0 Columns 29 through 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.3422 -0.2333 0 0 -0.2333 -0.3422 0 0 0.1244 0 -0.3422 -0.2333 0 -0.8089 -0.2333 -0.3422 -0.3422 0.2333 0.0622 -0.0467 0.2333 -0.3422 0.0467 -0.4044 0 0 0 0 0 0 0 0 -0.4044 0.0467 0 0 -0.0467 0.0622 0 0 1.3689 0 -0.4044 0.0467 0 1.3689 -0.0467 0.0622 -0.4044 -0.0467 0.6844 0.2333 0.0467 0.0622 0.2333 0.6844 » k=[K(3:8,3:8) K(3:8,11:16) K(3:8,19:24) K(3:8,27:32) ; K(11:16,3:8) K(11:16,11:16) K(11:16,19:24) K(11:16,27:32); K(19:24,3:8) K(19:24,11:16) K(19:24,19:24) K(19:24,27:32) ; K(27:32,3:8) K(27:32,11:16) K(27:32,19:24) K(27:32,27:32)]; » f=[zeros(22,1) ; 0 ; -20]; » u=k\f u = 1.0e-003 * -0.0299 -0.0284 -0.0402 -0.0753 -0.0386 -0.1102 0.0015 -0.0203 -0.0068 -0.0800 -0.0123 -0.1088 -0.0021 -0.0185 -0.0023 -0.0824 0.0047 -0.1224 0.0307 -0.0260 0.0489 -0.0758 0.0565 -0.1589 » U=[0;0;u(1:6);0;0;u(7:12);0;0;u(13:18);0;0;u(19:24)]; » F=K*U F = 17.6570 3.4450 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 7.4806 7.0314 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -7.9321 6.7416 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -17.2054 2.7819 0 0 0.0000 0.0000 0.0000 -20.0000 » u1=[U(1) ; U(2) ; U(3) ; U(4) ; U(11) ; U(12) ; U(9) ; U(10)]; » u2=[U(3) ; U(4) ; U(5) ; U(6) ; U(13) ; U(14) ; U(11) ; U(12)]; » u3=[U(5) ; U(6) ; U(7) ; U(8) ; U(15) ; U(16) ; U(13) ; U(14)]; » u4=[U(9) ; U(10) ; U(11) ; U(12) ; U(19) ; U(20) ; U(17) ; U(18)]; » u5=[U(13) ; U(14) ; U(15) ; U(16) ; U(23) ; U(24) ; U(21) ; U(22)]; » u6=[U(17) ; U(18) ; U(19) ; U(20) ; U(27) ; U(28) ; U(25) ; U(26)]; » u7=[U(19) ; U(20) ; U(21) ; U(22) ; U(29) ; U(30) ; U(27) ; U(28)]; » u8=[U(21) ; U(22) ; U(23) ; U(24) ; U(31) ; U(32) ; U(29) ; U(30)]; » sigma1=BilinearQuadElementStresses(E,NU,0,0,0.3,0,0.3,0.3,0,0.3,1,u1) ; » sigma2=BilinearQuadElementStresses(E,NU,0.3,0,0.6,0,0.6,0.3,0.3,0.3,1 ,u2); » sigma3=BilinearQuadElementStresses(E,NU,0.6,0,0.9,0,0.9,0.3,0.6,0.3,1 ,u3); » sigma4=BilinearQuadElementStresses(E,NU,0,0.3,0.3,0.3,0.3,0.6,0,0.6,1 ,u4); » sigma5=BilinearQuadElementStresses(E,NU,0.6,0.3,0.9,0.3,0.9,0.6,0.6,0 .6,1,u5); » sigma6=BilinearQuadElementStresses(E,NU,0,0.6,0.3,0.6,0.3,0.9,0,0.9,1 ,u6); » sigma7=BilinearQuadElementStresses(E,NU,0.3,0.6,0.6,0.6,0.6,0.9,0.3,0 .9,1,u7); » sigma8=BilinearQuadElementStresses(E,NU,0.6,0.6,0.9,0.6,0.9,0.9,0.6,0 .9,1,u8); » s1=BilinearQuadElementPStresses(sigma1); » s2=BilinearQuadElementPStresses(sigma2); » s3=BilinearQuadElementPStresses(sigma3); » s4=BilinearQuadElementPStresses(sigma4); » s5=BilinearQuadElementPStresses(sigma5); » s6=BilinearQuadElementPStresses(sigma6); » s7=BilinearQuadElementPStresses(sigma7); » s8=BilinearQuadElementPStresses(sigma8); Problem 13.3: » E=200e6; » NU=0.3; » h=0.01; » k1=BilinearQuadElementStiffness(E,NU,h,0,0,0.35,0,0.35,0.4,0,0.4,1); » k2=BilinearQuadElementStiffness(E,NU,h,0.35,0,0.7,0,0.7,0.4,0.35,0.4, 1); » k3=SpringElementStiffness(4000); » k4=SpringElementStiffness(4000); » k5=SpringElementStiffness(4000); » K=zeros(15,15); » K=BilinearQuadAssemble(K,k1,4,5,2,1); » K=BilinearQuadAssemble(K,k2,5,6,3,2); » K=SpringAssemble(K,k3,8,13); » K=SpringAssemble(K,k4,10,14); » K=SpringAssemble(K,k5,12,15) K = 1.0e+006 * Columns 1 through 7 1.0616 -0.3571 -0.7251 0.0275 0 0 0.1943 -0.3571 0.9341 -0.0275 0.0275 0 0 0.0275 -0.7251 -0.0275 2.1232 0 -0.7251 0.0275 -0.5308 0.0275 0.0275 0 1.8681 -0.0275 0.0275 -0.3571 0 0 -0.7251 -0.0275 1.0616 0.3571 0 0 0 0.0275 0.0275 0.3571 0.9341 0 0.1943 0.0275 -0.5308 -0.3571 0 0 1.0616 -0.0275 -0.4945 -0.3571 -0.4670 0 0 0.3571 -0.5308 0.3571 0.3885 0 -0.5308 -0.3571 -0.7251 0.3571 -0.4670 0 -0.9890 -0.3571 -0.4670 -0.0275 0 0 -0.5308 0.3571 0.1943 -0.0275 0 0 0 0.3571 -0.4670 0.0275 -0.4945 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Columns 8 through 14 -0.0275 -0.5308 0.3571 0 0 0 0 -0.4945 0.3571 -0.4670 0 0 0 0 -0.3571 0.3885 0 -0.5308 0.3571 0 0 -0.4670 0 -0.9890 0.3571 -0.4670 0 0 0 -0.5308 -0.3571 0.1943 0.0275 0 0 0 -0.3571 -0.4670 -0.0275 -0.4945 0 0 0.3571 -0.7251 -0.0275 0 0 0 0 0.9381 0.0275 0.0275 0 0 -0.0040 0 0.0275 2.1232 0 -0.7251 -0.0275 