Logo Passei Direto
Buscar
Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Prévia do material em texto

TECNOLOGIA DA 
INFORMAÇÃO
Aprendizagem de Máquina
Livro Eletrônico
2 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
 
Sumário
Apresentação .....................................................................................................................................................................3
Aprendizagem de Máquina .........................................................................................................................................4
inteligência Artificial .....................................................................................................................................................4
iA, ioT, Big data .................................................................................................................................................................5
iA e a ciência de dados .................................................................................................................................................6
iA nas organizações .......................................................................................................................................................7
ferramentas de iA ........................................................................................................................................................ 10
exemplos de Uso de iA nas organizações Públicas ................................................................................. 10
inteligência computacional .....................................................................................................................................12
Aprendizado de Máquina/Machine learning) ...............................................................................................13
Visão geral .........................................................................................................................................................................13
exemplos de Aplicações do Machine learning ............................................................................................16
Tipos de Aprendizado de Máquina .......................................................................................................................16
overfitting (Sobreajuste) e Underfitting (Sub-Ajuste) em Machine learning ..........................19
Visão geral dos Algoritmos de Machine learning ....................................................................................23
Técnicas e etapas de construção do Modelo de Machine learning ................................................31
resumo ...............................................................................................................................................................................35
Questões comentadas na Aula .............................................................................................................................40
Questões de concurso ...............................................................................................................................................42
gabarito ..............................................................................................................................................................................46
gabarito comentado ...................................................................................................................................................47
referências ....................................................................................................................................................................... 59
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
3 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
ApresentAção
Olá, querido (a) amigo (a), meus cumprimentos!
Que tal buscarmos inspiração na ÁGUIA!
Em nossas vidas, muitas vezes temos que nos resguardar por algum tempo para dar início 
ao difícil processo de renovação, arrancando as velhas e pesadas penas, desprendendo de 
nossos vícios, conscientes do caminho a percorrer para enfrentar os desafios vindouros.
Temos difíceis escolhas no decorrer de nossas trajetórias, no entanto, ao final, vale todo 
o sacrifício!
Lembre-se sempre de que a LIBERDADE é uma conquista, o SUCESSO é um prêmio e a 
RENOVAÇÃO é o ÚNICO CAMINHO PARA SE CHEGAR AOS NOSSOS OBJETIVOS!
Rumo então à aula que contempla os principais tópicos relacionados à Aprendizagem 
de Máquina.
Em caso de dúvidas, acesse o fórum do curso ou entre em contato.
Um abraço.
 
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
4 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
APrendiZAgeM de MÁQUinA
IntelIgêncIA ArtIfIcIAl
A inteligência artificial, geralmente referenciada pelas siglas IA (em português) e AI 
(em inglês), é um campo de estudo que engloba várias outras ciências, como estatística, 
matemática, computação etc.
Assim, a IA é uma área bem ampla, cujo objetivo é desenvolver ferramentas para máquinas 
desempenharem tarefas como se um ser humano as estivesse executando, o que é bem 
complexo para uma máquina.
É muito comum encontrar nos meios de comunicação notícias para o grande público utilizando 
definições imprecisas do termo, como algo do tipo: “Inteligência artificial prevê câncer de mama 
cinco anos antes” (GALILEU, 2019). Esse tipo de informação dá uma ideia de senso comum 
de que a IA é apenas uma técnica ou uma ferramenta por si só, e não uma área de pesquisa.
A finalidade do campo de estudo de IA é a realização de tarefas que, apesar de serem 
simples para seres humanos, são bem complexas para os computadores. Por exemplo, um 
ser humano não tem dificuldades em diferenciar um gato de um cachorro. Isso porque na 
fase de aprendizados, no início da sua vida, o ser humano aprendeu a perceber que esses 
animais são diferentes. Mas imagine uma pessoa que não conheça nem gato e nem cachorro 
e tente explicar para essa pessoa como é um gato. Se você utilizar a seguinte definição: 
possui quatro patas, duas orelhas, dois olhos, um focinho, uma boca e tem pelos, isso não 
ajudará essa pessoa a diferenciar um cachorro de um gato. Você precisa explicar justamente 
as características que visualmente diferem um gato de um cachorro.
Figura 2. Fonte:(https://blogs.correiobraziliense.com.br/maisbichos/
caes-e-gatos-podem-ser-melhores-amigos/)
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
5 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
Isso dá uma ideia de como é complexo criar um programa de computador para fazer 
a distinção entre gatos e cachorros, utilizando imagens desses animais, que fornecem as 
informações estruturadas, tais como quantidade de membros, formato ou cor. E o programa 
precisa através da análise dessas informações conseguir diferenciar esses animais. Esse é o 
objeto de estudo pela ciência da inteligência artificial: desenvolver programas que executam 
tarefas automaticamente, sem interação doser humano, mas cujo resultado se assemelha 
ao que o ser humano faria.
Portanto, a inteligência artificial é um campo de estudo que se caracteriza por métodos 
computacionais que simulam a capacidade humana de raciocinar, perceber, tomar decisões e 
resolver problemas, ou seja, a capacidade de ser inteligente. Em resumo, IA pode ser definida 
como “tecnologia capaz de executar tarefas específicas tão bem quanto, ou até melhor, que 
nós humanos conseguimos” (DATA BRIDGE BRIGADE, 2016).
Figura. Fonte: (https://nossaciencia.com.br/colunas/inteligencia-artificial/)
O exemplo de diferenciar um gato de um cachorro é caracterizado como um problema de 
classificação. E problemas de classificação são apenas uma das aplicabilidades de técnicas 
de IA. Além disso, para solucionar alguns problemas, a área de inteligência artificial precisa 
trabalhar com conceitos de outras áreas de pesquisa como por exemplo, processamento de 
linguagem natural, visão computacional etc.
IA, Iot, BIg DAtA
Atualmente, produzimos uma enorme quantidade de dados de forma não estruturada, e tal 
produção não se limita a documentos de escritório ou arquivos multimídia, como fotos ou vídeos.
A popularização dos dispositivos móveis, de sensores conectados, conhecidos pelo termo 
internet das coisas (IoT), ampliou de forma exponencial a produção de dados por pessoas 
comuns. Por isso, estima-se que o tamanho do universo digital se duplica a cada dois anos, abrindo 
um mundo de possibilidades para empresas e consequentemente para uso e aprimoramento 
de algoritmos inteligentes. Por exemplo, quando fazemos uma compra com o cartão de crédito, 
ou fazemos uma busca por um produto na Web ou no smartphone, todos esses dados são 
armazenados e tratados com algoritmos poderosos para, por exemplo, nos sugerir alguma 
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
6 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
promoção de algum produto que “coincidentemente” está em um estabelecimento entre sua 
casa e seu trabalho. Para se ter uma ideia, o Facebook gera mais de 500TB de dados a cada 24 
horas (CANALTECH,2012), o aplicativo do Google, Waze, quando ligado no smartphone, coleta 
um ponto do GPS do motorista a cada 10 metros ou 1 segundo (FOLHA UOL, 2019).
Por conta disso, surgiu a área de Big Data (Grandes dados, em português), que é a área 
do conhecimento que estuda como tratar, analisar e obter informações a partir de grandes 
conjuntos de dados, impossíveis de serem analisados por sistemas tradicionais (WIKIPEDIA, 
2021). Tais conjuntos de dados requerem sistemas de informação especializados para 
tratamento. Sistemas criados utilizando técnicas de IA conseguem fazer uso desses dados 
de maneira bastante efetiva, o que se tornou essencial nas relações econômicas e sociais 
e representou uma evolução nos sistemas de negócio e na ciência. Tais ferramentas são de 
grande importância no meio corporativo na definição de estratégias de marketing, aumentar 
a produtividade, reduzir custos e tomar decisões mais inteligentes.
E os avanços tecnológicos acontecem em ritmos cada vez mais rápidos, difícil até de 
acompanhar. Por exemplo, a NEC Corporation (WIKIPEDIA, 2020) “já tem utilizado em sua 
sede em Tóquio, um sistema de pagamento por meio de reconhecimento facial, que debita as 
despesas feitas na cafeteria da empresa, diretamente na conta do funcionário sem nenhum toque. 
Neste caso, a face é a chave utilizada para a realização da operação. A identificação da face 
também está sendo empregada pelo banco taiwanês E.Sun, nos ATMs da rede, juntamente com 
a utilização do sistema de QR Code. As operações são autenticadas sem que o cliente precise 
tocar no caixa eletrônico em nenhum momento” (NEC, 2021). Para isso, os sistemas criados 
utilizam técnicas de IA, não só para coletar os dados, mas fazer uso deles de forma efetiva.
IA e A cIêncIA De DADos
Como vimos anteriormente, o avanço da tecnologia permitiu a criação e armazenamento 
de quantidades crescentes de informações. É o que chamamos de Era da Informação (FIA, 
2019). O mundo está se tornando cada vez mais “data driven” - orientado por dados, ou seja, 
o volume dos dados armazenados cresce a cada hora do dia, embutindo uma riqueza de 
informações que pode trazer benefícios transformadores para organizações e sociedades 
como um todo, de modo que não é mais possível tomar uma decisão correta sem analisar 
um volume gigantesco de informação disponível. Entre estas informações podemos citar 
aquelas úteis para a otimização e o direcionamento de estratégias, para a compreensão das 
tendências do cenário econômico e de seus reflexos no mercado, assim como informações 
relevantes para conhecer a percepção dos consumidores em relação à marca, ou para fazer 
uma previsão do potencial de vendas, lucros ou prejuízos, etc. O problema é que estamos 
falando de tanta informação, que excede a capacidade de processamento dos seres humanos.
