Prévia do material em texto
Cálculo: Conceitos
Aula 01
Ricardo Zanardini
Conversa Inicial
Olá! Seja bem-vindo à nossa primeira aula de Pré-Cálculo!
Nessa disciplina iremos abordar importantes conteúdos de
Matemática que serão necessários para a resolução de problemas do
nosso cotidiano e também servirão de base para que possamos ter
um bom aproveitamento em outras disciplinas do nosso curso. Além
dos aspectos teóricos, abordaremos diversos problemas práticos para
que possamos entender melhor onde os conteúdos que vamos
estudar podem ser aplicados.
Nesta aula, estudaremos os conjuntos numéricos e como a criação
desses conjuntos foi acontecendo com o passar do tempo. Em
seguida, estudaremos os intervalos numéricos na reta dos números
reais. Ainda veremos as propriedades algébricas dos números reais.
Para finalizar, estudaremos conceitos e problemas relacionados à
potenciação e à radiciação.
Para iniciarmos os nossos estudos, é importante que tenhamos uma
visão geral do que é a Matemática e de quais temas estaremos
abordando no decorrer das nossas aulas.
No material on-line, o professor Ricardo Zanardini apresentará os
temas que serão trabalhados nesta disciplina. Não deixe de conferir!
Contextualizando
Quando trabalhamos com programação de computadores, é muito
comum precisarmos, em algum momento, fazer a declaração das
variáveis que serão utilizadas no programa.
Uma variável é uma posição de memória que assume um
determinado conteúdo e que ocupa.
Por exemplo, na linguagem C, as variáveis são:
char para letras e símbolos;
int para números inteiros de -32767 a 32767;
float para números reais que, nesse caso, podem conter
casas decimais com seis dígitos de precisão e que vão de -
3,4x1038 a 3,4x1038;
double com números reais que podem conter casas decimais
com dez dígitos de precisão e que vão de -1,7x10308 a
1,7x10308.
As variáveis ocupam um determinado espaço na memória e por isso é
importante que a declaração seja feita corretamente.
Se precisarmos trabalhar, por exemplo, com uma variável
que irá armazenar a quantidade de fornecedores de uma
indústria, a variável a ser utilizada é do tipo int.
Para armazenarmos o preço de um determinado produto ou
a porcentagem de lucro sobre a venda desse produto, a
variável deve ser float.
Há uma relação entre as variáveis e os conjuntos numéricos que
veremos no decorrer da aula. Uma variável int está associada a
números pertencentes ao conjunto dos inteiros e uma variável float ou
double está associada a elementos pertencentes ao conjunto dos
números reais.
Conjuntos Numéricos
O que é matemática?
A matemática é uma antiga ciência de origem remota e cuja história e
áreas de atuação são tão vastas que, mesmo após anos e anos de
estudos, é praticamente impossível aprender tudo o que está
relacionado a essa importante ciência.
O significado da palavra matemática tem origem na Grécia e é oriundo
da palavra mathema, que significa estudo, conhecimento,
aprendizagem. Durante muitos séculos, os matemáticos também
estudavam filosofia, física, engenharia, economia, astronomia entre
muitos outros temas relacionados a situações do cotidiano.
Podemos afirmar que a matemática é uma ciência que está presente
em todas as outras. Com o uso da matemática, é possível fazer
contagens, calcular custos e lucros, estudar o crescimento de
populações, determinar a quantidade ideal de ingestão de um
medicamento, calcular o valor de uma ação trabalhista, planejar a
produção de uma indústria, determinar a rota ótima de um veículo que
precisa fazer entregas, projetar moradias, realizar processamento
digital de sinais e de imagens, desenvolver sistemas cada vez mais
modernos que permitem a comunicação entre as pessoas, além de
muitas outras aplicações importantes.
O funcionamento de um computador, de um telefone celular ou de
uma máquina de tomografia computadorizada, por exemplo, baseia-se
em importantes temas da matemática tais como sistemas de
equações, funções trigonométricas e em números complexos e muitos
outros.
Por outro lado, para muitos, a matemática é apresentada como uma
disciplina difícil, extremamente abstrata e totalmente fora da realidade.
Esse fato é no mínimo contraditório, pois praticamente todos os temas
estudados na matemática surgiram da necessidade do ser humano de
resolver problemas reais cotidianos.
É claro que, principalmente a partir do Século XVIII, houve um grande
avanço dos estudos relacionados à matemática e com esse avanço,
muitos matemáticos desenvolveram teorias que, na época,
aparentavam não ter aplicações. Um exemplo foi uma álgebra binária
desenvolvida por George Boole, um matemático inglês, e
apresentada, pela primeira vez, em 1847.
Situações envolvendo os números 0 e 1 já existiam há mais de 2.000
anos, mas Boole desenvolveu uma estrutura algébrica binária. Na
época ninguém via utilidade para um estudo baseado em operações e
propriedades relacionadas a apenas esses dois números. No entanto,
atualmente, o funcionamento de qualquer computador é baseado na
álgebra de Boole.
Se hoje é possível escrever textos, enviar e-mails, ouvir música,
assistir a vídeos, produzir animações gráficas, além de muitas outras
funções, devemos isso a vários pesquisadores que, com o passar do
tempo, foram aprimorando ideias, mas, sobretudo, devemos isso ao
estudo desenvolvido por Boole no Século XIX.
Vamos assistir a um vídeo que nos mostra o desenvolvimento dos
computadores e a relação com os números.
https://www.youtube.com/watch?v=9E4sesvzT1M&list=UUWhuro_dMp
3wVDloVCbapDQ
Mas se a matemática é tão importante e presente em nossas vidas,
por que muitas pessoas têm dificuldades em estudar e aprender
matemática?
Recentemente um pesquisador inglês chamado Keith Devlin
desenvolveu um importante estudo sobre isso e, como conseqüência,
escreveu um livro intitulado O Gene da Matemática. Nesse livro Devlin
afirma que todas as pessoas possuem um instinto para a matemática
e são capazes de aprender matemática. O que facilita ou dificulta a
aprendizagem de algumas pessoas é a capacidade de abstração.
Como exemplo, muitas pessoas resolveram facilmente problemas
onde uma situação concreta era apresentada. No entanto, quando os
mesmos problemas eram apresentados, mas de uma forma abstrata,
envolvendo variáveis do tipo x, y, z, as pessoas apresentavam
dificuldades em compreender e em resolver esses problemas.
Segundo Devlin, as pessoas conseguem aprender melhor quando o
que é estudado tem um significado para elas.
Sabemos que a matemática está presente em praticamente todos os
eventos do nosso cotidiano. A sua história está diretamente
relacionada com a história da humanidade.