0 0 0.0275 0 1.8721 0.0275 0.0275 0 -0.0040 0 -0.7251 0.0275 1.0616 -0.3571 0 0 0 -0.0275 0.0275 -0.3571 0.9381 0 0 -0.0040 0 0 0 0 0.0040 0 0 0 -0.0040 0 0 0 0.0040 0 0 0 0 -0.0040 0 0 Column 15 0 0 0 0 0 0 0 0 0 0 0 -0.0040 0 0 0.0040 » k=K(1:12,1:12); » f=[0 ; 8.75 ; 0 ; 17.5 ; 0 ; 8.75 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0]; » u=k\f Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 4.354270e-017. u = -0.0003 0.0029 -0.0003 0.0029 -0.0003 0.0029 -0.0003 0.0029 -0.0003 0.0029 -0.0003 0.0029 » U=[u(1:12);0;0;0]; » F=K*U F = 0.0000 8.7500 0.0000 17.5000 0.0000 8.7500 0.0000 0.0000 0.0000 0.0000 0 0.0000 -11.6553 -11.6894 -11.6553 » u1=[U(7) ; U(8) ; U(9) ; U(10) ; U(3) ; U(4) ; U(1) ; U(2)]; » u2=[U(9) ; U(10) ; U(11) ; U(12) ; U(5) ; U(6) ; U(3) ; U(4)]; » u3=[U(8) ; U(13)]; » u4=[U(10) ; U(14)]; » u5=[U(12) ; U(15)]; » sigma1=BilinearQuadElementStresses(E,NU,0,0,0.35,0,0.35,0.4,0,0.4,1,u 1); » sigma2=BilinearQuadElementStresses(E,NU,0.35,0,0.7,0,0.7,0.4,0.35,0.4 ,1,u2); » s1=BilinearQuadElementPStresses(sigma1); » s2=BilinearQuadElementPStresses(sigma2); » f3=SpringElementForces(k3,u3); » f4=SpringElementForces(k4,u4); » f5=SpringElementForces(k5,u5); Problem 14.1: » E=200e6; » NU=0.3; » h=0.01; » k1=QuadraticQuadElementStiffness(E,NU,h,0,0,0.7,0,0.7,0.4,0,0.4,1); » k2=SpringElementStiffness(4000); » k3=SpringElementStiffness(4000); » k4=SpringElementStiffness(4000); » K=zeros(19,19); » K=QuadraticQuadAssemble(K,k1,6,8,3,1,7,5,2,4); » K=SpringAssemble(K,k2,12,17); » K=SpringAssemble(K,k3,14,18); » K=SpringAssemble(K,k4,16,19) K = 1.0e+006 * Columns 1 through 7 1.5034 -0.6746 -1.0266 0.3541 0.6450 -0.0092 -1.1129 -0.6746 2.4762 0.2808 -0.1343 0.0092 0.8632 0.3541 -1.0266 0.2808 2.9506 0 -1.0266 -0.2808 0 0.3541 -0.1343 0 2.8327 -0.3541 -0.1343 -0.6349 0.6450 0.0092 -1.0266 -0.3541 1.5034 0.6746 -0.6820 -0.0092 0.8632 -0.2808 -0.1343 0.6746 2.4762 -0.1587 -1.1129 0.3541 0 -0.6349 -0.6820 -0.1587 3.0630 0.2808 -3.3895 -0.6349 0 -0.1587 -1.7387 0 -0.6820 0.1587 0 0.6349 -1.1129 -0.3541 0.5268 0.1587 -1.7387 0.6349 0 -0.2808 -3.3895 0 0.6560 -0.0092 -0.6479 -0.1587 0.6650 0.2778 -1.1129 0.0092 1.2796 -0.1587 -0.4518 0.2778 1.0952 -0.3541 -0.6479 0.1587 0.3984 0 -0.6479 -0.1587 0 0.1587 -0.4518 0 -1.6606 -0.1587 -0.4518 0.6349 0.6650 -0.2778 -0.6479 0.1587 0.6560 0.0092 -0.6820 -0.2778 1.09520.1587 -0.4518 -0.0092 1.2796 0.1587 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Columns 8 through 14 0.2808 -0.6820 0.1587 0.6560 0.0092 -0.6479 0.1587 -3.3895 0.1587 -1.7387 -0.0092 1.2796 0.1587 -0.4518 -0.6349 0 0.6349 -0.6479 -0.1587 0.3984 0 0 0.6349 0 -0.1587 -0.4518 0 -1.6606 -0.1587 -1.1129 -0.2808 0.6650 0.2778 -0.6479 -0.1587 -1.7387 -0.3541 -3.3895 0.2778 1.0952 -0.1587 -0.4518 0 0.5268 0 -1.1129 -0.3541 0 0.6349 7.0720 0 3.1844 -0.2808 -3.3895 0.6349 0 0 3.0630 0 -0.6820 -0.1587 0 -0.6349 3.1844 0 7.0720 -0.1587 -1.7387 -0.6349 0 -0.2808 -0.6820 -0.1587 1.5034 0.6746 -1.0266 -0.3541 -3.3895 -0.1587 -1.7387 0.6746 2.4802 -0.2808 -0.1343 0.6349 0 -0.6349 -1.0266 -0.2808 2.9506 0 0 -0.6349 0 -0.3541 -0.1343 0 2.8367 0.1587 -1.1129 0.2808 0.6450 -0.0092 -1.0266 0.3541 -1.7387 0.3541 -3.3895 0.0092 0.8632 0.2808 -0.1343 0 0 0 0 -0.0040 0 0 0 0 0 0 0 0 -0.0040 0 0 0 0 0 0 0 Columns 15 through 19 0.6650 -0.2778 0 0 0 -0.2778 1.0952 0 0 0 -0.6479 0.1587 0 0 0 0.1587 -0.4518 0 0 0 0.6560 -0.0092 0 0 0 0.0092 1.2796 0 0 0 -0.6820 0.1587 0 0 0 0.1587 -1.7387 0 0 0 -1.1129 0.3541 0 0 0 0.2808 -3.3895 0 0 0 0.6450 0.0092 0 0 0 -0.0092 0.8632 -0.0040 0 0 -1.0266 0.2808 0 0 0 0.3541 -0.1343 0 -0.0040 0 1.5034 -0.6746 0 0 0 -0.6746 2.4802 0 0 -0.0040 0 0 0.0040 0 0 0 0 0 0.0040 0 0 -0.0040 0 0 0.0040 » k=K(1:16,1:16); » f=[0 ; 5.8333 ; 0 ; 23.3333 ; 0 ; 5.8333 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0]; » u=k\f Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 1.316376e-017. u = -0.0002 0.0029 -0.0002 0.0029 -0.0002 0.0029 -0.0002 0.0029 -0.0002 0.0029 -0.0002 0.0029 -0.0002 0.0029 -0.0002 0.0029 » U=[u;0;0;0]; » F=K*U; F = 0 5.8333 0.0000 23.3333 0.0000 5.8333 0.0000 0.0000 