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
https://fia.com.br/blog/era-da-informacao/
7 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
Portanto, para ter acesso a essas informações, precisamos interpretar esses dados, que 
estão armazenados em bancos de dados e data lakes1. É aí que entra um dos campos de 
estudo interdisciplinar, que apesar de existir há 30 anos, ganhou mais destaque nos últimos 
anos devido ao surgimento e popularização de grandes bancos de dados e o desenvolvimento 
de áreas como aprendizagem de máquina (em inglês machine learning), se tornando muito 
promissor hoje em dia: a Ciência de Dados (ORACLE, 2021).
Ciência de Dados (em inglês: Data Science) é uma área interdisciplinar que combina 
métodos das áreas de matemática, estatística, ciência da computação e engenharias, voltada 
para o estudo e a análise de dados econômicos, financeiros e sociais, estruturados e não-
estruturados, que visa a extração de conhecimento, detecção de padrões e/ou obtenção de 
novas informações para possíveis tomadas de decisão, ou seja, envolve conhecimentos de 
economia e administração de forma geral (CIÊNCIA E DADOS, 2021).
A ciência de dados engloba técnicas como mineração de dados, visualização de dados, 
análise de dados e aprendizagem de máquina, buscando extrair informações a partir dos dados, 
mais precisamente, do Big Data. O Big Data mudou a forma como gerenciamos, analisamos 
e aproveitamos dados em qualquer indústria. E um cientista de dados não consegue fazer 
milagres, mas consegue dar acesso a um conjunto de informações para que uma empresa 
tome decisões assertivas, o que impacta diretamente no futuro e sucesso de um negócio.
IA nAs orgAnIzAções
No mundo corporativo, as empresas recebem dados e informações a todo momento. 
Sejam de fornecedores ou de clientes, estes dados ficam disponíveis para análise. Saber 
extrair informações valiosas contidas neles é um diferencial para a empresa e, ferramentas 
que têm como base a inteligência artificial conseguem compilar dados de uma maneira bem 
mais eficiente do que um ser humano (STEFANINI, 2021).
Por isso, os últimos anos têm sido marcados pelo uso de análise de dados e Inteligência 
Artificial nas empresas, independentemente do seu perfil de negócio. Ferramentas como 
essas estão sendo empregadas para potencializar os resultados, aumentar a produtividade 
e economizar tempo nas empresas, além de auxiliar profissionaisa evitarem fraudes, terem 
aplicações mais eficientes e criarem uma infraestrutura de TI cada vez mais confiável, apoiando 
processos comerciais e proporcionando a otimização de atividades do dia a dia. Nos últimos 
tempos, a IA deixou de ter uma aura de “ficção científica” e passou a fazer parte do dia a dia 
de um gigantesco número de pessoas, no Brasil e no mundo.
Apesar dos desafios que a adoção de novas tecnologias impõe ao empreendimento, a IA 
deve ser vista como um investimento estratégico. Soluções que possuem funcionalidades 
1 O termo “data lake” (“lago de dados”, em português) foi criado por James Dixon, CTO da Pentaho. É apropriado descrever esse 
tipo de repositório como um lago porque ele armazena um conjunto de dados em seu estado natural, como um corpo d’água que 
não foi filtrado ou contido. Os dados fluem de diversas fontes para o lago e são armazenados no formato original (REDHAT,2020).
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
https://pt.wikipedia.org/wiki/L%C3%ADngua_inglesa
https://stefanini.com/pt-br/trends/artigos/aplicacoes-da-inteligencia-artificial-no-dia-a-dia
8 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
baseadas em Inteligência Artificial podem otimizar com mais eficácia o ambiente corporativo e 
causar um impacto maior nos índices de vendas. Dessa forma, a empresa pode manter-se eficaz 
e pronta para lidar com as demandas de clientes e parceiros comerciais. As possibilidades 
do uso de Inteligência Artificial no mundo empresarial são infinitas, como por exemplo:
implementar ferramentas de colaboração que usam a Inteligência Artificial;
fazer uso de ferramentas que usam a IA para a segurança de dados. A Inteligência Artificial 
é uma aliada indispensável quando se trata de procurar por buracos nas defesas da rede de 
computadores da empresa, elevando a segurança da informação a outro patamar;
aplicar a gestão de mudança para os funcionários adaptarem-se rapidamente ao novo 
ambiente etc.
Diferentemente de um software convencional, soluções que exploram a inteligência 
artificial conseguem “aprender” a melhorar o próprio serviço a que se destinam. Soluções 
artificialmente inteligentes aumentam a performance, otimizam o cotidiano operacional e 
proporcionam mais tempo para cuidar da estratégia da empresa. E esse ferramental tecnológico 
não está acessível apenas para grandes empresas, com orçamentos milionários e alto poder 
de investimento, pois também é realidade para pequenas e médias empresas, causando 
uma revolução digital nos negócios, moldando processos e ajudando no desenvolvimento de 
produtos cada vez mais personalizados (MJV, 2019).
Essa tecnologia alterou a maneira de fazer negócios em diversos segmentos do comércio, 
da indústria e do varejo.
Algumas principais vantagens das aplicações de Inteligência Artificial nas empresas 
(MJV, 2019):
• aumento da produtividade: Essa tecnologia tende a aumentar a produtividade de muitos 
cargos. A expectativa, segundo dados divulgados no Blog da LG, é economizar 6,2 bilhões 
de horas de atividades;
• redução da chance de erros nos processos: atividades que apresentam maior índice de 
falhas humanas devem ser repassadas para a IA a fim de diminuir essas ocorrências, como 
por exemplo: tirar pedidos de vendas, enviar solicitações de estoque, analisar materiais 
específicos, como vídeos e traduções etc.;
• automação dos processos: facilitar as atividades rotineiras e aprender os recursos 
preferidos pelos usuários, tornando os dados mais acessíveis para que as tomadas de 
decisão sejam acertadas;
• melhoria do relacionamento com o cliente (Marketing): solucionar problemas com 
agilidade e antecipar futuras compras. A experiência do cliente é aprimorada, o que 
tende a aumentar as vendas. Além disso, a IA torna as plataformas de gerenciamento 
de relacionamento com o cliente (CRM) mais potentes e precisas, pois é possível com 
o autoaprendizado personalizar o atendimento com o intuito de fidelizar o consumidor. 
Impactar seus clientes com a mensagem ideal, no momento certo de sua jornada de 
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
https://www.qinetwork.com.br/entenda-a-importancia-de-usar-ferramentas-colaborativas-na-empresa/
https://blog.leucotron.com.br/aumente-produtividade-em-ti-de-sua-empresa/
https://www.lg.com.br/blog/inteligencia-artificial-revolucionar-negocio/
https://blog.leucotron.com.br/treinamento-de-vendas-dicas-para-fechar-negocio-via-telefone/
9 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
compra, faz toda a diferença na hora de desenvolver uma campanha publicitária para o 
lançamento de um novo produto. Ao entender o que os clientes precisam, é possível ser 
mais competitivo e melhorar a experiência de compra para o lado deles;
• modernizar serviços financeiros: Bancos já trabalham para integrar IA em operações 
bancárias regulares, como empréstimos hipotecários e suporte aos clientes. Chatbots 
fornecem informações sobre gastos, cartões de crédito, ajudam nas transações cotidianas 
e também fornecem respostas a perguntas frequentes.
Embora percebam a importância da Inteligência Artificial, as organizações ainda enfrentam 
desafios para implementá-la, principalmente de natureza funcional, como, capacitar força de 
trabalho para acelerar sua adoção, avaliar e resolver problemas de privacidade e segurança, 
otimizar a governança e etc.
É certo que os efeitos da IA serão ampliados nas próximas décadas, por isso é preciso:
• integrar inteligência humana e inteligência artificial para que elas tenham uma coexistência 
bem-sucedida e reforcem o papel das pessoas como motores do crescimento;
• garantir que os relacionamentos entre startups, grandes empresas, pesquisadores 
acadêmicos, agências governamentais e outras partes sejam regulares e intensos;
• atualizar a legislação relevante por meio de leis que possam ser adaptadas e se aperfeiçoem 
de forma “automática” para eliminar a lacuna entre a velocidade da evolução tecnológica 
e a resposta regulatória a ela;
• debates éticos para a IA precisam ser complementados por padrões mais tangíveis e 
melhores práticas no desenvolvimento de máquinas inteligentes;
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
10 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
• os formuladores de políticas precisam tomar ações preventivas para limitar os riscos que 
a inteligência artificial poderia representar para os setores e regiões mais vulneráveis.
ferrAmentAs De IA
É uma biblioteca de código aberto utilizada para a criação 
de modelos de aprendizado de máquina.