Vamos fazer a leitura do texto que nos conta sobre o desenvolvimento
da contagem e sobre a criação dos conjuntos numéricos que são a
base de toda a matemática.
http://www.ifba.edu.br/dca/Corpo_Docente/MAT/EJS/SOBRE_A_HIST
ORIA_DOS_NUMEROS.pdf
Para concluir esse tema assista uma animação da Disney onde o
famoso personagem Donald faz uma viagem pelo fantástico mundo da
MATEMÁGICA.
http://www.youtube.com/watch?v=wbftu093Yqk
Vamos agora aprender um pouco sobre a evolução dos números que
está diretamente relacionada com a evolução da humanidade!
A origem da matemática está ligada à origem da humanidade.
Segundo a história, os primeiros indícios da vida humana na terra são
encontrados na idade da pedra, período compreendido entre
5.000.000 e 3.000 a.C.No início, os seres humanos estavam organizados em grupos de
características nômades. A necessidade era buscar novos lugares
para se proteger das variações climáticas e também na busca de
alimentos. De acordo com os estudos feitos, era um mundo difícil e
hostil. Os principais alimentos eram pequenos animais, frutas,
castanhas e raízes. As pessoas habitavam espaços nas savanas. Os
locais do planeta com maior número de habitantes eram as regiões
conhecidas, atualmente, como África, sul da Europa, sul da Ásia e
América Central.
Nessa época surgiram os primeiros relatos da existência de sistemas
primitivos de contagem. Alguns registros históricos mostram que há
aproximadamente 50.000 anos os sistemas de contagem eram
baseados em uma relação biunívoca, ou seja, para cada objeto a ser
contado, era feito uma ranhura em um pedaço de barro. Também era
comum o uso de nós em cordas ou entalhes em pedaços de madeira.
Acredita-se que antes mesmo da fala, os primeiros sons vocais eram
utilizados para o registro verbal de números. A contagem envolvia,
desde a quantidade de membros de um grupo de pessoas até a
quantidade de carneiros em um rebanho. O uso dos dedos também
era feito para pequenas contagens, onde as pessoas dobravam ou
esticavam dedos para cada unidade contada.
O detalhe é que essas técnicas funcionavam muito bem para
pequenas quantidades, mas no caso de contagens mais extensas,
esse processo teve que ser sistematizado. Dentre diversas formas
possíveis, a forma de sistematização mais utilizada é o que chamamos
de sistema posicional. Nesse sistema temos um conjunto limitado de
símbolos para que possamos representar uma quantidade infinita de
números.
Nesse sistema, escolhe-se um número b como base. Todos os
números maiores ou iguais a b são combinações dos números
menores do que b. O nosso sistema de numeração é um sistema
posicional de base 10. A escolha do número 10 é feita de forma
conveniente, pois corresponde ao número de dedos das mãos de uma
pessoa. Os números maiores do que 10 são combinações dos
números menores do que 10. O próprio 10 é uma combinação de 0 e
1, ambos menores do que 10. Nesse caso, com os algarismos 0, 1, 2,
3, 4, 5, 6, 7, 8 e 9 é possível gerar uma quantidade infinita de
números.
Números Naturais (N)
O primeiro conjunto numérico surgiu da necessidade do ser humano
de realizar contagens. Esse conjunto numérico é conhecido como
conjunto dos números naturais e é formado pelos números 1, 2, 3... E
representado pela letra N. Por isso podemos escrever:
N = {1, 2, 3, 4,...}
Alguns autores consideram o número zero como um elemento
pertencente ao conjunto dos naturais. Neste caso, o conjunto fica
assim:
N = {0, 1, 2, 3, 4,...}
Durante muito tempo esses números foram utilizados, não só nas
contagens, mas também na realização de operações tais como
adição, subtração, multiplicação e divisão. A limitação do conjunto
ficou cada vez mais evidente em situações onde era necessário
subtrair uma quantidade maior do que a existente, 7-10, por exemplo.
Números Inteiros (Z)
Atualmente sabemos que 7-10=-3, mas se considerarmos o conjunto
dos números naturais, essa operação não é possível. Em decorrência
da necessidade, foi criado o conjunto dos números inteiros, formado
pelos números naturais e os respectivos simétricos, além, é claro, do
número 0.
Assim o número 1 tem o seu simétrico representado por -1, o número
2 tem como simétrico o número -2 e assim por diante. O número 5, por
exemplo, indica a existência de 5 unidades enquanto que o número -5
indica a falta de 5 unidades. A representação do conjunto dos inteiros
é feita pela letra Z:
Z = {...,-4, -3, -2, -1, 0, 1, 2, 3, 4,...}
Números Racionais (Q)
Com o conjunto dos números inteiros, muitos problemas eram
resolvidos. No entanto, em relação às divisões, o conjunto dos inteiros
apresentava limitações. Sabemos que 10/2, por exemplo, é igual a 5.
Mas como era possível representar divisões cujo resultado não era um
número inteiro, tais como 3/4 ou 10/3? Com o conjunto dos inteiros,
isso não era possível!
Por isso foi criado um conjunto contendo todos os números que
podem ser escritos sob a forma de uma razão (divisão). Esse conjunto
recebeu o nome de conjunto dos racionais e é representado pela letra
Q. Um número racional é um número da forma a/b onde a e b são
números inteiros. A condição é que b seja diferente de 0, pois, como
sabemos, é impossível dividirmos um número por 0.
0,,, bZbZa
b
a
Q
Com o conjunto dos números racionais foi possível representar
divisões cujos resultados não eram números inteiros. A razão 3/4, por
exemplo, na forma decimal, corresponde a 0,75 e a razão 10/3 é igual
a 3,333333333…
Observe que no caso da fração 3/4, o resultado é um número decimal
com duas casas após a vírgula. Em relação à fração 10/3, temos
infinitas casas decimais, todas iguais a 3. Se dividirmos 3 por 11, o
resultado é 0,272727272727... O número de casas decimais também
é infinito e o padrão de repetição se mantém, agora com os
algarismos 2 e 7. Esse padrão de repetição é conhecido como dízima
periódica?
Trata-se de um número, escrito na forma decimal, que após um
determinado algarismo, possui um conjunto de algarismos que se
repetem, sempre na mesma ordem, infinitamente.
Uma forma simples de representarmos uma dízima periódica é
adicionarmos uma barra sobre os algarismos que se repetem. Por
exemplo:
27,0...27272727272727,0
3,12...33333333333,12
3412,2...34341234343434,2
E assim por diante.
Geometricamente, podemos representar frações como divisões de um
segmento. Por exemplo, vamos considerar um intervalo entre 0 e 2 e
algumas frações para ilustrarmos melhor essa representação
geométrica:
No vídeo a seguir, temos diversas situações onde é possível perceber
a utilização de razões:
https://www.youtube.com/watch?v=EKKaofSIrfg&list=UUWhuro_dMp3
wVDloVCbapDQ
Números Irracionais (I)
No Século VI a.C., um importante matemático grego, Pitágoras,
desenvolveu vários estudos importantes para o desenvolvimento da
matemática. Uma de suas descobertas foi a relação métrica entre os
lados de um triângulo retângulo.
