Prévia do material em texto
• Pergunta 1 1 em 1 pontos Leia o excerto a seguir. “Os escoamentos em canais, rios, vertedouros e aqueles em torno de cascos de navios são bons exemplos de escoamentos em uma superfície livre. As forças gravitacional e de inércia são importantes nessa classe de problemas. Assim, o número de Froude se torna um parâmetro importante de semelhança”. MUNSON, B. R.; YOUNG, D. F.; OKIISHI, T. H. Fundamentos da Mecânica dos Fluidos . São Paulo: Edgard Blucher, 2004. p. 379. A respeito dos escoamentos em superfícies livre, analise as afirmativas a seguir e assinale V para a(s) Verdadeira(s) e F para a(s) Falsa(s). I. ( ) As variáveis geométricas são importantes nesse tipo de escoamento. II. ( ) O número de Reynolds é importante nesse tipo de escoamento. III. ( ) O modelo e o protótipo operam no mesmo campo gravitacional. IV. ( ) A escala de velocidade é o quadrado da escala de comprimento nesse tipo de estudo. Assinale a alternativa que apresenta a sequência correta. Resposta Selecionada: V, V, V, F. Resposta Correta: V, V, V, F. Feedback da resposta: Resposta correta. A alternativa está correta. As variáveis geométricas são importantes em todos os tipos de escoamento, assim como o número de Reynolds. O modelo e o protótipo apresentam o mesmo campo gravitacional, logo, podemos desprezar esse fator. Já a escala de velocidade é determinada pela raiz quadrada da escala do comprimento. • Pergunta 2 1 em 1 pontos Leia o excerto a seguir. “A velocidade necessária no modelo também pode ser reduzida se a escala de comprimento não for pequena, ou seja, se o modelo for relativamente grande. A seção de teste para grandes modelos também é grande e isso provoca o aumento dos custos do túnel de vento”. MUNSON, B. R.; YOUNG, D. F.; OKIISHI, T. H. Fundamentos da Mecânica dos Fluidos . São Paulo: Edgard Blucher, 2004. p. 377. Considerando o exposto, sobre os parâmetros utilizados em modelos para estudos de escoamentos, analise as afirmativas a seguir. I. É possível utilizar o modelo para estudar as características de escoamentos de corpos totalmente imersos em fluidos. II. Nesses estudos, é necessário manter a semelhança geométrica entre o protótipo e o modelo. III. Um dos critérios utilizados é o número de Reynolds, o qual deve ser igual no modelo e no protótipo. IV. O número de Weber é importante para escoamentos em torno de corpos imersos. Está correto o que se afirma em: Resposta Selecionada: I, II e III, apenas. Resposta Correta: I, II e III, apenas. Feedback da resposta: Resposta correta. A alternativa está correta, pois o estudo adimensional e a teoria da semelhança podem fornecer dados para estudarmos as características de escoamentos em torno de corpos totalmente imersos em um fluido. Nesse tipo de estudo, é necessário mantermos a semelhança geométrica e a do número de Reynolds. O número de Weber pode ser desprezado, porque, nesse tipo de escoamento, os efeitos da tensão superficial, os quais fazem parte do cálculo do número de Weber, não são importantes. • Pergunta 3 1 em 1 pontos Leia o excerto a seguir. “Em face da revolução da tecnologia da informação nas últimas décadas, um forte aumento da produtividade industrial trouxe uma melhoria na qualidade de vida ao redor do mundo. Muitas descobertas importantes na tecnologia da informação vêm sendo viabilizadas por avanços na engenharia térmica que garantiam o controle preciso de temperatura em sistemas abrangendo desde tamanhos de nanoescala, em circuitos integrados, até grandes centrais de dados repletas de equipamentos que dissipam calor”. BERGMAN, T. L.; LAVINE, A. S. Fundamentos de Transferência de Calor e de Massa . 