Amazon SageMaker Neo
É um dos componentes do Amazon SageMaker, serviço 
provido pela Amazon para criação, treinamento e 
implantação de modelos de aprendizagem de máquina. 
A ferramenta tem como objetivo a otimização de modelos 
para a execução em nuvem ou em dispositivos de borda.
O Scikit-learn é um conjunto de ferramentas em Python 
de aprendizagem de máquina a partir de algoritmos 
supervisionados e não supervisionados.
PyTorch é mais uma opção de bibliotecade deep learning 
baseada em Python, construída com foco na flexibilidade 
e modularidade. O framework foi disponibilizado em 
2016 pelo Facebook, sendo rapidamente adotado pela 
comunidade científica e, mais recentemente, pelo meio 
empresarial em geral.
Theano é uma biblioteca Python criada pela Universidade 
de Montreal para computação científica. A biblioteca 
permite a definição, otimização e análise de expressões 
matemáticas envolvendo matrizes multidimensionais de 
forma eficiente.
Keras é uma API de redes neurais escrita em Python que 
busca simplificar ao máximo o processo de codificação 
de redes neurais, diminuindo a curva de aprendizado`.
exemplos De Uso De IA nAs orgAnIzAções púBlIcAs
1) Em 2019, a Secretaria do Tesouro Nacional criou a atendente virtual Jacque, baseada 
em tecnologias de inteligência artificial para o Siconfi, portal de informações contábeis da 
Administração Pública federal (Enap,2020).
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
11 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
Logo do Siconfi e mensagem inicial da atendente virtual Jacque.
2) Em 2019, o Ministério da Economia lançou dois serviços de atendimento virtual por 
meio de chatbots:
• a Isis, que responde dúvidas da plataforma +Brasil, e
• a Lia, para esclarecimento de dúvidas do Comprasnet (ENAP,2020).
3) O Zello, desenvolvido pelo Tribunal de Contas da União, é mais um exemplo de utilização 
de chatbot na Administração Pública. A ferramenta funciona pelo aplicativo WhatsApp e permite 
efetuar consultas sobre contas irregulares, processos e emissão de certidões do TCU (ENAP,2020).
4) Projeto Malha Fina de Convênios, da Controladoria Geral da União, para a análise de 
prestações de contas dos convênios e contratos de repasses firmados pelo governo federal 
por meio do sistema Siconv (Enap,2020).
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
12 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
5) A Secretaria de Segurança Pública e Defesa Social (SSPDS) do estado do Ceará 
desenvolveu o Sistema Policial de Indicativo de Abordagem (Spia). Utilizando câmeras de 
segurança espalhadas pelo estado, algoritmos de reconhecimento realizam a identificação de 
pessoas procuradas e o rastreamento de veículos com queixa, a partir da leitura das placas 
dos automóveis (ENAP,2020).
6) O Conselho Administrativo de Defesa Econômica (Cade) desenvolveu o Projeto Cérebro, 
que, por meio de mineração e cruzamento de dados, permite a identificação de possíveis 
cartéis em licitações. Iniciado em 2013, os indícios identificados por ele já apoiaram operações 
da Polícia Federal (ENAP,2020).
IntelIgêncIA compUtAcIonAl
A Inteligência Computacional é um ramo da área de Inteligência Artificial/IA), com o 
objetivo de investigar e simular aspectos da cognição humana: percepção, raciocínio básico 
e complexo, aprendizado etc. (POSITIVOTECNOLOGIA, 2020).
Então tem como particularidade o olhar sobre quem é esse agente das decisões, buscando 
reproduzir suas estratégias para solucionar problemas.
Obs.: � A Inteligência Computacional é também conhecida pelos termos Computação Bio-
-Inspirada, Computação Natural e Soft Computing.
Veja a seguir algumas técnicas da Inteligência Computacional (POSITIVOTECNOLOGIA, 2020):
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
13 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
• Lógica Fuzzy (ou nebulosa): abordagem lógica que considera qualquer número real entre 
0 e 1, opondo-se à booleana ou binária;
• máquinas de vetores de suporte: método que identifica padrões por meio de análises 
como a classificação de regressão;
• aprendizagem de máquina (Machine Learning): investiga estratégias para que um software 
proponha soluções e faça análises sobre os resultados para desenvolver outros métodos 
ainda mais eficientes;
• aprendizagem profunda (Deep Learning): método similar ao Machine Learning, mas que adota 
padrões de análise baseados em diversas camadas de dados, potencializando a identificação.
Obs.: � Inteligência computacional é um conjunto de métodos e(ou) técnicas que procura 
desenvolver sistemas dotados de comportamento semelhante a certos aspectos do 
comportamento inteligente.
Esses e outros métodos podem ser aplicados de diferentes formas, cada um levando em 
conta o objetivo que se deseja alcançar.
AprenDIzADo De máqUInA/mAchIne leArnIng)
VIsão gerAl
Machine Learning, ou Aprendizado de Máquina, é uma subárea da Inteligência Artificial 
(IA) e da Ciência da Computação que se concentra no uso de dados e algoritmos para 
imitar a forma como os humanos aprendem, melhorando gradativamente sua precisão 
(DATASCIENCEACADEMY, 2022).
Machine Learning é um método de análise de dados que busca a automatização do 
desenvolvimento de modelos analíticos (MACHADO, 2018, p.142).
Obs.: � Trata-se de uma representação que tem como objetivo criar um modelo (ou seja, uma 
representação dos relacionamentos existentes nos dados por meio de uma fórmula 
matemática), a partir de dados históricos para generalizar decisões (ENAP, 2020).
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
https://www.meupositivo.com.br/panoramapositivo/machine-learning/
https://www.meupositivo.com.br/panoramapositivo/deep-learning/
14 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
Figura. O Que é Machine Learning (DATASCIENCEACADEMY, 2022)
O diagrama seguinte, extraído de DATASCIENCEACADEMY (2022), ajuda a explicar bem 
esse conceito.
Conforme visto, é possível aplicar a Inteligência Artificial (IA) - ciência capaz de mimetizar 
(imitar) as habilidades humanas - através de uma série de técnicas diferentes. Uma dessas 
técnicas é a ML (Machine Learning - Aprendizado de Máquina), que se baseia na ideia de 
que os sistemas podem aprender com dados, identificar padrões e tomar decisões com o 
mínimo de intervenção humana. Nesse contexto, um programa de computador aprende com 
uma experiência e passa a executar uma tarefa com melhor desempenho.
Figura. O que é Machine Learning (DATASCIENCEACADEMY, 2022)
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
15 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
ML não é mineração de dados, mas usa os padrões descobertos para aprender. E, relacionados 
à Machine Learning, tem-se várias categorias de algoritmos de que podem ser utilizados.
Deep Learning (ou Aprendizado Profundo) éum deles, sendo considerado como um 
subconjunto do aprendizado de máquina que usa redes neurais com muitas camadas para 
aprender sobre uma grande variedade de dados. Ele permite resolver problemas bastante 
complexos (como por exemplo visão computacional e processamento de linguagem natural).
Obs.: � A capacidade de aplicar automaticamente cálculos matemáticos complexos a Big 
Data é um desenvolvimento recente decorrente das tecnologias de processamento 
paralelo mais atuais e dinâmicas, como o Haddop (MACHADO, 2018, p.143).
Conforme Machado (2018), usando algoritmos que aprendem interativamente a partir de 
dados, por meio de um processo repetitivo, Machine Learning permite que os computadores, 
ao aplicar modelos preditivos, que permitam analisar dados maiores e mais complexos, 
encontrem insights ocultos sem serem explicitamente programados para procurar uma 
informação oculta específica.
“A existência de um aspecto interativo do aprendizado de máquinas tem como característica, 
conforme os modelos são expostos a novos dados, seus algoritmos serem capazes de se adaptar 
de forma independente e realizar correções”, destaca Machado (2018, p.142). Assim, o autor ainda 
cita que eles aprendem com os cálculos anteriores as modificações necessárias no tratamento 
dos dados, para produzir decisões e resultados mais rápidos, confiáveis e reproduzíveis.
O resultado? Previsões de alto valor e completamente inesperadas, que poderão levar a melhores 
decisões e ações inteligentes em tempo real sem a intervenção humana (MACHADO, 2018).
001. (CESPE/ANP/2022) As aplicações em inteligência artificial são definidas como uma 
subárea da área de aprendizagem de máquina/machine learning).
É justamente o contrário! Machine Learning, ou Aprendizado de Máquina, é uma área de 
estudo que busca dar aos computadores a habilidade de aprender sem serem programados 
explicitamente. Segundo artigo da Data Science Academy (2018), “a aprendizagem de máquina 
é um subconjunto da inteligência artificial (IA), o segmento da ciência da computação que se 
concentra no uso de dados e algoritmos para imitar a forma como os humanos aprendem, 
melhorando gradativamente sua precisão (DATASCIENCEACADEMY, 2022).
Errado.