Pitágoras descobriu que se elevarmos ao quadrado a medida do maior
lado do triângulo retângulo (hipotenusa), o resultado será igual à soma
dos quadrados das medidas dos lados menores do triângulo (catetos).
Essa observação deu origem ao famoso teorema de Pitágoras:
222 cba
.
Entenda melhor qual é a aplicação prática do Teorema de Pitágoras:
http://brasilescola.uol.com.br/matematica/aplicacoes-teorema-
pitagoras.htm
Durante muito tempo acreditou-se que todos os números existentes
poderiam ser escritos sob a forma a/b. No entanto, se tivermos um
triângulo retângulo de catetos iguais a 1, pelo teorema de Pitágoras
temos que o valor da hipotenusa corresponde a
2
, cujo valor é igual
a 1,41421356237309... (as reticências indicam que há infinitas casas
decimais, mas o padrão de repetição encontrado nos números
racionais não ocorre aqui).
Para Pitágoras e seus discípulos, a descoberta da existência de pelo
menos um número irracional foi perturbador e contrário à crença dos
pitagóricos, que afirmava que tudo dependia dos números inteiros.
Matematicamente é possível mostrar que
2
não pode ser escrito
como a divisão de dois números inteiros.
Durante muito tempo acreditava-seque
2
era o único número
irracional, mas com o passar do tempo foi possível mostrar que
3
,
5
,
6
,
7
,
8
,
10
,
11
,
12
,
13
,
14
,
15
e
17
também
eram irracionais. Atualmente, sabemos que o conjunto dos irracionais
é formado por um número de elementos muito maior do que o
conjunto dos racionais.
Vamos entender um pouco mais sobre números irracionais no vídeo a
seguir:
https://www.youtube.com/watch?v=Lv2hivRYCGc
Números Reais (R)
Como, até o momento, temos dois conjuntos distintos e sem
elementos em comum: o conjunto dos racionais e o conjunto dos
irracionais, nada mais justo do que criar um conjunto para agrupar os
elementos desses dois importantes conjuntos numéricos. E pensando
assim, foi criado o conjunto dos números reais, formados por números
racionais e por números irracionais.
Podemos escrever, então, que o conjunto dos reais “R”, é a união
“símbolo U” do conjunto dos racionais “Q” com o conjunto dos
irracionais ”I”:
R = Q U I.
As letras R, Q e I representam, respectivamente, os conjuntos dos
reais, racionais e irracionais. A letra U indica a união dos conjuntos, ou
seja, o agrupamento dos elementos de Q e de I em um único conjunto,
denotado por R.
A cada número real, temos um ponto associado a uma reta, conhecida
como reta dos reais, e a cada ponto da reta temos um número real
associado.
O símbolo ∞ representa o infinito. Como uma reta possui infinitos
pontos contínuos, ou seja, não há espaço vazio entre dois pontos
consecutivos, o conjunto dos reais também é formado por infinitos
números consecutivos. Por esse motivo, podemos dizer que o
conjunto dos reais é contínuo.
Agora vamos determinar a forma decimal dos números
racionais , e .
1. A forma decimal é obtida pela divisão do valor numérico no
numerador pelo valor numérico no denominador. Em alguns casos
ocorre uma quantidade finita de dígitos:
= -5,625
2. Em outros casos, a quantidade de dígitos é infinita, o que leva as
dízimas periódicas.
Exemplos:
e
3. Quando ocorre a repetição de uma sequência de dígitos pode-se
utilizar uma barra sobre os dígitos da repetição para simplificar a
notação, ou seja, nos exemplos anteriores pode-se escrever:
0,1515151515… = e 0135135135135…. =
No material on-line, o professor Ricardo Zanardini irá conversar
conosco sobre os conjuntos numéricos. Não deixe de acessar!
Intervalos Numéricos
Quando falamos de números reais, muitas vezes nos deparamos com
problemas onde não temos necessariamente um único valor, mas sim
um conjunto de valores que estão dentro de um intervalo. A
temperatura, ao longo do dia, por exemplo, varia em função do tempo,
dentro de um intervalo que vai desde a temperatura mínima daquele
dia até a temperatura máxima.
O vídeo a seguir inicia um resumo de 30 mil anos de ideias e
desenvolvimentos matemáticos em 58 minutos. É o primeiro de uma
série de 4 episódios de uma produção da BBC e da Open
University sobre a história e o desenvolvimento da Matemática.
Interessante, não?
https://www.youtube.com/watch?v=BWtrVYNS3BI
Para que possamos saber mais sobre intervalos numéricos e suas
aplicações, é importante que façamos a leitura do texto a seguir. O
texto trata sobre números inteiros, racionais e irracionais, além da
questão da não-enumerabilidade do conjunto dos reais.
http://super.abril.com.br/comportamento/georg-cantor-e-o-alefe-zero-o-
homem-que-colocou-o-infinito-no-bolso
E, para auxiliar na compreensão do conceito dos intervalos numéricos,
assista ao vídeo do professor Ricardo no material on-line!
Bem, sabemos que o conjunto dos números reais é um conjunto
contínuo formado por uma infinidade de números (racionais e
irracionais) onde cada número real está associado a um ponto da reta
real e cada ponto dessa reta está associado a um número real.
Além dos números reais estarem associados aos pontos de uma reta,
uma outra particularidade é que o conjunto dos números reais é
ordenado, ou seja, se compararmos dois números reais a e b
quaisquer, teremos três possibilidades:
1°) a é igual a b, ou seja a = b
2°) a é menor do que b, ou seja, a < b
3°) a é maior do que b, ou seja, a > b
Dessa forma, na reta dos reais, os números à direita do 0 são
positivos e crescentes e os números à esquerda de 0 são negativos e
decrescentes.
Em virtude dessa ordem, podemos afirmar, por exemplo, que 7 > 2 (7
é maior do que 2) ou que 5 < 18 (5 é menor do que 18). Também
podemos escrever que 4 = 4 ou que 3 + 5 = 8.
Mas, além da possibilidade de compararmos números reais, muitas
vezes não temos necessariamente um número, mas sim uma
quantidade de números em um certo intervalo.
Em situações práticas, temos muitos exemplos onde utilizamos
intervalos numéricos. Podemos citar, por exemplo, a temperatura de
armazenamento de um determinado produto alimentício (1°C a 5°C), o
estoque de um armazém (5.000 a 7.000 unidades de um produto), a
quantidade de feijão em uma embalagem (0,987 kg a 1,013 kg)...