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -11.6419 -11.7162 -11.6419 » u1=[U(11) ; U(12) ; U(15) ; U(16) ; U(5) ; U(6) ; U(1) ; U(2) ; U(13) ; U(14) ; U(9) ; U(10) ; U(3) ; U(4) ; U(7) ; U(8)]; » u2=[U(12) ; U(17)]; » u3=[U(14) ; U(18)]; » u4=[U(16) ; U(19)]; » sigma1=QuadraticQuadElementStresses(E,NU,0,0,0.7,0,0.7,0.4,0,0.4,1,u1 ); » s1=QuadraticQuadElementPStresses(sigma1); » f2=SpringElementForces(k2,u2); » f3=SpringElementForces(k3,u3); » f4=SpringElementForces(k4,u4); Problem 15.1: » E=210e6; » NU=0.3; » k1=TetrahedronElementStiffness(E,NU,0,0,0,0.025,0,0,0.025,0.5,0,0.025 ,0.5,0.25); » k2=TetrahedronElementStiffness(E,NU,0,0,0,0.025,0,0,0.025,0.5,0.25,0, 0,0.25); » k3=TetrahedronElementStiffness(E,NU,0.025,0,0,0.025,0.5,0.25,0,0,0.25 ,0.025,0,0.25); » k4=TetrahedronElementStiffness(E,NU,0,0,0,0,0.5,0,0,0.5,0.25,0.025,0. 5,0); » k5=TetrahedronElementStiffness(E,NU,0,0,0,0,0.5,0.25,0,0,0.25,0.025,0 .5,0.25); » k6=TetrahedronElementStiffness(E,NU,0,0,0,0.025,0.5,0.25,0.025,0.5,0, 0,0.5,0.25); » K=zeros(24,24); » K=TetrahedronAssemble(K,k1,1,2,4,8); » K=TetrahedronAssemble(K,k2,1,2,8,5); » K=TetrahedronAssemble(K,k3,2,8,5,6); » K=TetrahedronAssemble(K,k4,1,3,7,4); » K=TetrahedronAssemble(K,k5,1,7,5,8); » K=TetrahedronAssemble(K,k6,1,8,4,7) K = 1.0e+008 * Columns 1 through 7 4.7300 -0.0841 0.1683 -4.7132 0.1346 -0.0673 -0.0017 -0.0841 1.3773 -0.0084 0.1178 -1.3520 0.0034 0.0505 0.1683 -0.0084 1.3983 -0.1010 0.0050 -1.3478 0 -4.7132 0.1178 -0.1010 4.7216 -0.1683 0 0 0.1346 -1.3520 0.0050 -0.1683 1.3647 0 0 -0.0673 0.0034 -1.3478 0 0 1.3731 0 -0.0017 0.0505 0 0 0 0 2.3642 0.0337 -0.0059 0.0034 0 0 0 -0.0841 0 0.0050 -0.0017 0 0 0 0.1683 -0.0017 -0.0841 0.0673 -0.0017 0.0337 -0.0673 -2.3558 -0.0841 -0.0059 0.0034 0.0505 -0.0059 0.0034 0.0337 0.1010 0.0050 -0.0017 -0.1010 0.0050 -0.0017 -0.0673 -0.0151 0.0337 -0.0673 0.0017 -0.0337 0.1683 0 0.0505 -0.0194 0.0135 -0.0505 0.0059 -0.0034 0 -0.1010 0.0118 -0.0488 0.1683 -0.0050 0.0017 0 0 0 0 -0.0067 0 -0.1010 0 0 0 0 0 -0.0067 0.0050 0 0 0 0 -0.0673 0.0034 -0.0236 0 -0.0017 0.0505 0.1010 0 0 0 -0.0067 0.0337 -0.0059 -0.0084 0 0 0 0 0.0673 -0.0084 -0.0017 0 0 0 -0.1010 0.0034 -0.0841 -0.1683 -0.0017 0.0337 0.0673 0 -0.0841 0.0118 -0.0084 0.0505 -0.0059 -0.0084 0 -0.1683 -0.0084 0.0034 0.1010 -0.0084 -0.0017 0 Columns 8 through 14 0.0337 0 -0.0017 -0.0841 0.1010 -0.0151 0.0505 -0.0059 0.0050 -0.0841 -0.0059 0.0050 0.0337 -0.0194 0.0034 -0.0017 0.0673 0.0034 -0.0017 -0.0673 0.0135 0 0 -0.0017 0.0505 -0.1010 0.0017 -0.0505 0 0 0.0337 -0.0059 0.0050 -0.0337 0.0059 0 0 -0.0673 0.0034 -0.0017 0.1683 -0.0034 -0.0841 0.1683 -2.3558 0.0337 -0.0673 0 0 0.6857 -0.0084 0.0505 -0.6731 0 0 0 -0.0084 0.6983 -0.1010 0 -0.6731 0 0 0.0505 -0.1010 2.3726 0 0 0 0 -0.6731 0 0 0.6983 -0.0168 0 0 0 -0.6731 0 -0.0168 0.7236 0 0 0 0 0 0 0 2.3726 0 0 0 0 0 0 0 0.6983 0 0 0 0 0 0 -0.0168 0 0 0 0 0 -2.3558 0.0337 0 0 0 0 0 0.0505 -0.6731 0 0 0 0 0 -0.1010 0 0 -0.0673 0.0017 -0.0505 0.1683 -0.0017 0.0505 -0.0067 0.0034 -0.0337 0.0059 -0.0050 0.0337 -0.0059 0.0050 -0.0236 0.1683 -0.0034 0.0017 -0.0673 0.0034 0 0 -0.0151 0.0505 -0.1010 -0.0017 -0.0841 0 0 0.0337 -0.0194 0.0118 -0.0841 -0.0059 0 0 -0.0673 0.0135 -0.0488 0.0673 0.0034 Columns 15 through 21-0.1010 0 0 0 -0.0017 0.0337 0.0673 0.0118 0 0 0 0.0505 -0.0059 -0.0084 -0.0488 0 0 0 0.1010 -0.0084 -0.0017 0.1683 -0.0067 0 -0.0673 0 0 0 -0.0050 0 -0.0067 0.0034 0 0 0 0.0017 -0.1010 0.0050 -0.0236 0 0 0 0 0 0 0 -0.0067 0 -0.1010 0 0 0 0 0 -0.0067 0.0050 0 0 0 0 -0.0673 0.0034 -0.0236 0 0 0 0 0.0017 -0.0337 0.1683 0 0 0 0 -0.0505 0.0059 -0.0034 0 0 0 0 0.1683 -0.0050 0.0017 0 -2.3558 0.0505 -0.1010 -0.0017 0.0337 -0.0673 -0.0168 0.0337 -0.6731 0 0.0505 -0.0059 0.0034 0.7236 -0.0673 0 -0.6731 -0.1010 0.0050 -0.0017 -0.0673 2.3642 -0.0841 0.1683 0 0 0 0 -0.0841 0.6857 -0.0084 0 0 0 -0.6731 0.1683 -0.0084 0.6983 0 0 0 -0.1010 0 0 0 4.7216 -0.1683 0 0.0050 0 0 0 -0.1683 1.3647 0 -0.0017 0 0 0 0 0 1.3731 0.1010 -0.0017 0.0337 0 -4.7132 0.1346 -0.0673 0.0050 0.0505 -0.0059 0.0050 0.1178 -1.3520 0.0034 -0.0017 0 0.0034 -0.0017 -0.1010 0.0050 -1.3478 Columns 22 through 24 0.0034 -0.0841 -0.1683 -0.0841 0.0118 -0.0084 -0.1683 -0.0084 0.0034 -0.0017 0.0505 0.1010 0.0337 -0.0059 -0.0084 0.0673 -0.0084 -0.0017 0 0 0 0 0 0 0 0 0 -0.0151 0.0337 -0.0673 0.0505 -0.0194 0.0135 -0.1010 0.0118 -0.0488 -0.0017 -0.0841 0.0673 -0.0841 -0.0059 0.0034 0.1010 0.0050 -0.0017 -0.0017 0.0505 0 0.0337 -0.0059 0.0034 0 0.0050 -0.0017 -4.7132 0.1178 -0.1010 0.1346 -1.3520 0.0050 -0.0673 0.0034 -1.3478 4.7300 -0.0841 0.1683 -0.0841 1.3773 -0.0084 0.1683 -0.0084 1.3983 » k=[K(7:12,7:12) K(7:12,19:24) ; K(19:24,7:12) K(19:24,19:24)]; » f=[0 ; 3.125 ; 0 ; 0 ; 6.25 ; 0 ; 0 ; 6.25 ; 0 ; 0 ; 3.125 ; 0]; » u=k\f u = 1.0e-005 * 0.0185 0.6710 0.1485 0.0091 0.6699 0.1489 0.0183 0.5809 0.0319 0.0074 0.5795 0.0317 » U=[0;0;0;0;0;0;u(1:6);0;0;0;0;0;0;u(7:12)]; » F=K*U F = -51.1925 -3.0565 -4.4842 51.2090 -6.3185 -3.0368 0.0000 3.1250 0.0000 0.0000 6.2500 0.0000 -29.2553 -6.3185 4.6493 29.2388 -3.0565 2.8717 0.0000 6.2500 0 0.0000 3.1250 0 » u1=[U(1) ; U(2) ; U(3) ; U(4) ; U(5) ; U(6) ; U(10) ; U(11) ; U(12) ; U(22) ; U(23) ; U(24)]; » u2=[U(1) ; U(2) ; U(3) ; U(4) ; U(5) ; U(6) ; U(22) ; U(23) ; U(24) ; U(13) ; U(14) ; U(15)]; » u3=[U(4) ; U(5) ; U(6) ; U(22) ; U(23) ; U(24) ; U(13) ; U(14) ; U(15) ; U(16) ; U(17) ; U(18)]; » u4=[U(1) ; U(2) ; U(3) ; U(7) ; U(8) ; U(9) ; U(19) ; U(20) ; U(21) ; U(10) ; U(11) ; U(12)]; » u5=[U(1) ; U(2) ; U(3) ; U(19) ; U(20) ; U(21) ; U(13) ; U(14) ; U(15) ; U(22) ; U(23) ; U(24)]; » u6=[U(1) ; U(2) ; U(3) ; U(22) ; U(23) ; U(24) ; U(10) ; U(11) ; U(12) ; U(19) ; U(20) ; U(21)]; » sigma1=TetrahedronElementStresses(E,NU,0,0,0,0.025,0,0,0.025,0.5,0,0. 025,0.5,0.25,u1); » sigma2=TetrahedronElementStresses(E,NU,0,0,0,0.025,0,0,0.025,0.5,0.25 ,0,0,0.25,u2); » sigma3=TetrahedronElementStresses(E,NU,0.025,0,0,0.025,0.5,0.25,0,0,0 .25,0.025,0,0.25,u3); » sigma4=TetrahedronElementStresses(E,NU,0,0,0,0,0.5,0,0,0.5,0.25,0.025 ,0.5,0,u4); » sigma5=TetrahedronElementStresses(E,NU,0,0,0,0,0.5,0.25,0,0,0.25,0.02 5,0.5,0.25,u5); » sigma6=TetrahedronElementStresses(E,NU,0,0,0,0.025,0.5,0.25,0.025,0.5 ,0,0,0.5,0.25,u6); » s1=TetrahedronElementPStresses(sigma1); » s2=TetrahedronElementPStresses(sigma2); » s3=TetrahedronElementPStresses(sigma3); » s4=TetrahedronElementPStresses(sigma4); » s5=TetrahedronElementPStresses(sigma5); » s6=TetrahedronElementPStresses(sigma6); Problem 16.1 >> k1 = LinearBrickElementStiffness(210e6,0.3,0,0,0.025,0,0,0,0,0.25,0,0,0.25,0.025, 0.25,0,0.025,0.25,0,0,0.25,0.25,0,0.25,0.25,0.025); >> k2 = LinearBrickElementStiffness(210e6,0.3,0.25,0,0.025,0.25,0,0,0.25,0.25,0,0.25 ,0.25,0.025,0.5,0,0.025,0.5,0,0,0.5,0.25,0,0.5,0.25,0.025); >> K = zeros(36,36); >> K = LinearBrickAssemble(K,k1,1,2,3,4,5,6,7,8) K = 1.0e+007 * Columns 1 through 14 2.3446 -2.1931 -1.1134 1.1386 1.0545 -1.1554 -0.5861 0.5104 0.0421 0.0210 -0.0042 -0.0084 0.0084 0.0042 -2.1931 2.3446 1.1386 -1.1134 -1.1554 1.0545 0.5104 - 0.5861 0.0210 0.0421 -0.0084 -0.0042 0.0042 0.0084 -1.1134 1.1386 2.3446 -2.1931 -0.5861 0.5104 1.0545 - 1.1554 0.0042 0.0084 -0.0421 -0.0210 0.0210 0.0421 1.1386 -1.1134 -2.1931 2.3446 0.5104 -0.5861 -1.1554 1.0545 0.0084 0.0042 -0.0210 -0.0421 0.0421 0.0210 1.0545 -1.1554 -0.5861 0.5104 2.3446 -2.1931 -1.1134 1.1386 -0.0084 -0.0042 0.0210 0.0421 -0.0421 -0.0210 -1.1554 1.0545 0.5104 -0.5861 -2.1931 2.3446 1.1386 - 1.1134 -0.0042 -0.0084 0.0421 0.0210 -0.0210 -0.0421 -0.5861 0.5104 1.0545 -1.1554 -1.1134 1.1386 2.3446 - 2.1931 -0.0210 -0.0421 0.0084 0.0042 -0.0042 -0.0084 0.5104 -0.5861 -1.1554 1.0545 1.1386 -1.1134 -2.1931 2.3446 -0.0421 -0.0210 0.0042 0.0084 -0.0084 -0.0042 0.0421 0.0210 0.0042 0.0084 -0.0084 -0.0042 -0.0210 - 0.0421 2.3446 -2.1931 -1.1554 1.0545 1.1386 -1.1134 0.0210 0.0421 0.0084 0.0042 -0.0042 -0.0084 -0.0421 - 0.0210 -2.1931 2.3446 1.0545 -1.1554 -1.1134 1.1386 -0.0042 -0.0084 -0.0421 -0.0210 0.0210 0.0421 0.0084 0.0042 -1.1554 1.0545 2.3446 -2.1931 -0.5861 0.5104 -0.0084 -0.0042 -0.0210 -0.0421 0.0421 0.0210 0.0042 0.0084 1.0545 -1.1554 -2.1931 2.3446 0.5104 -0.5861 0.0084 0.0042 0.0210 0.0421 -0.0421 -0.0210 -0.0042 - 0.0084 1.1386 -1.1134 -0.5861 0.5104 2.3446 -2.1931 0.0042 0.0084 0.0421 0.0210 -0.0210 -0.0421 -0.0084 - 0.0042 -1.1134 1.1386 0.5104 -0.5861 -2.1931 2.3446 -0.0210 -0.0421 -0.0084 -0.0042 0.0042 0.0084 0.0421 0.0210 -0.5861 0.5104 1.1386 -1.1134 -1.1554 1.0545 -0.0421 -0.0210 -0.0042 -0.0084 0.0084 0.0042 0.0210 0.0421 0.5104 -0.5861 -1.1134 1.1386 1.0545 -1.1554 -0.4207 -0.0841 -0.0421 -0.2103 0.0841 0.4207 0.2103 0.0421 -0.4207 -0.0841 0.4207 0.0841 -0.2103 -0.0421 0.0841 0.4207 0.2103 0.0421 -0.4207 -0.0841 -0.0421 - 0.2103 0.0841 0.4207 -0.0841 -0.4207 0.0421 0.2103 0.0421 0.2103 0.4207 0.0841 -0.2103 -0.0421 -0.0841 - 0.4207 0.4207 0.0841 -0.4207 -0.0841 0.2103 0.0421 -0.2103 -0.0421 -0.0841 -0.4207 0.0421 0.2103 0.4207 0.0841 -0.0841 -0.4207 0.0841 0.4207 -0.0421 -0.2103 -0.0841 -0.4207 -0.2103 -0.0421 0.4207 0.0841 0.0421 0.2103 -0.2103 -0.0421 0.2103 0.0421 -0.4207 -0.0841 0.4207 0.0841 0.0421 0.2103 -0.0841-0.4207 -0.2103 - 0.0421 0.0421 0.2103 -0.0421 -0.2103 0.0841 0.4207 0.2103 0.0421 0.0841 0.4207 -0.0421 -0.2103 -0.4207 - 0.0841 0.2103 0.0421 -0.2103 -0.0421 0.4207 0.0841 -0.0421 -0.2103 -0.4207 -0.0841 0.2103 0.0421 0.0841 0.4207 -0.0421 -0.2103 0.0421 0.2103 -0.0841 -0.4207 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Columns 15 through 28 -0.0210 -0.0421 -0.4207 0.0841 0.0421 -0.2103 -0.0841 0.4207 0.2103 -0.0421 0 0 0 0 -0.0421 -0.0210 -0.0841 0.4207 0.2103 -0.0421 -0.4207 0.0841 0.0421 -0.2103 0 0 0 0 -0.0084 -0.0042 -0.0421 0.2103 0.4207 -0.0841 -0.2103 0.0421 0.0841 -0.4207 0 0 0 0 -0.0042 -0.0084 -0.2103 0.0421 0.0841 -0.4207 -0.0421 0.2103 0.4207 -0.0841 0 0 0 0 0.0042 0.0084 0.0841 -0.4207 -0.2103 0.0421 0.4207 - 0.0841 -0.0421 0.2103 0 0 0 0 0.0084 0.0042 0.4207 -0.0841 -0.0421 0.2103 0.0841 - 0.4207 -0.2103 0.0421 0 0 0 0 0.0421 0.0210 0.2103 -0.0421 -0.0841 0.4207 0.0421 - 0.2103 -0.4207 0.0841 0 0 0 0 0.0210 0.0421 0.0421 -0.2103 -0.4207 0.0841 0.2103 - 0.0421 -0.0841 0.4207 0 0 0 0 -0.5861 0.5104 -0.4207 0.0841 0.4207 -0.0841 -0.2103 0.0421 0.2103 -0.0421 0 0 0 0 0.5104 -0.5861 -0.0841 0.4207 0.0841 -0.4207 -0.0421 0.2103 0.0421 -0.2103 0 0 0 0 1.1386 -1.1134 0.4207 -0.0841 -0.4207 0.0841 0.2103 - 0.0421 -0.2103 0.0421 0 0 0 0 -1.1134 1.1386 0.0841 -0.4207 -0.0841 0.4207 0.0421 - 0.2103 -0.0421 0.2103 0 0 0 0 -1.1554 1.0545 -0.2103 0.0421 0.2103 -0.0421 -0.4207 0.0841 0.4207 -0.0841 0 0 0 0 1.0545 -1.1554 -0.0421 0.2103 0.0421 -0.2103 -0.0841 0.4207 0.0841 -0.4207 0 0 0 0 2.3446 -2.1931 0.2103 -0.0421 -0.2103 0.0421 0.4207 - 0.0841 -0.4207 0.0841 0 0 0 0 -2.1931 2.3446 0.0421 -0.2103 -0.0421 0.2103 0.0841 - 0.4207 -0.0841 0.4207 0 0 0 0 0.2103 0.0421 7.8974 -7.8301 -3.9319 3.9151 3.9151 - 3.9319 -1.9744 1.9407 0 0 0 0 -0.0421 -0.2103 -7.8301 7.8974 3.9151 -3.9319 -3.9319 3.9151 1.9407 -1.9744 0 0 0 0 -0.2103 -0.0421 -3.9319 3.9151 7.8974 -7.8301 -1.9744 1.9407 3.9151 -3.9319 0 0 0 0 0.0421 0.2103 3.9151 -3.9319 -7.8301 7.8974 1.9407 - 1.9744 -3.9319 3.9151 0 0 0 0 0.4207 0.0841 3.9151 -3.9319 -1.9744 1.9407 7.8974 - 7.8301 -3.9319 3.9151 0 0 0 0 -0.0841 -0.4207 -3.9319 3.9151 1.9407 -1.9744 -7.8301 7.8974 3.9151 -3.9319 0 0 0 0 -0.4207 -0.0841 -1.9744 1.9407 3.9151 -3.9319 -3.9319 3.9151 7.8974 -7.8301 0 0 0 0 0.0841 0.4207 1.9407 -1.9744 -3.9319 3.9151 3.9151 - 3.9319 -7.8301 7.8974 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Columns 29 through 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 >> K = LinearBrickAssemble(K,k2,5,6,7,8,9,10,11,12) K = 1.0e+008 * Columns 1 through 14 0.2345 -0.2193 -0.1113 0.1139 0.1054 -0.1155 -0.0586 0.0510 0.0042 0.0021 -0.0004 -0.0008 0.0008 0.0004 -0.2193 0.2345 0.1139 -0.1113 -0.1155 0.1054 0.0510 - 0.0586 0.0021 0.0042 -0.0008 -0.0004 0.0004 0.0008 -0.1113 0.1139 0.2345 -0.2193 -0.0586 0.0510 0.1054 - 0.1155 0.0004 0.0008 -0.0042 -0.0021 0.0021 0.0042 0.1139 -0.1113 -0.2193 0.2345 0.0510 -0.0586 -0.1155 0.1054 0.0008 0.0004 -0.0021 -0.0042 0.0042 0.0021 0.1054 -0.1155 -0.0586 0.0510 0.2345 -0.2193 -0.1113 0.1139 -0.0008 -0.0004 0.0021 0.0042 -0.0042 -0.0021 -0.1155 0.1054 0.0510 -0.0586 -0.2193 0.2345 0.1139 - 0.1113 -0.0004 -0.0008 0.0042 0.0021 -0.0021 -0.0042 -0.0586 0.0510 0.1054 -0.1155 -0.1113 0.1139 0.2345 - 