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
16 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
exemplos De AplIcAções Do mAchIne leArnIng
Vamos então a alguns exemplos de aplicações em que se faz uso de Aprendizado de 
Máquina (MACHADO, 2018):
carros autônomos da Google que dirigem sozinhos;
• ofertas de recomendações on-line, como as da Amazon e da Netflix;
• saber o que os clientes estão dizendo sobre você no Twitter. Aqui o aprendizado de 
máquina é combinado com a criação de regra linguística;
• detecção de fraudes (Por exemplo, para prever se uma transação realizada com determinado 
cartão de crédito é fraudulenta. Isso já ocorreu comigo, e a operadora identificou o 
comportamento fora do padrão (Ela fez uso da técnica de detecção de outliers, por 
exemplo) no uso do cartão, e o bloqueou no exato momento em que a compra estava 
sendo realizada);etc.
tIpos De AprenDIzADo De máqUInA
Os principais tipos de aprendizado de máquina são apresentados a seguir.
Figura. Tipos de Aprendizado de Máquina (QUINTÃO, 2023)
a) Aprendizado Supervisionado
• Abordagem mais comum de aprendizado de máquina.
• Existe um supervisor ou professor responsável por treinar o algoritmo.
• O supervisor conhece de antemão o resultado (rótulo/classe) e pode guiar o aprendizado 
mapeando as entradas em saídas por meio do ajuste de parâmetros em um modelo capaz 
de prever rótulos desconhecidos.
• Algoritmos de aprendizado supervisionado são realizados usando exemplos rotulados, como 
uma entrada em que a saída desejada é conhecida. Exemplo: uma peça de equipamento 
pode ter pontos de dados rotulados com “F” (com falha) ou “R” (em funcionamento)” 
(MACHADO, 2018, p.147).
• O algoritmo de aprendizagem recebe um conjunto de entradas junto com as saídas 
corretas correspondentes, e o algoritmo aprende comparando a saída real com as saídas 
corretas para encontrar erros. Em seguida, modifica o modelo preditivo de acordo com 
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
17 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
a eliminação desses erros. Por meio de métodos (Ex.: classificação, regressão, etc.), o 
aprendizado supervisionado usa padrões para prever os valores do rótulo em dados 
adicionais não rotulados (MACHADO, 2018, p.147).
Obs.: � O algoritmo procura associações entre os atributos (variáveis preditoras) e a variável 
resposta (variável que se quer prever) de um dataset. A partir dessas associações, é 
possível realizar previsões quando o algoritmo for apresentado a novos dados.
• O aprendizado supervisionado é mais utilizado para aplicações nas quais os dados 
históricos podem prever prováveis acontecimentos futuros. Como exemplo, ele pode 
prever a probabilidade de as transações de cartão de crédito serem fraudulentas ou qual 
cliente do seguro deve registrar uma reclamação (MACHADO, 2018, p.147). Outro exemplo: 
com base nos dados históricos de pacientes, pode-se prever se um novo paciente irá 
desenvolver ou não uma determinada doença.
• Modelos supervisionados mais comuns:
a. Árvores de decisão;
b. Regressão linear;
c. Regressão logística;
d. Redes neurais;
e. K-Nearest Neighbors (KNN);
f. Support Vector Machines (SVM), etc.
b) Aprendizado não Supervisionado
• O aprendizado não supervisionado é usado com dados que não possuem rótulos históricos. 
O sistema não sabe a “resposta certa”. O algoritmo deve descobrir o que está sendo 
mostrado. O objetivo é explorar os dados e encontrar alguma estrutura neles (MACHADO, 
2018, p.148).
Obs.: � Conjunto de técnicas para treinar um modelo em que não se sabe a saída esperada 
para cada dado usado no treinamento.
• Aqui não se utiliza rótulos/categorias para as amostras de treinamento.
• O algoritmo identifica as semelhanças nos dados apresentados e reage com base na 
presença ou ausência dessas tais semelhanças.
• Busca agrupar os dados com base em características similares, não sendo necessário 
apresentar o algoritmo à variável resposta (variável que se quer prever).
• Funciona bem em dados transacionais. Por exemplo, ele pode identificar segmentos de 
clientes com atributos semelhantes que podem ser tratados de modo semelhante em 
campanhas de marketing, ou então ele pode encontrar os principais atributos que separam 
os segmentos de clientes uns dos outros (MACHADO, 2018, p.148).
• Grandes sub-grupos de aprendizado não supervisionado:
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
18 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
a. agrupamentos (Clustering);
b. regras de Associação (Association Rules).
Exemplo: pode ser utilizado para identificar anomalias ou agrupar clientes com base em 
comportamentos similares.
c) Aprendizado Semi-supervisionado
• Conforme Machado (2018), usa tanto dados rotulados quanto dados não marcados 
para o treinamento– normalmente uma pequena quantidade de dados rotulados com 
uma grande quantidade de dados não rotulados (pois os dados não rotulados são mais 
baratos e precisam de menos esforço para serem adquiridos).
• Útil quando o custo associado à rotulagem é muito elevado para permitir um processo 
de treinamento totalmente rotulado (MACHADO, 2018).
• Esse tipo de aprendizagem pode ser usado com métodos como a classificação, regressão 
e previsão (MACHADO, 2018).
Obs.: � Exemplo: identificação do rosto de uma pessoa em uma webcam (processo de iden-
tificação facial).
d) Aprendizado por reforço
• Muito usado para a robótica (robôs aspiradores etc.), jogos e navegação (carros autônomos, etc.).
• Nesse caso, o algoritmo descobre pela tentativa e erro quais ações geram as maiores 
recompensas.
• Três componentes principais:
−	 o agente (o aluno ou tomador de decisões);
−	 o ambiente (tudo com o qual o agente interage); e
−	 as ações (o que o agente pode fazer).
• Objetivo: que o agente escolha ações que maximizem a recompensa esperada ao longo 
de um determinado período de tempo. O objetivo é aprender a melhor técnica” (MACHADO, 
2018, p.149).
002. (CESPE/TCE-MG/2018) Em machine learning, a categoria de aprendizagem por reforço 
identifica as tarefas em que:
a) um software interage com um ambiente dinâmico, como, por exemplo, veículos autônomos.
b) as etiquetas de classificação não sejam fornecidas ao algoritmo, de modo a deixá-lo livre 
para entender as entradas recebidas.
c) o aprendizado pode ser um objetivo em si mesmo ou um meio para se atingir um fim.
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
19 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
d) o objetivo seja aprender um conjunto de regras generalistas para converter as entradas em 
saídas predefinidas.
e) são apresentados ao computador exemplos de entradas e saídas desejadas, fornecidas por 
um orientador.
a) Certa. Um veículo totalmente é equipado com sensores que auxiliam um sistema de controle 
em seu objetivo de navegar autonomamente até um local desejado, ou seja, sem a necessidade 
de atuação direta ou indireta de um condutor humano. Esse sistema deve ser capaz de dirigir 
de maneira segura e consistente ao longo de todo seu percurso. Utilizaremos técnicas de 
Aprendizagem por Reforço no treinamento dos sistemas utilizados por esses veículos, com o 
objetivo de manter a direção do veículo dentro de uma pista.
b) Errada. Trata-se de uma tarefa de aprendizagem não supervisionada.
c) Errada. Trata-se de uma tarefa de aprendizagem não supervisionada.
d) Errada. Trata-se de uma tarefa de aprendizagem supervisionada, na qual se busca aprender 
uma regra geral que mapeia entradas de dados em saídas de dados.
e) Errada. Trata-se de uma tarefa de aprendizagem supervisionada, na qual são apresentados ao 
computador exemplos de entradas e saídas desejadas, fornecidas por um orientador/supervisor.
Letra a.
oVerfIttIng (soBreAjUste) e UnDerfIttIng (sUB-AjUste) em mAchIne 
leArnIng
Nos modelos de aprendizado de máquina, existem dois problemas básicos que devem 
ser considerados.
Vamos então ao estudo dos termos overfitting e underfitting, problemas comuns da área 
de ciência de dados (BRANCO, 2022).
Quando treinamos um modelo de Machine Learning, a ideia é que o modelo aprenda sobre os 
dados de entrada e possa realizar previsões, com um erro aceitável, com novos dados, que não 
estavam presentes nos dados de entrada, ou seja, dados nunca vistos pelo modelo (BRANCO, 2022).
Você treina um modelo para que ele consiga realizar previsões quando receber novos 
dados, certo? Mas, como iremos medir a performance de um modelo?
Para isso, podemos dividir os dados de entrada em 2 grupos, que são:
• os dados de treino, utilizados para treinar o modelo, e
• os dados de teste.
Assim, comparamos a previsão do modelo nos dados de teste com os valores originais. 
Mas o que isso tem a ver com underfitting e overfitting?
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
20 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
Overfitting
(Sobreajuste)
É quando o modelo aprende demais sobre os dados, ou seja, acontece quando se tem 
um modelo com bom desempenho com os dados treinados, mas que não trabalha bem 
com novos dados.
Também é bem mais difícil de ser perceber.
Neste caso, mostra-se adequado apenas para os dados de treino, como se o modelo 
tivesse apenas decorado os dados de treino e não fosse capaz de generalizar para 
outros dados nunca vistos antes.
Quando isso acontece, os dados de treino apresentam resultados excelentes, enquanto 
que a performance do modelo cai drasticamente com os dados de teste (BRANCO, 2022).
Podemos identificar que há sobreajuste quando comparamos a performance do modelo 
em treino e teste, variando alguns parâmetros (como a quantidade de dados, por exemplo).