Em uma pesquisa que mede as intenções de voto de um candidato, é
muito comum termos uma margem de erro em função da amostra
escolhida. Por exemplo, se um candidato tem 55% das intenções de
voto com uma margem de erro de 2% para mais ou para menos, na
verdade, as intenções de voto desse candidato variam de 53% a 57%.
É só calcularmos 55% - 2% = 53% e 55% + 2% = 57%. Podemos
escrever esse intervalo utilizando desigualdades:
%57%53 x
Onde x indica a porcentagem de intenções de voto desse candidato.
Observe que “x“ pode assumir qualquer valor de 53% à 57%, ou seja,
os extremos que são 53% e 57%, respectivamente estão incluidos. O
símbolo
significa “menor ou igual” e o símbolo
significa “maior ou
igual”.
Esse intervalo também pode ser representado através da notação de
intervalo:
[53%, 57%]
ou também graficamente:
O intervalo que acabamos de ver é chamado de intervalo fechado,
pois os extremos (53% e 57%) fazem parte das possibilidades. Em
alguns casos, temos intervalos abertos e intervalos semi-abertos, onde
um ou os dois extremos não fazem parte das possibilidades do
problema.
Para ilustrarmos melhor isso, vamos imaginar um amplificador cujo
volume varia de 0 a 10. Podemos selecionar qualquer valor dentro
desse intervalo. Mas, por questões da qualidade do equipamento, há
ruídos indesejáveis quando o volume está no máximo. Por isso, o
objetivo é elevar o volume, mas nunca deixá-lo no 10. Podemos
representar essa situação através de desigualdades:
100 x
Observe que se x é o volume do amplificador, ele faria de 0 a 10,
podendo assumir qualquer valor nesse intervalo, incluindo o 0
(estamos utilizando o símbolo
). No entanto, “x” não pode ser igual a
10. Por esse motivo, estamos utilizando o símbolo < no lugar do
símbolo
.
Graficamente esse intervalo é representado com uma bola fechada no
zero e uma bola aberta no 10.
Dessa maneira, os intervalos podem ser classificados como segue:
[a, b]
Intervalo
fechado
bxa
(a, b)
]a, b[
Intervalo
aberto
bxa
[a, b)
[a, b[
Intervalo
aberto à
direita e
fechado à
esquerda
bxa
(a, b]
]a, b]
Intervalo
aberto à
esquerda e
fechado à
direita
bxa
Nesse exemplo, “a e b” são dois números reais quaisquer e chamados
de extremos do intervalo. O número “a” também pode serchamado de
limite inferior do intervalo e “b” o limite superior do intervalo.
É importante ressaltar que se estivermos tratando com intervalos que
envolvem o infinito (-∞ ou ∞), o intervalo no infinito sempre será
aberto. Isso se deve ao fato de que o infinito não é considerado como
sendo um número, pois, por definição, número indica uma quantia
exata e o infinito indica uma quantia muito grande, mas incerta. É
impossível afirmar quanto vale o infinito. Por exemplo, o intervalo x>2
é representado por (2, ∞) e o intervalo x
4
é representado por (-∞, 4].
O conjunto dos reais pode também ser representado por um intervalo:
(-∞,∞).
Vamos ver se você aprendeu a representar corretamente os
intervalos?
Uma agência de modelos infantis, busca uma criança que tenha no
máximo 5 anos de idade, para divulgação de vestuário de loja. Deve-
se considerar que a criança (modelo infantil) possa ser de recém-
nascido (poucos dias de vida) até 5 anos de idade (inclusive).
Tem-se o intervalo 0 < x < 6 onde os extremos representam valores
em anos. No lado esquerdo do intervalo usa-se 0 < x pois o modelo
infantil (a criança) deverá ter pelo menos alguns dias de vida, e no
lado direito usa-se x < 6 pois seriam aceitas crianças até 6 anos
incompletos (ou 5 anos e alguns meses).
A taxa de juros para aquisição de imóveis pelo SFH (sistema
financeiro de habitação) ficará entre 6,5% e 9,5% ao ano. Neste caso,
a palavra “entre” indica que os valores de 6,5% e 9,5% não serão
incluídos no intervalo. Tem-se o intervalo 6,5 < x < 9,5 onde “x” denota
a taxa de juros anual.
Devido à greve dos caminhoneiros, o preço da gasolina, na região de
Curitiba, está variando de R$ 3,20 a R$ 3,80. Neste
caso, “x” representa o valor do litro de combustível, que pode ser
adquirido a partir de R$ 3,20 (inclusive) até R$ 3,80 (inclusive). A
notação de intervalo correspondente é 3,20 ≤ x ≤ 3,80.
Os itens à venda na loja de presentes populares, tem preços inferiores
a R$ 30,00. Neste caso, deve-se considerar que algum item possa
custar alguns poucos centavos ou até algum valor inferior (e não igual)
a R$ 30,00. Escreve-se a solução sendo 0 < x < 30.
Potenciação
Propriedades Algébricas
A álgebra é um ramo da matemática que estuda situações envolvendo
variáveis e números. Já sabemos que os números são utilizados para
que possamos representar quantidades finitas. A esses números
damos o nome de constante. Mas o que são as variáveis? As variáveis
são elementos, geralmente representados por letras, que indicam
quantidades desconhecidas.
Se comprarmos dois X-Salada e pagarmos 10 reais, quanto custou
cada X-Salada? Podemos representar o preço do X-Salada pela letra
x, que é a nossa variável, também chamada de incógnita.
Quando estudamos álgebra, é muito comum nos depararmos com
expressões algébricas, ou seja, problemas relacionados a operações
(soma, subtração, multiplicação, potenciação, radiciação...)
envolvendo não só as constantes, mas envolvendo constantes e
variáveis.
Para que possamos resolver problemas algébricos, é importante
conhecermos algumas propriedades algébricas dos números reais.
1. Propriedade comutativa
Os números reais são comutativos, tanto na adição quanto na
multiplicação. Mas o que isso significa?
Se somarmos 4+5 ou 5+4, por exemplo, obteremos o mesmo
resultado, ou seja, 4+5=9 e 5+4=9. Por isso podemos dizer que a
adição de dois reais é comutativa. A troca da ordem dos números não
altera o resultado da adição.
O mesmo ocorre com a multiplicação. Se multiplicarmos 3X5 ou 5X3,
iremos obter o mesmo resultado: 3X5=15 e 5X3=15. A multiplicação
de dois números reais gera o mesmo resultado, independente da
ordem dos números que estão sendo multiplicados.
De uma maneira geral, podemos escrever que:
a+b=b+a
e
a.b=b.a
Para todo a e b reais.
2. Propriedade associativa
Uma propriedade bastante interessante dos números reais é a
chamada propriedade associativa em relação à adição e à
multiplicação.