0.2193 -0.0021 -0.0042 0.0008 0.0004 -0.0004 -0.0008 0.0510 -0.0586 -0.1155 0.1054 0.1139 -0.1113 -0.2193 0.2345 -0.0042 -0.0021 0.0004 0.0008 -0.0008 -0.0004 0.0042 0.0021 0.0004 0.0008 -0.0008 -0.0004 -0.0021 - 0.0042 0.2345 -0.2193 -0.1155 0.1054 0.1139 -0.1113 0.0021 0.0042 0.0008 0.0004 -0.0004 -0.0008 -0.0042 - 0.0021 -0.2193 0.2345 0.1054 -0.1155 -0.1113 0.1139 -0.0004 -0.0008 -0.0042 -0.0021 0.0021 0.0042 0.0008 0.0004 -0.1155 0.1054 0.2345 -0.2193 -0.0586 0.0510 -0.0008 -0.0004 -0.0021 -0.0042 0.0042 0.0021 0.0004 0.0008 0.1054 -0.1155 -0.2193 0.2345 0.0510 -0.0586 0.0008 0.0004 0.0021 0.0042 -0.0042 -0.0021 -0.0004 - 0.0008 0.1139 -0.1113 -0.0586 0.0510 0.4689 -0.4386 0.0004 0.0008 0.0042 0.0021 -0.0021 -0.0042 -0.0008 - 0.0004 -0.1113 0.1139 0.0510 -0.0586 -0.4386 0.4689 -0.0021 -0.0042 -0.0008 -0.0004 0.0004 0.0008 0.0042 0.0021 -0.0586 0.0510 0.1139 -0.1113 -0.2269 0.2193 -0.0042 -0.0021 -0.0004 -0.0008 0.0008 0.0004 0.0021 0.0042 0.0510 -0.0586 -0.1113 0.1139 0.2193 -0.2269 -0.0421 -0.0084 -0.0042 -0.0210 0.0084 0.0421 0.0210 0.0042 -0.0421 -0.0084 0.0421 0.0084 0.0844 -0.1198 0.0084 0.0421 0.0210 0.0042 -0.0421 -0.0084 -0.0042 - 0.0210 0.0084 0.0421 -0.0084 -0.0421 -0.1113 0.1265 0.0042 0.0210 0.0421 0.0084 -0.0210 -0.0042 -0.0084 - 0.0421 0.0421 0.0084 -0.0421 -0.0084 -0.0376 0.0552 -0.0210 -0.0042 -0.0084 -0.0421 0.0042 0.0210 0.0421 0.0084 -0.0084 -0.0421 0.0084 0.0421 0.0468 -0.0796 -0.0084 -0.0421 -0.0210 -0.0042 0.0421 0.0084 0.0042 0.0210 -0.0210 -0.0042 0.0210 0.0042 -0.0379 -0.0063 0.0421 0.0084 0.0042 0.0210 -0.0084 -0.0421 -0.0210 - 0.0042 0.0042 0.0210 -0.0042 -0.0210 0.0105 0.0463 0.0210 0.0042 0.0084 0.0421 -0.0042 -0.0210 -0.0421 - 0.0084 0.0210 0.0042 -0.0210 -0.0042 0.0416 0.0076 -0.0042 -0.0210 -0.0421 -0.0084 0.0210 0.0042 0.0084 0.0421 -0.0042 -0.0210 0.0042 0.0210 -0.0093 -0.0425 0 0 0 0 0 0 0 0 0 0 0 0 0.0008 0.0004 0 0 0 0 0 0 0 0 0 0 0 0 0.0004 0.0008 0 0 0 0 0 0 0 0 0 0 0 0 -0.0021 -0.0042 0 0 0 0 0 0 0 0 0 0 0 0 -0.0042 -0.0021 0 0 0 0 0 0 0 0 0 0 0 0 -0.0421 -0.0084 0 0 0 0 0 0 0 0 0 0 0 0 0.0084 0.0421 0 0 0 0 0 0 0 0 0 0 0 0 0.0042 0.0210 0 0 0 0 0 0 0 0 0 0 0 0 -0.0210 -0.0042 0 0 0 0 0 0 0 0 0 0 0 0 -0.0084 -0.0421 0 0 0 0 0 0 0 0 0 0 0 0 0.0421 0.0084 0 0 0 0 0 0 0 0 0 0 0 0 0.0210 0.0042 0 0 0 0 0 0 0 0 0 0 0 0 -0.0042 -0.0210 Columns 15 through 28 -0.0021 -0.0042 -0.0421 0.0084 0.0042 -0.0210 -0.0084 0.0421 0.0210 -0.0042 0 0 0 0 -0.0042 -0.0021 -0.0084 0.0421 0.0210 -0.0042 -0.0421 0.0084 0.0042 -0.0210 0 0 0 0 -0.0008 -0.0004 -0.0042 0.0210 0.0421 -0.0084 -0.0210 0.0042 0.0084 -0.0421 0 0 0 0 -0.0004 -0.0008 -0.0210 0.0042 0.0084 -0.0421 -0.0042 0.02100.0421 -0.0084 0 0 0 0 0.0004 0.0008 0.0084 -0.0421 -0.0210 0.0042 0.0421 - 0.0084 -0.0042 0.0210 0 0 0 0 0.0008 0.0004 0.0421 -0.0084 -0.0042 0.0210 0.0084 - 0.0421 -0.0210 0.0042 0 0 0 0 0.0042 0.0021 0.0210 -0.0042 -0.0084 0.0421 0.0042 - 0.0210 -0.0421 0.0084 0 0 0 0 0.0021 0.0042 0.0042 -0.0210 -0.0421 0.0084 0.0210 - 0.0042 -0.0084 0.0421 0 0 0 0 -0.0586 0.0510 -0.0421 0.0084 0.0421 -0.0084 -0.0210 0.0042 0.0210 -0.0042 0 0 0 0 0.0510 -0.0586 -0.0084 0.0421 0.0084 -0.0421 -0.0042 0.0210 0.0042 -0.0210 0 0 0 0 0.1139 -0.1113 0.0421 -0.0084 -0.0421 0.0084 0.0210 - 0.0042 -0.0210 0.0042 0 0 0 0 -0.1113 0.1139 0.0084 -0.0421 -0.0084 0.0421 0.0042 - 0.0210 -0.0042 0.0210 0 0 0 0 -0.2269 0.2193 0.0844 -0.1113 -0.0376 0.0468 -0.0379 0.0105 0.0416 -0.0093 0.0008 0.0004 -0.0021 -0.0042 0.2193 -0.2269 -0.1198 0.1265 0.0552 -0.0796 -0.0063 0.0463 0.0076 -0.0425 0.0004 0.0008 -0.0042 -0.0021 0.4689 -0.4386 -0.0376 0.0468 0.0844 -0.1113 0.0425 - 0.0076 -0.0463 0.0063 0.0021 0.0042 -0.0008 -0.0004 -0.4386 0.4689 0.0552 -0.0796 -0.1198 0.1265 0.0093 - 0.0416 -0.0105 0.0379 0.0042 0.0021 -0.0004 -0.0008 -0.0376 0.0552 1.0242 -1.0023 -0.5045 0.5054 0.3907 - 0.3936 -0.1953 0.1983 -0.0042 -0.0021 0.0004 0.0008 0.0468 -0.0796 -1.0023 1.0242 0.5054 -0.5045 -0.3936 0.3907 0.1983 -0.1953 -0.0021 -0.0042 0.0008 0.0004 0.0844 -0.1198 -0.5045 0.5054 1.0242 -1.0023 -0.1995 0.1899 0.3923 -0.3928 -0.0004 -0.0008 0.0042 0.0021 -0.1113 0.1265 0.5054 -0.5045 -1.0023 1.0242 0.1899 - 0.1995 -0.3928 0.3923 -0.0008 -0.0004 0.0021 0.0042 0.0425 0.0093 0.3907 -0.3936 -0.1995 0.1899 1.0242 - 1.0023 -0.5087 0.4970 0.1139 -0.1113 -0.0586 0.0510 -0.0076 -0.0416 -0.3936 0.3907 0.1899 -0.1995 -1.0023 1.0242 0.4970 -0.5087 -0.1113 0.1139 0.0510 -0.0586 -0.0463 -0.0105 -0.1953 0.1983 0.3923 -0.3928 -0.5087 0.4970 1.0242 -1.0023 -0.0586 0.0510 0.1139 -0.1113 0.0063 0.0379 0.1983 -0.1953 -0.3928 0.3923 0.4970 - 0.5087 -1.0023 1.0242 0.0510 -0.0586 -0.1113 0.1139 0.0021 0.0042 -0.0042 -0.0021 -0.0004 -0.0008 0.1139 - 0.1113 -0.0586 0.0510 0.2345 -0.2193 -0.1155 0.1054 0.0042 0.0021 -0.0021 -0.0042 -0.0008 -0.0004 -0.1113 0.1139 0.0510 -0.0586 -0.2193 0.2345 0.1054 -0.1155 -0.0008 -0.0004 0.0004 0.0008 0.0042 0.0021 -0.0586 0.0510 0.1139 -0.1113 -0.1155 0.1054 0.2345 -0.2193 -0.0004 -0.0008 0.0008 0.0004 0.0021 0.0042 0.0510 - 0.0586 -0.1113 0.1139 0.1054 -0.1155 -0.2193 0.2345 -0.0042 -0.0210 0.0084 0.0421 0.0210 0.0042 -0.0421 - 0.0084 0.0421 0.0084 -0.0210 -0.0042 0.0210 0.0042 0.0210 0.0042 -0.0421 -0.0084 -0.0042 -0.0210 0.0084 0.0421 -0.0084 -0.0421 0.0042 0.0210 -0.0042 -0.0210 0.0421 0.0084 -0.0210 -0.0042 -0.0084 -0.0421 0.0421 0.0084 -0.0421 -0.0084 0.0210 0.0042 -0.0210 -0.0042 -0.0084 -0.0421 0.0042 0.0210 0.0421 0.0084 -0.0084 - 0.0421 0.0084 0.0421 -0.0042 -0.0210 0.0042 0.0210 -0.0210 -0.0042 0.0421 0.0084 0.0042 0.0210 -0.0210 - 0.0042 0.0210 0.0042 -0.0421 -0.0084 0.0421 0.0084 0.0042 0.0210 -0.0084 -0.0421 -0.0210 -0.0042 0.0042 0.0210 -0.0042 -0.0210 0.0084 0.0421 -0.0084 -0.0421 0.0084 0.0421 -0.0042 -0.0210 -0.0421 -0.0084 0.0210 0.0042 -0.0210 -0.0042 0.0421 0.0084 -0.0421 -0.0084 -0.0421 -0.0084 0.0210 0.0042 0.0084 0.0421 -0.0042 - 0.0210 0.0042 0.0210 -0.0084 -0.0421 0.0084 0.0421 Columns 29 through 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.0421 0.0084 0.0042 -0.0210 -0.0084 0.0421 0.0210 - 0.0042 -0.0084 0.0421 0.0210 -0.0042 -0.0421 0.0084 0.0042 - 0.0210 -0.0042 0.0210 0.0421 -0.0084 -0.0210 0.0042 0.0084 - 0.0421 -0.0210 0.0042 0.0084 -0.0421 -0.0042 0.0210 0.0421 - 0.0084 0.0084 -0.0421 -0.0210 0.0042 0.0421 -0.0084 -0.0042 0.0210 0.0421 -0.0084 -0.0042 0.0210 0.0084 -0.0421 -0.0210 0.0042 0.0210 -0.0042 -0.0084 0.0421 0.0042 -0.0210 -0.0421 0.0084 0.0042 -0.0210 -0.0421 0.0084 0.0210 -0.0042 -0.0084 0.0421 -0.0421 0.0084 0.0421 -0.0084 -0.0210 0.0042 0.0210 - 0.0042 -0.0084 0.0421 0.0084 -0.0421 -0.0042 0.0210 0.0042 - 0.0210 0.0421 -0.0084 -0.0421 0.0084 0.0210 -0.0042 -0.0210 0.0042 0.0084 -0.0421 -0.0084 0.0421 0.0042 -0.0210 -0.0042 0.0210 -0.0210 0.0042 0.0210 -0.0042 -0.0421 0.0084 0.0421 - 0.0084 -0.0042 0.0210 0.0042 -0.0210 -0.0084 0.0421 0.0084 - 0.0421 0.0210 -0.0042 -0.0210 0.0042 0.0421 -0.0084 -0.0421 0.0084 0.0042 -0.0210 -0.0042 0.0210 0.0084 -0.0421 -0.0084 0.0421 0.7897 -0.7830 -0.3932 0.3915 0.3915 -0.3932 -0.1974 0.1941 -0.7830 0.7897 0.3915 -0.3932 -0.3932 0.3915 0.1941 - 0.1974 -0.3932 0.3915 0.7897 -0.7830 -0.1974 0.1941 0.3915 - 0.3932 0.3915 -0.3932 -0.7830 0.7897 0.1941 -0.1974 -0.3932 0.3915 0.3915 -0.3932 -0.1974 0.1941 0.7897 -0.7830 -0.3932 0.3915 -0.3932 0.3915 0.1941 -0.1974 -0.7830 0.7897 0.3915 - 0.3932 -0.1974 0.1941 0.3915 -0.3932 -0.3932 0.3915 0.7897 - 0.7830 0.1941 -0.1974 -0.3932 0.3915 0.3915 -0.3932 -0.7830 0.7897 >> k = K(13:36,13:36) k = 1.0e+008 * Columns 1 through 14 0.4689 -0.4386 -0.2269 0.2193 0.0844 -0.1113 -0.0376 0.0468 -0.0379 0.0105 0.0416 -0.0093 0.0008 0.0004 -0.4386 0.4689 0.2193 -0.2269 -0.1198 0.1265 0.0552 - 0.0796 -0.0063 0.0463 0.0076 -0.0425 0.0004 0.0008 -0.2269 0.21930.4689 -0.4386 -0.0376 0.0468 0.0844 - 0.1113 0.0425 -0.0076 -0.0463 0.0063 0.0021 0.0042 0.2193 -0.2269 -0.4386 0.4689 0.0552 -0.0796 -0.1198 0.1265 0.0093 -0.0416 -0.0105 0.0379 0.0042 0.0021 0.0844 -0.1198 -0.0376 0.0552 1.0242 -1.0023 -0.5045 0.5054 0.3907 -0.3936 -0.1953 0.1983 -0.0042 -0.0021 -0.1113 0.1265 0.0468 -0.0796 -1.0023 1.0242 0.5054 - 0.5045 -0.3936 0.3907 0.1983 -0.1953 -0.0021 -0.0042 -0.0376 0.0552 0.0844 -0.1198 -0.5045 0.5054 1.0242 - 1.0023 -0.1995 0.1899 0.3923 -0.3928 -0.0004 -0.0008 0.0468 -0.0796 -0.1113 