8. ed. Rio de Janeiro: LTC, 2019. p. 24. Considerando o exposto, sobre energia térmica, analise as afirmativas a seguir. I. Melhorias em circuitos impressos permitem que eles se tornem menores, mesmo dissipando mais energia térmica. II. Nós já atingimos o máximo da capacidade de processamento de um microchip por causa da capacidade térmica de dissipação de calor. III. Grandes equipamentos computacionais precisam de salas refrigeradas para garantir uma boa dissipação térmica. IV. A incorreta dissipação térmica de um componente pode levar à sua queima quando em funcionamento. Está correto o que se afirma em: Resposta Selecionada: I, III e IV, apenas. Resposta Correta: I, III e IV, apenas. Feedback da resposta: Resposta correta. A alternativa está correta, pois avanços na engenharia térmica permitiram melhorias em circuitos impressos, ou seja, eles são mais potentes, mesmo dissipando mais energia térmica. Ainda não atingimos o máximo da capacidade de processamento de um microchip. Isso sempre é possível se aumentar a capacidade de processamento. Assim, essa barreira ainda está longe de ser alcançada. Grandes computadores precisam de salas refrigeradas para garantir uma dissipação térmica eficiente. Se um equipamento não dissipar sua energia térmica de uma maneira eficiente, a sua temperatura interna irá aumentar e esse fato pode provocar a queima do equipamento. • Pergunta 4 1 em 1 pontos Uma garrafa térmica de café pode ser estudada por analogia como um recipiente completamente fechado, cheio de café quente, colocado em um volume de controle cujo ar e parede estão a uma temperatura fixa, conforme se ilustra na figura a seguir. As várias formas de transferência de calor foram denominadas pela letra q n seguida de um subíndice n= 1 até 8. Fonte: Moran et al. (2005, p. 396). Com base no exposto, sobre transferência de calor, analise as afirmativas a seguir. I. Q 2 representa o processo de condução por meio do frasco de plástico. II. Q 8 está representando a troca de calor por radiação entre a superfície externa da cobertura e a vizinhança. III. Q 1 está representando a convecção do café para o frasco de plástico. IV. Q 6 está representando a convecção livre. Está correto o que se afirma em: Resposta Selecionada: I, II e III, apenas. Resposta Correta: I, II e III, apenas. Feedback da resposta: Resposta correta. A alternativa está correta, pois o processo envolvendo Q 2 é, realmente, a condução devido à diferença de temperatura da superfície do frasco em contato com o café e a temperatura ambiente externa. A radiação ocorrerá entre a superfície ambiente e a cobertura e está corretamente representada por Q 8. O processo de convecção do café para o frasco plástico está corretamente representado por Q 1. Q 6 representa, todavia, o processo de condução por meio da cobertura. • Pergunta 5 1 em 1 pontos Considere um escoamento que, antes, era utilizado com água a uma temperatura de 20ºC para escoar benzeno. A tubulação é horizontal, cilíndrica, de seção circular com o seguinte diâmetro: D = 150 mm. A água, nessa tubulação, escoava a uma velocidade de 3,2 m/s. Entre duas seções distantes uma da outra, equivalente a 20 m, a perda de pressão, quando o fluido era água, correspondia a 40 kPa. O benzeno será escoado a uma mesma temperatura a partir do mesmo conduto. Assim, objetiva-se ter a mesma perda de pressão entre as seções. Dados: = 9,8 x 10 -4 N.s/m 2 , = 6,4 x 10 -4 N.s/m 2 , ambos a 20ºC. Acerca do exposto, a velocidade de escoamento do benzeno será um número entre: Resposta Selecionada: 4,1 e 5 m/s. Resposta Correta: 4,1 e 5 m/s. Feedback da resposta: Resposta correta. A alternativa está correta, pois o problema em pauta pode ser resolvido utilizando a teoria da