Se tivermos que somar três números tais como 2+5+8, por exemplo,
podemos somar 2+5 primeiro, que é igual a 7 e, em seguida,
somarmos esse resultado com 8, totalizando 15.
Também é possível somarmos 5+8 primeiro, que resulta em 13 e, em
seguida, somarmos 13 com 2, cujo resultado também é igual a 15. Ou
seja, se alterarmos a ordem dos números que estamos somando, o
resultado permanece o mesmo.
De uma forma simplificada, podemos dizer que (2+5)+8=2+(5+8) ou,
generalizando, (a+b)+c=a+(b+c). O mesmo vale para a multiplicação
de números reais: (a.b).c=a.(b.c). Essa propriedade permite
alterarmos a ordem dos números que estamos somando ou dos
números que estamos multiplicando sem alterarmos o resultado final.
3. Propriedade do elemento neutro
Tanto na adição quanto na multiplicação temos a existência do
elemento neutro. Mas o que é um elemento neutro?
Matematicamente, o elemento neutro é aquele que não altera o
resultado de uma operação.
Na adição o elemento neutro é o 0 (zero) pois, qualquer número
somado com 0 é igual ao próprio número. Por exemplo, 4+0=4, 8+0=8,
122+0=122 e assim por diante.
Em relação à multiplicação, o elemento neutro é o número 1 (um).
Qualquer número real multiplicado por 1 resulta no próprio número.
Podemos citar, como exemplo, 33X1=33, (-3)X1=(-3), 6X1=6. Logo,
podemos dizer que a + 0 = a e a . 1 = a ou a x 1 = a, onde “a” é um número
real.
4. Propriedade do elemento inverso
Além do elemento neutro, temos a existência dos inversos aditivo e
multiplicativo. Na adição, o inverso de um número “a”, também
conhecido como oposto de “a”, é o número “–a”, ou seja, o inverso
aditivo de 2 é o -2, o inverso aditivo do 5 é o -5, o inverso aditivo do -4
é o –(-4)=4, ou seja, o inverso aditivo do -4 é o 4.
Mas por que isso?
No conjunto dos reais, a soma de um número com o seu inverso
aditivo resulta no elemento neutro. Isso quer dizer que 2+(-2)=0, 3+(-
3)=0 -4+4=0. Em relação à multiplicação, o significado do elemento
inverso é bem parecido com o da adição.
Na multiplicação de um número real pelo seu inverso multiplicativo, o
resultado é o neutro da multiplicação que é o número 1. Por isso o
inverso multiplicativo de um número real “a” é igual a 1/a, pois
(a.1)/a=1 com a
0. Como exemplo, temos que o inverso multiplicativo
de 2 é 1/2, o inverso multiplicativo de 5 é 1/5, o inverso multiplicativo
de 3/7 é 7/3, o inverso multiplicativo de -6 é -1/6.
5. Propriedade distributiva
Finalmente, a última propriedade dos reais a ser estudada é a
propriedade distributiva, onde é possível afirmar que a.(b+c)=a.b+a.c.
Por exemplo, 3.(x+y)=3.x+3.y e 4.(5+7)=4.5+4.7.
As propriedades dos reais são muito úteis na resolução de equações,
fatoração e outros problemas relacionados à matemática.
Bom, agora que já vimos as propriedades dos números reais, vamos
estudar a potenciação. Veremos o que é, quais são as suas
propriedades e algumas das aplicações.
Potenciação
Muitas vezes nos deparamos com problemas onde é necessário
multiplicarmos uma sequência de números iguais. Quando isso ocorre,
é possível utilizarmos a potenciação.
Na matemática financeira a potenciação é utilizada para que
possamos calcular o acumulado de uma dívida que sofre uma
incidência constante de juros a cada período de tempo, calculado
sempre sobre o valor atualizado dessa dívida. Para ilustrarmos
melhor, vamos imaginar que a dívida de uma pessoadobra de valor a
cada ano. Supondo que a dívida inicial é de R$ 100,00, temos a
seguinte situação:
De um modo geral, podemos dizer então que a potenciação é uma
sequência de multiplicações de “n” fatores iguais. O número “n” é
chamado de expoente, o fator que se repete é chamado de base e o
resultado das multiplicações é chamado de potência.
A seguir, alguns exemplos de potências:
a) 32=3.3=9
b) 53=5.5.5=125
c) (-3)2=(-3).(-3)=9
d) -32=-3.3=-9
É importante ressaltar que no caso da potência (-3)2, a base tem sinal
negativo. Por isso utilizamos a regra de sinais que diz que a
multiplicação de dois números negativos resulta em um número
positivo. No caso da potência -32, estamos elevando o número 3 ao
quadrado. O sinal negativo é de toda a expressão, e não da base. Por
isso que o resultado permanece negativo.
Para que possamos resolver problemas algébricos, é importante
conhecermos algumas propriedades algébricas dos números reais.
1. Potência elevada a 0
Todo número real diferente de 0 elevado a 0 é igual a 1.
a0 = 1, a ≠ 0.
Exemplificando, pela propriedade da divisão de potências de
mesma base, temos que:
Mas observe que se calcularmos as potências, temos:
Logo, 20 = 1. E isso vale para qualquer real diferente de zero.
É importante ressaltar que 00 é uma indeterminação. Isso
ocorre por que há um conflito de regras. Sabemos que 0 elevado
a qualquer número é igual a 0 e qualquer número elevado a 0 é
igual a 1. Mas e 00 é igual a 0 ou igual a 1? Como não é possível
encontrar uma resposta para essa pergunta, dizemos que 00 é
uma indeterminação.
2. Potência de expoente negativo
Uma potência de expoente negativo é igual ao inverso multiplicativo
da mesma potência, mas com o expoente positivo:
0,
1
a
a
a
n
n
.
Como exemplo, temos que:
a)
3
3
5
1
5
b)
4
4
2
1
2
c)
7
7
6
1
6
3. Multiplicação de potências de base diferente
A potência de um produto é o produto das potências:
nnn baba ..
.
Como exemplo, temos:
a)
222 5.35.3
b)
444 .. yxyx
4. Divisão de potências de base diferente
A potência de um quociente é o quociente das potências:
n
nn
b
a
b
a
.
Podemos exemplificar essa propriedade da seguinte forma:
a)
4
44
5
3
5
3
b)
2
22
q
p
q
p
5. Potência de um expoente fracionário
Quando o expoente de uma potência é uma fração resulta em
uma raiz cujo índice é o denominador da fração, e o numerador é
a potência interna no radicando:
Por exemplo:
6. Potência elevada a 1
Todo número elevado a 1 terá como resultado ele mesmo.
a1 = a
7. Multiplicação de potências de mesma base
Na multiplicação de potências de mesma base, repetimos a base e
somamos os expoentes:
nmnm aaa .