Underfitting
(sub-ajuste)
Indica que o modelo não conseguiu aprender o suficiente sobre os dados.
É mais fácil de ser identificado.
Ele acontece quando o erro do modelo é elevado em ambos os dados de treino e teste 
(BRANCO, 2022).
A visualização gráfica pode nos fornecer um indício de que há problemas com overfitting/
underfitting, no entanto, nem sempre conseguimos identificar visualmente quando esses 
problemas existem (BRANCO, 2022).
Vejamos na figura seguinte alguns exemplos de curvas.
Figura. Exemplos de curvas sub-ajustada (Underfitted), adequada (Good Fit/Robust) e sobreajustada 
(Overfitted), respectivamente (BRANCO, 2022).
A figura seguinte ilustra a curva de complexidade do modelo vs erro para dados de 
treino e teste.
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
21 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
Figura. Curva de complexidade do modelo vs erro para dados de treino e teste (BRANCO, 2022)
Podemos considerar a complexidade do modelo como sendo a quantidade de dados, de 
parâmetros, ou o tipo de algoritmo utilizado. Percebam que o modelo começa com erro elevado 
tanto para treino quanto para teste. Nesta etapa da curva há o underfitting (BRANCO, 2022).
Conforme aumentamos a complexidade do modelo, ele vai se ajustando aos dados de 
treino e teste até um determinado ponto (ponto ótimo).
A partir deste ponto, que é o ponto ótimo, o erro para os dados de teste começam a subir 
novamente e o mesmo erro continua decaindo para os dados de treino. Neste ponto, a partir desta 
diferença dos erros de treino e teste, podemos afirmar que o modelo sofre overfitting (BRANCO, 2022).
003. (COM. ORG./IFSP/ANALISTA DE TECNOLOGIA DA INFORMAÇÃO/IF SP/CIÊNCIA DE 
DADOS/2022) Nos modelos de aprendizado de máquina, existem dois problemas básicos 
que devem ser considerados. O primeiro problema é o sobreajuste/overfitting) que acontece 
quando se tem um modelo com bom desempenho com os dados treinados, mas que não 
trabalha bem com novos dados. Já o segundo problema, é o sub-ajuste/underfitting) que já 
sequer trabalhar com os dados de treino e, consequentemente, na aplicação em si. Para isso, 
é necessário implementar modelos que sejam equilibradospara atender as demandas.
Considerando essas afirmações e a figura a seguir, selecione a alternativa que melhor associa 
o problema com os dados dispostos no espaço com a solução equilibrada, com sub-ajuste e 
sobreajuste de acordo com sua indicação (I, II e III).
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
22 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
a) (I) equilibrado, (II) sobreajustado e (III) sub-ajustado
b) (I) equilibrado, (II) sub-ajustado e (III) sobreajustado
c) (I) sobreajustado, (II) equilibrado e (III) sub-ajustado
d) (I) sub-ajustado, (II) sobreajustado e (III) equilibrado
Observe pela figura que os pontos verdes são os rótulos gerados pela máquina, enquanto a 
linha preta indica o resultado esperado que seja gerado por ela.
No gráfico I temos uma situação de sub-ajuste. O underfitting, nesse caso, se dá em situações 
em que os resultados gerados pela máquina são insatisfatórios, ou péssimos, tendo pouca 
precisão e proximidade com o resultado esperado.
O gráfico III está em uma situação de equilíbrio, pois demonstra uma relação entre rótulos 
esperados e rótulos gerados de forma melhor do que o II.
O gráfico II, por eliminação, está em situação de sobreajuste ou sobreajustado.
Letra d.
004. (CESPE-CEBRASPE/ANP/ATIVIDADES DE REGULAÇÃO/NOVAS ATRIBUIÇÕES IV/2022) 
Considerando-se, nos gráficos a seguir, que o resultado #2 corresponda ao melhor desempenho 
do algoritmo, é correto afirmar que o resultado #1 indica que houve underfitting.
No resultado #1, a reta não se ajusta bem aos dados. Temos, portanto, uma situação de sub-ajuste 
(underfitting), que se dá em situações em que os resultados gerados pela máquina são insatisfatórios, 
ou péssimos, tendo pouca precisão e proximidade com o resultado esperado. Nesse contexto, o 
modelo é excessivamente simples para modelar a real complexidade do problema para novos dados.
No resultado #2 a curva acompanha os dados, e corresponde ao melhor desempenho do algoritmo.
Certo.
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
23 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
005. (CESPE/EMBRAPA/PESQUISADOR/MÉTODOS QUANTITATIVOS AVANÇADO/DATA-
E-TEXTMINING/2006) Em modelos de classificação, ocorre overfitting quando o número de 
erros cometidos no grupo de dados usado para treinar/ajustar) o modelo é muito pequeno e 
o número de erros de generalização é grande.
Isso mesmo! Overfitting (Sobreajuste) ocorre quando o modelo aprende demais sobre os dados, 
ou seja, acontece quando se tem um modelo com bom desempenho com os dados treinados, 
mas que não trabalha bem com novos dados. Assim, há poucos erros no treino, mas há muitos 
erros no teste (erro de generalização).
Certo.
Conforme Branco (2022), o overfitting tem algumas causas principais, que podem direcionar 
a solução do problema. São elas:
• Algoritmo muito complexo para os dados: pode-se simplificar o modelo escolhendo um 
algoritmo mais simples, com menos parâmetros, caso seja possível, o que irá reduzir as 
chances do modelo sofrer overfitting.
• Poucos dados de treinamento: talvez seja necessário coletar mais dados para treinar o modelo.
• Ruídos nos dados de treinamento: caso exista algum tipo de ruído (valores extremos 
ou até mesmo valores incorretos nos dados), pode ser que o modelo aprenda sobre 
ele, levando ao overfitting. Caberia um pré-processamento adequado para tratar essa 
interferência (BRANCO, 2022).
No entanto, Branco (2022) destaca que se formos muito rigorosos nos tratamentos acima, 
podemos ir para o outro extremo, o underfitting (Sub-ajuste). Nesse contexto tem-se:
• Algoritmo inadequado, pouco poderoso para os dados: aqui podemos amplificar o poder 
do algoritmo escolhendo outro com mais parâmetros para solucionar o underfitting.
• Características não representativas: neste caso, pode ser que as características utilizadas 
para treinar o modelo não sejam representativas (não tenham relação entre si ou não 
sejam importantes para o modelo).
• Modelo com muitos parâmetros de restrição: o modelo torna-se inflexível, restrito, e não 
se ajusta de forma adequada aos dados.
VIsão gerAl Dos AlgorItmos De mAchIne leArnIng
Em relação aos algoritmos de machine learning, merecem destaque (ILUMEO, 2021):
1. regressão linear
Trata-se de uma ferramenta estatística que nos ajuda a quantificar a relação entre uma 
variável específica e um resultado que nos interessa enquanto controlamos outros fatores.
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
24 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
A regressão linear é denominada dessa forma por ser uma reta traçada a partir de uma 
relação em um diagrama de dispersão. Tal reta resume uma relação entre os dados de duas 
variáveis e também pode ser utilizada para realizar previsões (ILUMEO, 2021).
A origem da regressão linear vem da correlação linear, que é a verificação da existência 
de um relacionamento entre duas variáveis. Ou seja, dado X e Y, quanto que X explica Y. Para 
isso, a regressão linear utiliza os pontos de dados para encontrar a melhor linha de ajuste 
para modelar essa relação (ILUMEO, 2021).
O resultado da regressão linear é sempre um número. É utilizada adequadamente quando o dataset 
apresenta algum tipo de tendência de crescimento/descrescimento constante (ILUMEO, 2021).
Figura. (ILUMEO, 2021)
Um exemplo de regressão linear é a relação de Preço x Oferta, em que a quantidade de 
produtos ofertados aumenta na medida em que o preço se eleva.
A regressão linear pode ser de dois tipos (ILUMEO, 2021):
• regressão linear simples: utiliza apenas uma variável independente; e
• regressão linear múltipla: em que múltiplas variáveis independentes são definidas.
2. regressão logística
Método usado para problemas de classificação binária (problemas com dois valores de 
classe), utilizando conceitos de estatística e probabilidade. É um algoritmo que lida com 
questões e problemas de classificação, analisando diferentes aspectos ou variáveis de um 
objeto para depois determinar uma classe na qual ele se encaixa melhor (ILUMEO, 2021).
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
25 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
A função logística parece um grande S e transformará qualquer valor no intervalo de 0 a 1. 
Isso é útil porque é possível aplicar uma regra à saída da função logística para ajustar valores 
para 0 e 1 e prever um valor de classe (ILUMEO, 2021).
Figura. Regressão logística: Gráfico de uma curva de regressão logística mostrando a probabilidade de 
aprovação em um exame versus horas de estudo (ILUMEO, 2021).
A literatura (ILUMEO, 2021) destaca três modelos principais de regressão logística:
2.1. regressão logística BinominalNesse contexto, os objetos são classificados em dois grupos ou categorias. É quase um 
jogo entre “o que é” e “o que não é”. Ex.: o e-mail é spam ou não, a imagem é colorida ou não, 
a célula é cancerígena ou não (ILUMEO, 2021).