semelhança. Como a tubulação será a mesma, a escala que devemos utilizar é 1 : 1. A relação entre a viscosidade do benzeno e da água será dada por = = 0,65. Para mantermos a mesma pressão de 40 kPa, temos que a velocidade deverá ser reduzida para V benzeno = x V água = 1,54 x 3,2= 4,93 m/s. • Pergunta 6 1 em 1 pontos Leia o excerto a seguir. “A partir do estudo da termodinâmica, aprendemos que a energia pode ser transferida por interações de um sistema com a sua vizinhança. Essas interações são denominadas trabalho e calor. A transferência de calor pode ser definida como a energia térmica em trânsito em razão de uma diferença de temperaturas no espaço”. BERGMAN, T. L.; LAVINE, A. S. Fundamentos de Transferência de Calor e de Massa . 8. ed. Rio de Janeiro: LTC, 2019. p. 2. A respeito da transferência de calor, analise as afirmativas a seguir e assinale V para a(s) Verdadeira(s) e F para a(s) Falsa(s). I. ( ) A condução requer um gradiente de temperatura em um fluido estacionário. II. ( ) A convecção é a transferência de calor que ocorre entre uma superfície e um fluido em movimento quando eles estiverem a diferentes temperaturas. III. ( ) A radiação ocorre quando um corpo emite energia na forma de ondas. IV. ( ) Finalmente, tem-se a transferência de calor por sublimação, que é quando um fluido passa do estado sólido para o estado gasoso, por exemplo. Assinale a alternativa que apresenta a sequência correta. Resposta Selecionada: V, V, V, F. Resposta Correta: V, V, V, F. Feedback da resposta: Resposta correta. A alternativa está correta. Existem três tipos de transferência de calor: a condução, que ocorre em fluidos estacionários; a convecção, que ocorre em fluidos em movimento; e a radiação, que é a emissão de calor na forma de ondas eletromagnéticas. Essa forma de transferência de calor não exige um meio fluido. Já a sublimação é uma mudança de estado e não uma forma de transferência de calor. • Pergunta 7 1 em 1 pontos É preciso estudar o escoamento de água em uma válvula que alimenta uma tubulação. A válvula possui diâmetro de 305 mm. A vazão na válvula é de 1,7 m 3 /s e o fluido utilizado no modelo também é água na mesma temperatura da que escoa no protótipo. A semelhança entre o modelo e o protótipo é completa e o diâmetro da seção de alimentação no modelo é igual a 38,10 mm. Nesse sentido, a vazão de água no modelo é um número entre: Resposta Selecionada: 0,21 e 0,30 m 3/s. Resposta Correta: 0,21 e 0,30 m3/s. Feedback da resposta: Resposta correta. A alternativa está correta, pois, para garantir a semelhança entre o modelo e o protótipo, o número de Reynolds deve obedecer à relação Re m = Re, ou seja, = . Como os fluidos utilizados no protótipo e no modelo são os mesmos, temos que = . A vazão na válvula é dada pela fórmula Q = V . A. Então, = = = . Portanto: Q m = x 1,7 = 0,212 m 3/s. • Pergunta 8 1 em 1 pontos Supõe-se curar (endurecer) o revestimento de uma obturação feita em um dente por meio da exposição dessa placa a uma lâmpada de infravermelho que fornece uma irradiação de 2.000 W/m 2 . Tal placa absorve 80% da irradiação proveniente da lâmpada e possui uma emissividade de 0,50. A temperatura da vizinhança é de 30 ºC e a tensão superficial é dada por = 5,67 x 10 -8 W/m 2 . Sabe-se que não há transferência de calor na parte posterior da placa e o revestimento, ou seja, nesse caso, a convecção não estará presente. Diante do exposto, a temperatura da placa revestida é um número entre: Resposta Selecionada: 201 e 300ºC. Resposta Correta: 201 e 300ºC. Feedback da resposta: Resposta correta. A alternativa está correta, pois a temperatura do revestimento da placa pode ser determinada ao colocarmos uma superfície