Por exemplo,
53232 222.2
pois
5
22
32 22.2.2.2.22.2
32
.
Essa propriedade é muito utilizada quando estamos trabalhando com
multiplicações de potências onde a base é um valor desconhecido.
Se tivermos que multiplicar
3x
por
4x
, o resultado será
7x
, pois
74343. xxxx
.
8. Divisão de potências de mesma base
Na divisão de potências de mesma base, devemos repetir a base e
subtrair os expoentes:
nm
n
m
a
a
a
É fácil perceber que isso ocorre de fato. Vamos ver o seguinte
exemplo:
2.2.2
2.2.2.2.2
2
2
3
5
.
Simplificando numerador com denominador, temos:
222.2
2.2.2
2.2.2.2.2
Ou seja,
42.222
2
2 235
3
5
.
Logo, se tivermos que dividir
8x
por
3x
, por exemplo, o resultado
será
5x
, pois
538
3
8
xx
x
x
.
9. Potência de uma potência
Na potência de uma potência, repete-se a base e
multiplicam-se os expoentes:
(am)n = a(m . n)
a. (23)4 = 23 . 4 = 212
b. (x5)2 = x5 . 2 = x10
https://www.youtube.com/watch?v=CTSx-
AoBlEo&index=125&list=PLf4asln_6hSeN868g8mXhAAQfQV6L1nsc
Chegou a hora de praticar. Usando as propriedades da
potenciação, simplifique as expressões abaixo, depois clique
sobre elas e veja a resolução completa!
a)
b)
c)
d)
Notação científica
Em algumas áreas do conhecimento que trabalham com quantias
muito grandes ou com quantias muito pequenas, é comum o uso de
potências para que os cálculos sejam feitos de maneira mais simples.
Observe:
365.000 = 3,65 × 100.000 = 3,65 × 105
0,7=7÷10=7 × 10(-1)
Vamos agora assistir a um vídeo sobre notação científica e potências
de 10:
https://www.youtube.com/watch?v=4UfGn3FLtQY&index=24&list=PLf4
asln_6hSeN868g8mXhAAQfQV6L1nsc
Se tivermos que efetuar a multiplicação de 4000000 por 3700000000
para depois dividirmos o resultado por 2800000, teremos muito
trabalho. No entanto, se utilizarmos a notação científica e algumas
propriedades das potências, tudo fica mais fácil. Observe:
6
96
10X8,2
10X7,3X10X4
2800000
3700000000X4000000
O próximo passo é agruparmos os números (realizando as
multiplicações e divisões) e as potências de 10 (utilizando as
propriedades da potenciação):
69610X
8,2
7,3X4
529000000010X29,510X
8,2
7,3X4 99
.
A notação científica é a maneira utilizada para representar valores
muito elevados ou muito pequenos, onde surge uma quantidade
considerável de dígitos nulos antes ou depois do digito significativo
(não-nulo). Para escrever os valores com notação científica, usamos
as potências de 10 como fator multiplicativo junto aos dígitos não
nulos, de maneira que o valor a ser denotado deve estar entre 0 e 10
(intervalo aberto nestes extremos).
Vamos praticar? Usando a notação científica, expresse as grandezas
abaixo (clique sobre elas e veja o resultado).
a) A massa de um nêutron é de aproximadamente 0,000 000 000 000
000 000 000 001 672 gramas.
Resposta:
1,672 . 10-24 g
b) Um ano-luz (distância que a luz viaja em um ano) é de
aproximadamente 9.500.000.000.000 km.
Resposta:
9,5 . 1012 Km
c) A carga elétrica de um elétron (dada em Coulombs) é de -0,000 000
000 000 000 000 160 21.
Resposta:
-1,6021 . 10-19 C
Usando a notação científica, calcule os valores correspondentes às
expressões abaixo:
b) 2,38 . 108 . 4,22 . 10-7 . 3,41 . 10 4
Para facilitar a obtenção dos resultados, é conveniente agrupar as
partes com as constantes e agrupar as partes do número que
envolvam as potências de 10, e operar com cada grupo
separadamente.
Resolução:
Fazendo a multiplicação de 1,37 por 3,18 resulta 4,3566 que dividido
por 4,15 resulta 1,04978... com aproximação para 1,05 (utilizando
duas casas decimais). Para as potências de 10, usa-se as
propriedades relativas a multiplicação de potências de mesma base
𝑎𝑚. 𝑎𝑛 = 𝑎𝑚+𝑛 e de divisão de potências de mesma base 𝑎𝑚/𝑎𝑛 = 𝑎𝑚−𝑛
simultaneamente, resultando:
E por fim, juntando as duas partes tem-se o resultado 1,05 . 104.
Para este caso, agrupando as constantes, tem-se 2,38 . 4,22 . 3,41
resultando 34,248676. Para as potências de 10, tem-se 108 . 10−7 . 104
que resulta 108 . 10−7 . 104 = 10(8)+(−7)+(4) = 105.
O resultado obtido é 34,248676.105. Este resultado apresenta um
problema em sua apresentação,pois a parte relativa a constante na
notação científica deve ser um valor do intervalo 0 < C < 10.
Reescrevendo o valor de 34,248676 como sendo 3,4248676.101 o
valor obtido será 3,4248676.101.105 onde as potências de 10 devem
ser agrupadas.
Usando a propriedade 𝑎 𝑚. 𝑎 𝑛 = 𝑎 𝑚+𝑛 resulta como solução da
questão 3,4248676.106. Considerando que os valores iniciais foram
expressos com apenas duas casas decimais, pode-se fazer o
arredondamento do valor obtido para 3,42.106.
Para entendermos melhor, vamos imaginar a seguinte situação: uma
pessoa pagou com 10 meses de atraso a fatura do cartão de crédito
cujo valor inicial era de R$ 1.676,30. Se os encargos financeiros
correspondem a 16% ao mês, determine o total pago em decorrência
do atraso.
Para resolvermos o problema, o primeiro passo é determinarmos quais
são os termos conhecidos. O capital é o valor original da fatura, nesse
caso, R$ 1.676,30. O tempo corresponde a 10 meses e a taxa de
juros, nesse caso, encargos financeiros, é igual a 16% que, na forma
decimal, equivale a 0,16. O montante é o valor que estamos querendo
calcular. Portanto:
C = 1.676,30
n = 10 meses
i = 16%=0,16 ao mês
M = ?
Agora que já temos os valores, basta substituirmos cada um deles na
fórmula:
niCM 1.
.
1016,01.30,1676 M
1016,1.30,1676M
411435079,4.30,1676M
89,7394M
Logo, o total a ser pago pela fatura, em função do atraso, é de R$
7.394,89.