2.2. regressão logística ordinal
Esse modelo é diferente porque trabalha com o conceito de categorias ordenadas. Neste 
cenário, os objetos são classificados em três ou mais classes que possuem uma ordem já 
determinada. Exs.: o desempenho do atleta é ruim, neutro ou excelente; o grau de satisfação 
do paciente com o tratamento é insatisfeito, satisfeito ou muito satisfeito (ILUMEO, 2021).
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
26 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
2.3. regressão logística Multinomial
Neste modelo os objetos são classificados em três ou mais categorias que não possuem 
ordem entre si. Ex.: este animal é um gato, um leão ou um tigre. Esta fruta é uma maçã, uma 
pera, uma manga ou um maracujá.
3. Análise discriminante linear (ldA)
Regressão logística é um algoritmo de classificação tradicionalmente limitado a apenas 
problemas de classificação de duas classes (ILUMEO, 2021).
Caso se tenha mais de duas classes, o algoritmo de Análise Discriminante Linear (LDA) 
é a técnica de classificação linear preferida (ILUMEO, 2021).
A representação da LDA consiste em propriedades estatísticas dos seus dados, calculados 
para cada classe. Para uma única variável de entrada, isso inclui (ILUMEO, 2021):
• o valor médio para cada classe;
• a variação calculada para todas as classes.
As previsões são feitas calculando um valor diferenciado para cada classe e fazendo uma 
previsão para a classe com o maior valor. A técnica pressupõe que os dados tenham uma 
distribuição normal; assim, é uma boa ideia limpar a base de dados removendo possíveis 
outliers. É um método simples e poderoso para classificar problemas de modelagem preditiva.
O LDA pode ser usado em qualquer problema que possa ser transformado em um problema 
de classificação. Exemplos: reconhecimento de velocidade, reconhecimento facial, química, 
recuperação de imagens, biometria e bioinformática (ILUMEO, 2021).
4. Árvores de Classificação e Regressão
Conforme ILUMEO (2021), a representação do modelo da árvore de decisão é uma árvore 
binária. Cada nó representa uma única variável de entrada (x) e um ponto de divisão nessa 
variável (assumindo que a variável seja numérica).
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
27 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
Figura. (ILUMEO, 2021)
Os nós das folhas da árvore contêm uma variável de saída (y) que é usada para fazer uma 
previsão. As previsões são feitas percorrendo as divisões da árvore até chegar a uma folha 
e gerar o valor da classe nessa folha (ILUMEO, 2021).
As árvores são muito rápidas para fazer previsões. Eles também costumam ser precisas 
para uma ampla gama de problemas e não exigem nenhuma preparação especial para seus 
dados (ILUMEO, 2021).
Veja o exemplo citado por (ILUMEO, 2021): uma amostra de 30 alunos de uma escola, 
com três variáveis: sexo (masculino ou feminino), classe (IX ou X) e altura (160 cm a 180 
cm). Digamos também que dos 30 alunos, 15 deles jogam tênis no recreio. A partir disso, 
como podemos criar um modelo para prever quem vai jogar tênis durante o recreio? Neste 
problema, precisamos dividir os alunos que jogam tênis no recreio com base nas três variáveis 
à disposição. Nesse ponto entra a árvore de decisão. Ela dividirá os alunos com base nos 
valores das três variáveis e identificará a variável que cria os melhores conjuntos homogêneos 
de alunos (que são heterogêneos entre si). No quadro seguinte, é possível ver que a variável 
“sexo” é capaz de identificar os melhores conjuntos homogêneos em comparação com as 
variáveis “altura” e “classe”.
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
28 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
Figura. (ILUMEO, 2021)
5. naive Bayes
Algoritmo utilizado para categorizar textos baseado na frequência das palavras usadas. 
Como exemplo, permite identificar se determinado e-mail é um spam ou também se uma 
notícia é sobre tecnologia, política ou esportes... ou ainda pode verificar um pedaço de texto 
que expressa emoções positivas ou emoções negativas (ILUMEO, 2021)
É simples, rápido e possui um desempenho relativamente maior do que outros classificadores. 
Também, só precisa de um pequeno número de dados de teste para concluir classificações 
com uma boa precisão (ILUMEO, 2021).
A principal característica do algoritmo, e também o motivo de receber “naive” (ingênuo) 
no nome, é que ele desconsidera completamente a correlação entre as variáveis, tratando-as 
de forma independente (ILUMEO, 2021).
6. Knn (K-nearest neighbors)
O K-Nearest Neighbors (KNN) é um algoritmo de classificação que se baseia nos vizinhos 
mais próximos. Quando um novo dado é apresentado ao algoritmo, ele irá classificá-lo com 
base nos exemplos mais próximos apresentados na fase de treinamento (ENAP, 2020).
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
29 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
Figura. Raschka (2015)
Ele pressupõe que itens semelhantes estão próximos um dos outros, então tenta encaixar 
o dado em questão nos conjuntos de seus vizinhos. O parâmetro k representa a quantidade 
de vizinhos mais próximos que deve ser considerada pelo algoritmo. Analisando o gráfico 
apresentado e considerando o valor de k = 3, temos que o novo elemento (?) é classificado 
como triângulo, pois é a quantidade de elementos mais próximos da nova observação.
Um dos seus usos é para serviços de recomendação, como produtos da Amazon, filmes na 
Netflix, e vídeos no YouTube. No entanto, podemos ter certeza de que todos eles usam meios 
mais eficientes de fazer recomendações devido ao enorme volume de dados que processam, 
porque uma desvantagem do KNN é a lentidão à medida que o volume de dados aumenta, 
tornando uma escolha impraticável em ambientes em que as previsões precisam ser feitas 
rapidamente (ILUMEO, 2021).
7. lVQ (learning Vector Quantization)
Trata-se de um método de aprendizado baseado em protótipo, em que eles são usados 
para representar diferentes classes em um conjunto de dados (ILUMEO, 2021).
O LVQ é semelhante ao KNN, levando vantagem em não precisar considerar todo o conjunto 
de dados disponível, reduzindo os requisitos computacionais necessários para ser executado 
(ILUMEO, 2021).
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aosinfratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
30 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
8. SVM (Support Vector Machine)
O SVM também é amplamente utilizado em objetivos de classificação. Porém, seu objetivo 
é encontrar um hiperplano (limites de decisão que ajudam a classificar os pontos de um 
conjunto de dados) em um espaço N-dimensional (N = o número de variáveis) que classifica 
de forma diferente os pontos de dados (ILUMEO, 2021).
Os dados que caem em ambos os lados do hiperplano podem ser atribuídos a diferentes 
classes. Além disso, a dimensão do hiperplano depende do número de variáveis. Se o número 
de recursos de entrada for 2, o hiperplano será apenas uma linha. Se o número de recursos 
de entrada for 3, o hiperplano se tornará um plano tridimensional. Torna-se difícil imaginar 
quando o número de recursos excede 3 (ILUMEO, 2021).
Na prática, um algoritmo de otimização é usado para encontrar os valores dos coeficientes 
que maximizam a margem. Assim, o SVM pode ser um dos mais poderosos classificadores 
em machine learning (ILUMEO, 2021).
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
31 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
9. random forest
Os algoritmos Random Forest são criados por várias árvores de decisão, geralmente 
treinados com o método de bagging, cuja ideia principal é que a combinação de modelos 
aumenta o resultado final (ILUMEO, 2021).
Como exemplo, pode ser usado nos bancos para detectar clientes que irão usar os serviços 
bancários mais frequentemente que outros e pagar suas dívidas em dia. No e-commerce 
pode ser utilizado para determinar se um cliente irá gostar do produto ou não, fazendo 
recomendações dos mais alinhados ao seu perfil e que, provavelmente, façam mais sentido 
comprar (ILUMEO, 2021).
técnIcAs e etApAs De constrUção Do moDelo De mAchIne leArnIng
Ao criar um modelo de machine learning, nem sempre teremos os dados prontos. Assim, 
faz-se necessário realizar algumas transformações nos dados antes de apresentá-los ao 
algoritmo (ENAP, 2020).
Na fase de pré-processamento, os dados são divididos em dados de treino e dados de 
teste (ENAP, 2020).
Dados de Treino Apresentados ao algoritmo para que ele aprenda o relacionamento entre as variáveis e crie o modelo.
Dados de Teste Utilizados para avaliar o quanto o algoritmo aprendeu.
Ao apresentar os dados de teste ao modelo, as previsões são realizadas tomando-se como 
base o que foi aprendido na fase de treinamento. Essas previsões são então comparadas com 
as respostas esperadas para calcular o desempenho do modelo. Uma vez criado e validado, o 
modelo pode ser utilizado para que sejam realizadas novas previsões quando for apresentado 
a novos dados (ENAP, 2020).
A figura seguinte, extraída de ENAP (2020) apresenta um esquema destacando as atividades 
envolvidas na construção de um modelo preditivo:
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
32 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
Figura. ENAP (2020) apud Raschka (2015)
Vamos então ao estudo das etapas de construção do modelo de machine learning 
(ENAP, 2020):
1. Pré-processamento dos dados
Essa etapa tem como objetivo melhorar a qualidade dos dados que serão apresentados 
ao algoritmo.