0.1265 0.5054 -0.5045 -1.0023 1.0242 0.1899 -0.1995 -0.3928 0.3923 -0.0008 -0.0004 -0.0379 -0.0063 0.0425 0.0093 0.3907 -0.3936 -0.1995 0.1899 1.0242 -1.0023 -0.5087 0.4970 0.1139 -0.1113 0.0105 0.0463 -0.0076 -0.0416 -0.3936 0.3907 0.1899 - 0.1995 -1.0023 1.0242 0.4970 -0.5087 -0.1113 0.1139 0.0416 0.0076 -0.0463 -0.0105 -0.1953 0.1983 0.3923 - 0.3928 -0.5087 0.4970 1.0242 -1.0023 -0.0586 0.0510 -0.0093 -0.0425 0.0063 0.0379 0.1983 -0.1953 -0.3928 0.3923 0.4970 -0.5087 -1.0023 1.0242 0.0510 -0.0586 0.0008 0.0004 0.0021 0.0042 -0.0042 -0.0021 -0.0004 - 0.0008 0.1139 -0.1113 -0.0586 0.0510 0.2345 -0.2193 0.0004 0.0008 0.0042 0.0021 -0.0021 -0.0042 -0.0008 - 0.0004 -0.1113 0.1139 0.0510 -0.0586 -0.2193 0.2345 -0.0021 -0.0042 -0.0008 -0.0004 0.0004 0.0008 0.0042 0.0021 -0.0586 0.0510 0.1139 -0.1113 -0.1155 0.1054 -0.0042 -0.0021 -0.0004 -0.0008 0.0008 0.0004 0.0021 0.0042 0.0510 -0.0586 -0.1113 0.1139 0.1054 -0.1155 -0.0421 -0.0084 -0.0042 -0.0210 0.0084 0.0421 0.0210 0.0042 -0.0421 -0.0084 0.0421 0.0084 -0.0210 -0.0042 0.0084 0.0421 0.0210 0.0042 -0.0421 -0.0084 -0.0042 - 0.0210 0.0084 0.0421 -0.0084 -0.0421 0.0042 0.0210 0.0042 0.0210 0.0421 0.0084 -0.0210 -0.0042 -0.0084 - 0.0421 0.0421 0.0084 -0.0421 -0.0084 0.0210 0.0042 -0.0210 -0.0042 -0.0084 -0.0421 0.0042 0.0210 0.0421 0.0084 -0.0084 -0.0421 0.0084 0.0421 -0.0042 -0.0210 -0.0084 -0.0421 -0.0210 -0.0042 0.0421 0.0084 0.0042 0.0210 -0.0210 -0.0042 0.0210 0.0042 -0.0421 -0.0084 0.0421 0.0084 0.0042 0.0210 -0.0084 -0.0421 -0.0210 - 0.0042 0.0042 0.0210 -0.0042 -0.0210 0.0084 0.0421 0.0210 0.0042 0.0084 0.0421 -0.0042 -0.0210 -0.0421 - 0.0084 0.0210 0.0042 -0.0210 -0.0042 0.0421 0.0084 -0.0042 -0.0210 -0.0421 -0.0084 0.0210 0.0042 0.0084 0.0421 -0.0042 -0.0210 0.0042 0.0210 -0.0084 -0.0421 Columns 15 through 24 -0.0021 -0.0042 -0.0421 0.0084 0.0042 -0.0210 -0.0084 0.0421 0.0210 -0.0042 -0.0042 -0.0021 -0.0084 0.0421 0.0210 -0.0042 -0.0421 0.0084 0.0042 -0.0210 -0.0008 -0.0004 -0.0042 0.0210 0.0421 -0.0084 -0.0210 0.0042 0.0084 -0.0421 -0.0004 -0.0008 -0.0210 0.0042 0.0084 -0.0421 -0.0042 0.0210 0.0421 -0.0084 0.0004 0.0008 0.0084 -0.0421 -0.0210 0.0042 0.0421 - 0.0084 -0.0042 0.0210 0.0008 0.0004 0.0421 -0.0084 -0.0042 0.0210 0.0084 - 0.0421 -0.0210 0.0042 0.0042 0.0021 0.0210 -0.0042 -0.0084 0.0421 0.0042 - 0.0210 -0.0421 0.0084 0.0021 0.0042 0.0042 -0.0210 -0.0421 0.0084 0.0210 - 0.0042 -0.0084 0.0421 -0.0586 0.0510 -0.0421 0.0084 0.0421 -0.0084 -0.0210 0.0042 0.0210 -0.0042 0.0510 -0.0586 -0.0084 0.0421 0.0084 -0.0421 -0.0042 0.0210 0.0042 -0.0210 0.1139 -0.1113 0.0421 -0.0084 -0.0421 0.0084 0.0210 - 0.0042 -0.0210 0.0042 -0.1113 0.1139 0.0084 -0.0421 -0.0084 0.0421 0.0042 - 0.0210 -0.0042 0.0210 -0.1155 0.1054 -0.0210 0.0042 0.0210 -0.0042 -0.0421 0.0084 0.0421 -0.0084 0.1054 -0.1155 -0.0042 0.0210 0.0042 -0.0210 -0.0084 0.0421 0.0084 -0.0421 0.2345 -0.2193 0.0210 -0.0042 -0.0210 0.0042 0.0421 - 0.0084 -0.0421 0.0084 -0.2193 0.2345 0.0042 -0.0210 -0.0042 0.0210 0.0084 - 0.0421 -0.0084 0.0421 0.0210 0.0042 0.7897 -0.7830 -0.3932 0.3915 0.3915 - 0.3932 -0.1974 0.1941 -0.0042 -0.0210 -0.7830 0.7897 0.3915 -0.3932 -0.3932 0.3915 0.1941 -0.1974 -0.0210 -0.0042 -0.3932 0.3915 0.7897 -0.7830 -0.1974 0.1941 0.3915 -0.3932 0.0042 0.0210 0.3915 -0.3932 -0.7830 0.7897 0.1941 - 0.1974 -0.3932 0.3915 0.0421 0.0084 0.3915 -0.3932 -0.1974 0.1941 0.7897 - 0.7830 -0.3932 0.3915 -0.0084 -0.0421 -0.3932 0.3915 0.1941 -0.1974 -0.7830 0.7897 0.3915 -0.3932 -0.0421 -0.0084 -0.1974 0.1941 0.3915 -0.3932 -0.3932 0.3915 0.7897 -0.7830 0.0084 0.0421 0.1941 -0.1974 -0.3932 0.3915 0.3915 - 0.3932 -0.7830 0.7897 >> f = [0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 4.6875 ; 0 ; 0 ; 4.6875 ; 0 ; 0 ; 4.6875 ; 0 ; 0 ; 4.6875 ; 0 ; 0] f = 0 0 0 0 0 0 0 0 0 0 0 0 4.6875 0 0 4.6875 0 0 4.6875 0 0 4.6875 0 0 >> u = k\f Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 1.551156e-017. u = 1.0e+008 * 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.5729 1.5729 1.5729 1.5729 1.5729 1.5729 1.5729 1.5729 View publication statsView publication stats https://www.researchgate.net/publication/303922287