Muitos problemas que estudaremos durante a nossa disciplina podem
ser resolvidos devido às propriedades dos números reais. Mas quais
são essas propriedades? Assista à videoaula, disponível no material
on-line para saber!
Radiciação
Assim como a potenciação, a radiciação serve para simplificarmos
expressões matemáticas. Também temos diversas aplicações da
radiciação relacionadas a problemas do cotidiano. Em particular,
veremos sua aplicação relacionada à matemática financeira.
A operação inversa à potenciação e conhecida como radiciação. Por
exemplo, a raiz quadrada de 16 é igual a 4 pois 42=16. Podemos
representar a raiz quadrada de 16 como . Note que (-4)2também é
igual a 16, pois (-4) × (-4) = 16. Por isso, podemos ter como resultados
da raiz quadrada de 16 os valores 4 ou -4. Por convenção, iremos
considerar como resultado de uma raiz de índice par o número
positivo.
Assim como na potenciação, é possível utilizarmos as propriedades da
radiciação para simplificarmos expressões matemáticas. Também
temos diversas aplicações da radiciação relacionadas a problemas do
cotidiano. Em particular, estaremos vendo aplicação relacionada à
matemática financeira.
Considerando = b ↔ bn = a, com a ≥ 0, onde “a” é o radicando, n é
o índice e b é a raiz n-ésima de a, quando n é impar, temos uma única
raiz real. Por exemplo, , pois 23=8. Observe que ,
pois (-2)3 = (-2)(-2)(-2) = -8. Quando o índice n de uma raiz é um
número par, temos duas raízes reais, uma com o sinal positivo e outra
com o sinal negativo. No entanto, não existe raiz real de um número
negativo quando o índice for par. Por exemplo, não existe raiz real
de , pois não há um número real que, elevado ao quadrado,
resulte em 16. Problemas que envolvem raízes de índice par e
radicando negativo podem ser resolvidos utilizando o conjunto dos
números complexos.
A radiciação é útil em muitos problemas reais. Alguns exemplos: na
matemática financeira a raiz n-ésima é utilizada para calcular a taxa
composta de juros.
Podemos também utilizar uma raiz quadrada para determinarmos a
medida do lado de uma sala quadrada sabendo qual é a sua área ou
utilizarmos a raiz cúbica para determinarmos o valor de cada aresta de
um cubo sabendo a medida do seu volume.
Em situações mais avançadas também é possível utilizarmos raízes n-
ésimas como, por exemplo, na computação gráfica e no
processamento digital de sinais e de imagens.
Propriedades da radiciação
Para que possamos resolver problemas envolvendo radiciação, é
importante conhecermos as propriedades dos radicais. Supondo que a
e b são números reais, e m e n são números positivos e inteiros
maiores do que 1, temos:
1. Raiz e-ésima de um produto:
A raiz de índice “n” de um produto pode ser resolvida como sendo o
produto das raízes de índice “n”.
nnn baba ..
Essa propriedade é muito importante quando pudermos simplificar
expressões que estão sob o radical. Por exemplo:
xxx 2.44
2. Raiz de um quociente:
A raiz n-ésima de um quociente é igual ao quociente das raízes de
índice n.
0, b
b
a
b
a
n
n
n
Como exemplo:
3
3
3
y
x
y
x
ou 3
5
15
5
15
3. Raiz de raiz:
Para calcularmos a raiz n-ésima de outra raiz, basta multiplicarmos os
índices das raízes.
nmm n aa .
Por exemplo:
124.33 4 303030
4. Potência de expoente “n” de raiz n-ésima:
Se uma raiz de índice “n” está elevada a um expoente também igual a
“n”, o resultado é o próprio radicando.
aa nn
Podemos exemplificar essa propriedade como segue:
77 1010
5. Raiz de uma potência:
O expoente do radicando pode ser escrito como expoente da raiz.
mnn m aa
Para exemplificarmos a propriedade,
233 2 44
6. Raiz n-ésima de potência de expoente “n”:
ímpar é se ,
par é se ,
na
na
an n
Relembrando, o símbolo | | indica módulo. Matematicamente, o
módulo de um número representa esse número desprovido de sinal.
Por exemplo, |-2| = 2 e |2| = 2.
Podemos simplificar o expoente do radicando com o índice da raiz,
mas sempre cuidando com a questão de que toda potência de
expoente par, independente do sinal da base, tem como resultado um
número positivo. Por exemplo:
3334 4
e
335 5
.
Uma relação importante entre radicais e potências é que quando
temos um expoente fracionário, podemos escrever essa potência, de
forma equivalente, sob a forma de raiz, como segue:
n mn
m
aa .
Em particular, nn aa 1 .
Por exemplo, 4 343 88 e 331 1313 .
É muito comum utilizarmos raízes de índice “n” na matemática
financeira, quando conhecemos o capital, o montante e o tempo e
queremos encontrar a taxa de juros compostos que foi utilizada. A
fórmula da taxa é
1 n
C
M
i
Onde “i” é a taxa de juros, “n” é o tempo, “M” é o montante e “C” é o
capital.
Vamos imaginar que uma pessoa estava devendo R$ 100,00 para
uma instituição financeira e que depois de 12 meses pagou R$ 313,84
para quitar essa dívida. Nessas condições, qual foi a taxa mensal de
juros compostos?
Para resolvermos esse problema, temos os seguintes dados:
C = 100,00
M = 313,84
n = 12 meses
i = ?
Substituindo os dados na fórmula
1 n
C
M
i
, temos:
1
100
84,313
12 i
131384,312 i
1099999,1 i
099999,0i
Para escrevermos essa taxa na forma de porcentagem, basta
multiplicarmos o resultado por 100. Logo, 0,099999X100 = 9,9999%
ao mês ou, arredondando, a taxa utilizada foi de 10% ao mês.
Usando as propriedades da Radiciação (ou potência fracionária),
simplifique as expressões exponenciais.
Usa-se inicialmente a propriedade relativa a produto de potências de
mesma base 𝑎𝑚. 𝑎𝑛 = 𝑎𝑚+𝑛 para o numerador da expressão acima.
Tem-se que somar os expoentes, ou seja, 2/3 e 3/4 e para isto
emprega-se o mínimo múltiplo comum (m.m.c.)para o trabalho com
frações.
O mínimo múltiplo comum é obtido pelo produto de todos os números
primos que ocorrerem na decomposição dos denominadores, tomados
com a maior potência. Este valor pode ser facilmente obtido pela
decomposição de cada um dos denominadores como produto de
números primos.
Assim tem-se o 𝑚𝑚𝑐 (3; 4) = 22.3 = 4.3 = 12.
Agrupando-se as duas frações com denominadores diferentes, em
uma única fração com o denominador sendo igual ao mínimo múltiplo
comum (12) entre os denominadores iniciais (3 e 4).