Algumas técnicas utilizadas nessa etapa são destacadas a seguir (ENAP, 2020):
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
33 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
Fonte: Quintão (2023)
2. Aprendizagem – construção do Modelo
Nessa etapa, o modelo é construído a partir dos dados que são apresentados ao algoritmo 
(ENAP, 2020).
Algumas técnicas utilizadas são:
• Cross-validation
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
34 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
Utilizada para treinar e validar um modelo com o mesmo conjunto de dados, dividindo-os 
em partições.
Assim, a cada iteração, o algoritmo troca os dados de treino e teste com o objetivo de 
obter um melhor desempenho.
• Métricas de desempenho
Uso de métricas para medir o desempenho de um modelo. Como exemplo, é possível medir 
a acurácia (o percentual de previsões corretas em problemas de classificação).
• Otimização de hiperparâmetros
Cada algoritmo possui um conjunto de hiperparâmetros que podem ser alterados.
Essa técnica busca encontrar a combinação certa de valores com o objetivo de melhorar 
a performance do modelo.
3. Avaliação do Modelo
Nesta etapa, os dados de teste são apresentados ao modelo e, com isso, são geradas 
previsões. Essas previsões são comparadas com os resultados desejados para avaliar o 
desempenho do modelo (ENAP, 2020).
4. Predição
Se o modelo avaliado apresentar um bom resultado, poderá ser utilizado para receber 
novos dados e realizar previsões (ENAP, 2020).
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
35 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
reSUMo
Vamos, inicialmente, destacar alguns termos utilizados para se referir a partes específicas 
de um conjunto de dados.
Figura. Alguns Conceitos Relacionados a Machine Learning (QUINTÃO, 2023)
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
36 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
Figura. Raschka (2015)
Overfitting
(Sobreajuste)
É quando o modelo aprende demais sobre os dados, ou seja, acontece quando se tem 
um modelo com bom desempenho com os dados treinados, mas que não trabalha bem 
com novos dados.
Também é bem mais difícil de ser perceber.
Neste caso, mostra-se adequado apenas para os dados de treino, como se o modelo 
tivesse apenas decorado os dados de treino e não fosse capaz de generalizar para 
outros dados nunca vistos antes.
Quando isso acontece, os dados de treino apresentam resultados excelentes, enquanto 
que a performance do modelo cai drasticamente com os dados de teste (BRANCO, 2022).
Podemos identificar que há sobreajuste quando comparamos a performance do modeloem treino e teste, variando alguns parâmetros (como a quantidade de dados, por 
exemplo).
Underfitting
(sub-ajuste)
Indica que o modelo não conseguiu aprender o suficiente sobre os dados.
É mais fácil de ser identificado.
Ele acontece quando o erro do modelo é elevado em ambos os dados de treino e teste 
(BRANCO, 2022).
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
37 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
Figura. O Pipeline de Machine Learning (DATASCIENCEACADEMY, 2022)
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
38 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
Figura. Tipos de Aprendizado de Máquina (QUINTÃO, 2023)
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
39 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
Figura. Algoritmos de Machine Learning (QUINTÃO, 2023)
Algoritmos de Machine Learning
Algoritmo Problema Tipo de Aprendizagem
Logistic Regression Classificação Supervisionada
K-Nearest Neighbor Classificação Supervisionada
Naive Bayes Classificação Supervisionada
Decision Trees Classificação Supervisionada
Regression Trees Regressão Supervisionada
Linear Regression Regressão Supervisionada
Neural Networks Classificação/Regressão Supervisionada
Support Vector Machines Classificação/Regressão Supervisionada
Random Forest Classificação/Regressão Supervisionada
PCA Redução de dimensionalidade Não Supervisionada
Association Rules Detecção de padrões Não Supervisionada
K-means Clustering Agrupamento Não Supervisionada
DBSCAN Agrupamento Não Supervisionada
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
40 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
QUeSTÕeS coMenTAdAS nA AUlA
001. (CESPE/ANP/2022) As aplicações em inteligência artificial são definidas como uma 
subárea da área de aprendizagem de máquina/machine learning).
002. (CESPE/TCE-MG/2018) Em machine learning, a categoria de aprendizagem por reforço 
identifica as tarefas em que:
a) um software interage com um ambiente dinâmico, como, por exemplo, veículos autônomos.
b) as etiquetas de classificação não sejam fornecidas ao algoritmo, de modo a deixá-lo livre 
para entender as entradas recebidas.
c) o aprendizado pode ser um objetivo em si mesmo ou um meio para se atingir um fim.
d) o objetivo seja aprender um conjunto de regras generalistas para converter as entradas em 
saídas predefinidas.
e) são apresentados ao computador exemplos de entradas e saídas desejadas, fornecidas por 
um orientador
003. (COM. ORG. IFSP/ANALISTA DE TECNOLOGIA DA INFORMAÇÃO-IF SP/CIÊNCIA DE 
DADOS/2022) Nos modelos de aprendizado de máquina, existem dois problemas básicos 
que devem ser considerados. O primeiro problema é o sobreajuste/overfitting) que acontece 
quando se tem um modelo com bom desempenho com os dados treinados, mas que não 
trabalha bem com novos dados. Já o segundo problema, é o sub-ajuste/underfitting) que já 
sequer trabalhar com os dados de treino e, consequentemente, na aplicação em si. Para isso, 
é necessário implementar modelos que sejam equilibrados para atender as demandas.
Considerando essas afirmações e a figura a seguir, selecione a alternativa que melhor associa 
o problema com os dados dispostos no espaço com a solução equilibrada, com sub-ajuste e 
sobreajuste de acordo com sua indicação (I, II e III).
a) (I) equilibrado, (II) sobreajustado e (III) sub-ajustado
b) (I) equilibrado, (II) sub-ajustado e (III) sobreajustado
c) (I) sobreajustado, (II) equilibrado e (III) sub-ajustado
d) (I) sub-ajustado, (II) sobreajustado e (III) equilibrado
004. (CESPE-CEBRASPE/ANP/ATIVIDADES DE REGULAÇÃO/NOVAS ATRIBUIÇÕES IV/2022) 
Considerando-se, nos gráficos a seguir, que o resultado #2 corresponda ao melhor desempenho 
do algoritmo, é correto afirmar que o resultado #1 indica que houve underfitting.
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
41 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
005. (CESPE/EMBRAPA/PESQUISADOR/MÉTODOS QUANTITATIVOS AVANÇADO/DATA-
E-TEXTMINING/2006) Em modelos de classificação, ocorre overfitting quando o número de 
erros cometidos no grupo de dados usado para treinar/ajustar) o modelo é muito pequeno e 
o número de erros de generalização é grande.
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
42 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
QUeSTÕeS de concUrSo
006. (QUADRIX/CRO – SC/TÉCNICO EM INFORMÁTICA/2023) No que diz respeito às novas 
tecnologias, julgue o item.
A inteligência artificial refere-se a um campo de conhecimento que não está associado à 
aprendizagem, uma vez que esta é uma capacidade puramente humana; contudo, este campo 
está associado à linguagem e à inteligência, ao raciocínio e à resolução de problemas.
007. (FGV/SEFAZ MG/AUDITOR FISCAL DA RECEITA ESTADUAL/ÁREA TECNOLOGIA DA 
INFORMAÇÃO/2023) Machine Learning é um subconjunto da Inteligência Artificial que utiliza 
dados e algoritmos para imitar o raciocínio humano.
Em relação aos algoritmos de machine learning, assinale a afirmativa incorreta.
a) Algoritmo de regressão: prevê valores de saída usando recursos de entrada dos dados fornecidos 
ao sistema. Os algoritmos mais populares são Linear Regression, Logistic Regression Multivariate 
Adaptive Regression Splines (MARS) e Locally Estimated Scatter plot Smoothing (LOESS).
b) Algoritmo de agrupamento: agrupamento de pontos de dados com base em recursos 
semelhantes. Alguns algoritmos são KMeans, K-Medians e Hierárquical Clustering.
c) Algoritmo de regularização: é um processo de diminuir informações adicionais para evitar 
o overfitting ou resolver um problema mal definido. Os algoritmos mais comuns são Least 
Absolute Shrinkage and Selection Operator (LASSO), Least-Angle Regression (LARS) e Elastic 
Net and Ridge Regression.
d) Algoritmos de redução de dimensionalidade: reduzem o número de características obtendo 
um conjunto de variáveis principais. Alguns algoritmos são Principal Component Analysis (PCA) 
e Principal Component Regression (PCR).
e) Algoritmos de regras de associação: é usado para descobrira relação entre os pontos de 
dados. Alguns algoritmos comuns são o algoritmo Apriori e o algoritmo Eclat.
008. (FGV/TRT-MA/2022) Com relação aos conceitos de aprendizado de máquina, assinale 
V para a afirmativa verdadeira e F para a falsa.
I – Os três principais paradigmas de aprendizado de máquina são os de aprendizado supervisionado, 
não supervisionado e por inteligência profunda.
II – Os algoritmos de classificação e clusterização estão correlacionados com paradigma de 
aprendizado supervisionado.