de controle em torno da superfície exposta, ou seja, = E entrada - E saída = 0. A entrada de energia é devido à absorção da irradiação da lâmpada e à transferência líquida por radiação para a vizinhança, logo, E entrada = 80% de 2.000 W/m 2 = 1.600 W/m 2. Essa energia deve ser igual a ( ). Logo 1.600 = 0,5 x 5,67 x 10 -8 ( ). Dessa forma, temos que 564 x 10 8 = . Logo T s = 504,67 K ou 231,67 ºC. • Pergunta 9 1 em 1 pontos Leia o excerto a seguir. “A transferência de calor por convecção pode ser classificada de acordo com a natureza do escoamento do fluido em convecção forçada: quando o escoamento é causado por meios externos e convecção natural e quando o escoamento é originado a partir de diferenças de massas específicas causadas por variações de temperatura no fluido”. BERGMAN, T. L.; LAVINE, A. S. Fundamentos de Transferência de Calor e de Massa . 8. ed. Rio de Janeiro: LTC, 2019. p. 5. Considerando o exposto, sobre transferência de calor por convecção, analise as afirmativas a seguir. I. O escoamento de ar feito por um ventilador é um exemplo de convecção forçada. II. A água aquecendo no fogo é um exemplo de convecção natural. III. Os ventos que fazem um gerador eólico produzir energia são exemplos de convecção natural. IV. A neve caindo em um dia de muito frio é um exemplo de convecção natural. Está correto o que se afirma em: Resposta Selecionada: I, III e IV, apenas. Resposta Correta: I, III e IV, apenas. Feedback da resposta: Resposta correta. A alternativa está correta, pois processos envolvendo convecção forçada têm equipamentos envolvidos, como ventiladores e bombas. O fogo faz com que a convecção seja forçada. Assim, se a água se aquecesse, devido a uma temperatura ambiente, o processo seria natural. Os ventos são exemplos de convecção natural, assim como a formação da neve em função de baixas temperaturas. • Pergunta 10 0 em 1 pontos A figura a seguir ilustra que existe uma enorme distância entre a equação de Euler (que admite o deslizamento nas paredes) e a equação de Navier-Stokes (que mantém a condição de não escorregamento). Na parte “(a)” da figura, mostra-se essa distância e, na parte “(b)”, a camada limite é mostrada como a ponte que veio preencher a referida distância. Fonte: Çengel e Cimbala (2007, p. 445). A respeito da teoria da camada limite e dessa ilustração, analise as afirmativas a seguir e assinale V para a(s) Verdadeira(s) e F para a(s) Falsa(s). I. ( ) A teoria da camada limite preenche o espaço entre a equação de Euler e a equação de Navier-Stokes. II. ( ) As regiões denominadas escoamento sem viscosidade possuem número de Reynolds muito alto. III. ( ) Essa ilustração compara a equação de Euler e a equação de Navier-Stokes a duas montanhas. IV. ( ) A teoria da camada limite é comparada a uma ponte que diminui o espaço entre as duas equações citadas. Assinale a alternativa que apresenta a sequência correta. Resposta Selecionada: V, V, V, F. Resposta Correta: V, V, V, V. Feedback da resposta: Sua resposta está incorreta. A alternativa está incorreta, pois a figura faz uma analogia entre a distância existente entre as equações de Euler e de Navier-Stokes, que foram encurtadas, como se fosse construída uma ponte entre essas montanhas. Um alto número de Reynolds mostra que um escoamento é turbulento, ou seja, as forças viscosas resultantes podem ser desprezadas quando comparadas com as forças de inércia e de pressão. Nesse sentido, enfatiza-se que a ilustração evidencia as equações de Euler e de Navier-Stokes representadas por duas montanhas e a teoria da camada limite como uma ponte encurtando a distância entre essas montanhas ou, até mesmo, como sendo um caminho de aproximação entre elas.