Para reescrever a fração equivalente a inicial, divide-se o novo
denominador (12) pelo denominador inicial de cada fração, e o
resultado obtido é multiplicado pelo valor do numerador da fração.
Tem-se a expressão reescrita como:
Com a propriedade relativa a divisão de potências de mesma base
𝑎𝑚/𝑎𝑛 = 𝑎𝑚-𝑛 tem-se:
Novamente com o emprego do cálculo do m.m.c. para a subtração das
frações que se apresentam no expoente, resulta:
Por fim, o resultado será:
Considerando as propriedades: (𝑎.𝑏)𝑛 = 𝑎𝑛.𝑏𝑛 e (𝑎𝑚)𝑛 = 𝑎𝑚.𝑛 aplicadas
ao numerador e ao denominador tem-se:
Este resultado pode ser simplificado utilizando a propriedade 𝑎𝑚/𝑎𝑛 =
𝑎𝑚-𝑛 obtendo:
Agora, simplifique a expressão removendo fatores do radicando.
a)
Resolução:
Pode-se utilizar a propriedade de radiciação e aplicar
a expressão para obter:
O primeiro radical envolve um número irracional (√𝟐), portanto não é
possível ser removido.
O segundo radical apresenta possibilidade de remoção do fator, pois o
expoente da potência interna é maior (e múltiplo) do índice da raiz.
Pode-se escrever:
Similarmente para o último radical, é possível fazer a remoção do fator
no radicando.
Tem-se então:
b)
Empregando a propriedade pode-se separar em 4
partes a expressão, e analisar cada uma separadamente.
Em relação a pode-se reescrever o radicando como sendo
que pode ser simplificado devido a potência interna ser a mesma do
índice da raiz, resultando apenas 3 para este fator.
Em relação a pode-se tornar o radicando como de
maneira que a primeiro expoente seja múltiplo (ou igual) ao índice da
raiz e o outro expoente seja menor que o índice da raiz. Pode-se
então aplicar outra vez a propriedade citada, e obter:
Em relação a tem-se o expoente interno maior que o índice da
raiz que pode ser reescrito por de maneira que o
primeiro expoente interno seja múltiplo do índice da raiz e o outro
expoente seja menor que o índice da raiz, o que permite separar em
duas raízes tal que: , resultando .
O resultado é composto por cada uma das análises feitas, de forma
que:
Organizando a apresentação do resultado tem-se:
Acesse o material on-line e assista ao vídeo do professor Ricardo, no
qual ele irá nos mostrar as propriedades e aplicações da radiciação.
Nesta aula, vimos que a matemática está presente em diversas
situações do nosso cotidiano e que a sua origem vem desde a pré-
história.
Aprendemos, ainda, quais são os conjuntos numéricos que serão
utilizados na nossa disciplina e o que são intervalos numéricos.
Aprendemos as propriedades dos números reais além da potenciação
e da radiciação.
Esperamos que você tenha aprendido da melhor forma possível os
temas estudados. Se necessário, retome os conteúdos abordados e
refaça os exercícios propostos. Para que possamos avançar nos
nossos estudos, é importante que os assuntos vistos até aqui estejam
bem assimilados e que as possíveis dúvidas tenham sido
esclarecidas.
Na prática
Chegou o momento de colocarmos em prática o que vimos até agora.
Vamos utilizar alguns dos conhecimentos adquiridos até aqui para
resolvermos o seguinte problema:
Uma indústria de móveis planejados está desenvolvendo um software
próprio para os projetos que serão executados.
Além da montagem e da visualização renderizada dos móveis,
também será possível gerar o preço de custo com base nos materiais
a serem utilizados e também o preço de venda levando em
consideração a porcentagem de lucro esperada, a comissão do
vendedor e os impostos.
O programa será desenvolvido em linguagem C e a equipe de
programação precisa definir que tipo de variável será utilizada para
cada informação.
Sabemos que as variáveis reais, conhecidas como variáveis do tipo
float são utilizadas quando temos informações que envolvem números
decimais, tais como “4,5”, “-12,898”, e assim por diante.
As variáveis inteiras ocupam menos espaço na memória do
computador e são utilizadas quando trabalhamos com quantidades
inteiras, ou seja, que não serão escritas na forma decimal.
No caso do software para essa indústria, serão consideradas as
quantidades necessárias de corrediças para as gavetas, de
cantoneiras, puxadores, entre outros. Também será necessário a
quantidade em metros quadrados de vidro, madeira, espelhos, etc. A
variável associada a cada um desses elementos deve estar de acordo
com o tipo de número a ser utilizado: inteiro ou real.
Após ler atentamente o caso, realize o exercício a seguir.
Para que seja possível declarar corretamente as variáveis, indique se
cada uma das variáveis associadas aos seguintes elementos é real
(float) ou inteira (int).
I. metros quadrados de madeira ( )
II. puxadores ( )
III. metros quadrados de vidro branco ( )
IV. metros quadrados de espelho ( )
V. corrediças para gavetas ( )
VI. parafusos ( )
VII. cantoneiras ( )
VIII. impostos, em porcentagem ( )
IX. margem de lucro esperada, em porcentagem ( )
X. comissão do vendedor, em porcentagem ( )
Para conferir o gabarito da atividade, acesse o material on-line!
Síntese
Chegamos ao final da aula!
Nessa aula, vimos que a matemática está presente em diversas
situações do nosso cotidiano e que a sua origem vem desde a pré-
história. Aprendemos sobre os conjuntos numéricos, o que são
intervalos numéricos e também as propriedades dos números reais,
além da potenciação e da radiciação.
Para que possamos melhorar ainda mais a nossa aprendizagem, é
muito importante que você leia os capítulos 1 e 2 da obra Pré-Cálculo
dos autores Franklin D. Demana, Bert K. Waits, Gregory D. Foley e
Daniel Kennedy, 2a edição, editora Pearson, que pode ser facilmente
encontrado na biblioteca virtual.
Aproveite a oportunidade e resolva os exercícios propostos que estão
no final dos capítulos. Para saber se as suas respostas estão de
acordo com o esperado, o gabarito se encontra no final do livro, a
partir da página 331.
Esperamos que você tenha aprendido da melhor forma possível os
temas estudados!
Se necessário, retome os conteúdos abordados e refaça os exercícios
propostos. Para que possamos avançar nos nossos estudos, é
importante que os assuntos vistos até aqui estejam bem definidos e
que as possíveis dúvidas tenham sido esclarecidas.
Até a próxima!
Referências
DEMANA, F.D.; WAITS, B.K.; FOLEY, G.D.; KENNEDY, D. Pré-
Cálculo. 2a Ed, São Paulo, Pearson, 2013.