III – Os algoritmos de Support Vector Machines e Random Forest são paradigmas do aprendizado 
de inteligência profunda.
As afirmativas são, respectivamente,
a) V, V e V.
b) V, V e F.
c) V, F e V.
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
43 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
d) F, V e V.
e) F, F e F.
009. (CESPE/POLÍCIA FEDERAL/ESCRIVÃO DE POLÍCIA FEDERAL/2018) Em um big data, 
alimentado com os dados de um sítio de comércio eletrônico, são armazenadas informações 
diversificadas, que consideram a navegação dos usuários, os produtos comprados e outras 
preferências que o usuário demonstre nos seus acessos.
Tendo como referência as informações apresentadas, julgue o item seguinte.
Uma aplicação que reconheça o acesso de um usuário e forneça sugestões diferentes para cada 
tipo de usuário pode ser considerada uma aplicação que usa machine learning.
010. (CEBRASPE/CESPE/ANALISTA BANCÁRIO/BNB/2018) Não podemos descartar a 
operação humana por trás dos sistemas, muito menos a presença de analistas reais. Vamos 
supor que um sistema de aprendizagem de máquina perceba que todas as pessoas com 
índice de massa corporal regular tomam café com açúcar, enquanto todas as pessoas com 
índice elevado tomam a bebida com adoçante. A inteligência artificial poderá inferir, assim, 
que o adoçante é o responsável pela obesidade dos usuários, o que nós sabemos, pela nossa 
inteligência humana, que não é bem assim.
O sistema de aprendizagem de máquina diminui a ocorrência de falsos positivos e deve contribuir 
para cortes de gastos. Contudo, não podemos deixar de considerar uma pessoa que esteja por trás 
do sistema, pronta para lidar com casos realmente duvidosos, que mereçam ser mais bem avaliados.
Correio Braziliense, 1º/10/2018, p. 14 (com adaptações).
Com relação às ideias do texto, julgue o item subsequente.
De acordo com o texto, a inteligência artificial cometeria um equívoco se associasse o adoçante 
à causa da obesidade das pessoas com índice de massa corporal elevado.
011. (CESGRANRIO/EPE/ANALISTA DE GESTÃO CORPORATIVA/TECNOLOGIA DA 
INFORMAÇÃO/2012) As técnicas de mineração de dados podem ser categorizadas em 
supervisionadas e não supervisionadas. As técnicas de árvores de decisão, agrupamento e 
regras de associação são categorizadas, respectivamente, como
a) não supervisionada, não supervisionada, não supervisionada
b) não supervisionada, supervisionada e não supervisionada
c) supervisionada, não supervisionada e não supervisionada
d) supervisionada, não supervisionada e supervisionada
e) supervisionada, supervisionada e supervisionada
012. (ENAP/2020) O termo inteligência artificial pode ser definido como:
Escolha uma opção:
a) Uma técnica que realiza tarefas de forma automática.
b) Um campo da ciência que estuda como computadores podem realizar tarefas simples para 
humanos, mas complexas para sistemas de informática.
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
44 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
c) Uma ciência voltada para aumentar a inteligência de seres humanos.
d) Uma área de estudo focada na criação de robôs.
e) Uma técnica ou ferramenta independente de outras ciências.
013. (ENAP/2020) A execução de programas de IA em dispositivos de borda apresenta 
limitações de processamento e memória disponível. Entre as ferramentas que tem foco na 
otimização de modelos para execução em ambientes com essas restrições, podemos citar:
Escolha uma opção:
a) Keras
b) Scikit-Learn
c) Amazon SageMaker Neo
d) PyTorch
e) TensorFlow
014. (IBADE/PROFESSOR/PREF VILA VELHA/TECNOLOGIAS EDUCACIONAIS/2020) A 
Inteligência Artificial não está presente apenas nos filmes, centros de pesquisas ou empresas 
de tecnologia, mas em nosso cotidiano, à nossa porta.
Os estudos e aplicações de IA visam aprimorar a computação cognitiva, por meio do desenvolvimento 
de algoritmos que permitam às máquinas adquirirem capacidades antes apenas atribuídas a 
seres humanos, tais como, a resolução de problemas, a compreensão da linguagem natural das 
conversações, a visão, a apreensão e a interpretação de conteúdo.
(https://www.ibm.com)
A ideia de IA com potencial de substituir o ser humano ou de automatizar determinadas atividades é, 
mais propriamente, uma visão desta última década, substituída pelo desenvolvimento de aplicações 
que ampliam ou complementam as habilidades cognitivas do homem, o que é denominado de:
a) inteligência ampliada.
b) sistema complexo.
c) tecnologia alterada.
d) algoritmo adaptado.
e) linguagem diferenciada.
015. (CESPE/SLU-DF/ANALISTA DE GESTÃO DE RESÍDUOS SÓLIDOS/COMUNICAÇÃO SOCIAL/
RELAÇÕES PÚBLICAS/2019) Com relação a atendimento ao público, julgue o item subsecutivo.
O serviço de chatbot, um sistema que permite às grandes corporações oferecer um canal direto 
com o consumidor, é um dos exemplos tecnológicos utilizado no atendimento ao público, 
tornando a comunicação entre empresa e cliente mais próxima e personalizada, graças aos 
avanços da inteligência artificial.
016. (CESPE/SLU-DF/ANALISTA DE GESTÃO DE RESÍDUOS SÓLIDOS/COMUNICAÇÃO 
SOCIAL/JORNALISMO/2019) Acerca de press release e outras produções de assessorias 
de imprensa, julgue o item seguinte.
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
45 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
As novas tecnologias direcionadas para o acompanhamento de tendências facilitam o trabalho 
das assessorias na elaboração do clipping e dos respectivos relatórios, devido aos sistemas 
automatizados de busca e monitoramento de notícias por assunto.
017. (CESPE/EBSERH/JORNALISTA/2018) Quando deixam de chamar a atenção e se tornam 
triviais, as mídias se tornam realmente importantes. Se sua articulação com o cotidiano atinge 
um nível muito alto, a própria vida se transforma. Não por conta da mídia em si, mas pelas 
relações humanas ligadas a elas.
Luís M de Sá Martino Teoria das mídias digitais
Petrópolis: Vozes, 2015 (com adaptações)
Considerando a importância das novas mídias digitais para o jornalismo, julgue o seguinte item.
As informações digitais são processadas através de computadores, o que as torna mais inflexíveis.
018. (CESPE/INMETRO/PESQUISADOR TECNOLOGISTA EM METROLOGIA E QUALIDADE/
TECNOLOGIA E INOVAÇÃO/2010) As diversas aplicações da inteligência artificial podem ser 
agrupadas em três grandes áreas: ciência cognitiva, robótica e interfaces naturais.
Assinale a opção correspondente aos itens relacionados à ciência cognitiva.
a) sistemas de aprendizagem, lógica delphi e locomoção
b) sistemasespecialistas, lógica difusa e algoritmos genéricos.
c) reconhecimento do discurso, realidade virtual e sensoriamento remoto.
d) condução física, e-business e algoritmos matriciais.
e) lógica vetorial, percepção visual e destreza.
019. (CESPE/SERPRO/ANALISTA/DESENVOLVIMENTO DE SISTEMAS/ADAPTADA/2008) 
No que concerne a tópicos avançados, julgue o item subsequente
Software de inteligência empresarial, como mineração de dados, CRM e datawharehouse, por 
exemplo, aplicam métodos de inteligência artificial e robótica avançados para a representação 
e extração da informação em grandes bases de dados.
020. (QUADRIX/CFO-DF/ANALISTA DE DESENVOLVIMENTO DE SISTEMA DE INFORMAÇÃO/2017) 
Julgue o item que se segue acerca de engenharia de software e inteligência computacional.
Inteligência computacional é um conjunto de métodos e(ou) técnicas que procura desenvolver 
sistemas dotados de comportamento semelhante a certos aspectos do comportamento inteligente.
021. (CEBRASPE/CESPE/TÉCNICO/FUB/AUDIOVISUAL/2018) Com relação a tecnologias 
de ensino e ao seu uso, julgue o item que se segue.
Existem programas semiautônomos, proativos e adaptativos, que utilizam recursos de inteligência 
artificial. Eles são usados no ensino a distância porque possibilitam a recuperação de informações, 
a operação de programas, e o monitoramento de recursos de rede utilizados pelos profissionais 
dessa modalidade de ensino.
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
46 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
gABAriTo
1. E
2. a
3. d
4. c
5. c
6. e
7. c
8. e
9. C
10. C
11. c
12. b
13. c
14. a
15. C
16. C
17. E
18. b
19. E
20. C
21. C
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
47 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
gABAriTo coMenTAdo
006. (QUADRIX/CRO – SC/TÉCNICO EM INFORMÁTICA/2023) No que diz respeito às novas 
tecnologias, julgue o item.
A inteligência artificial refere-se a um campo de conhecimento que não está associado à 
aprendizagem, uma vez que esta é uma capacidade puramente humana; contudo, este campo 
está associado à linguagem e à inteligência, ao raciocínio e à resolução de problemas.
A Inteligência Artificial (IA) é um avanço tecnológico que permite que sistemas simulem uma 
inteligência similar à humana — indo além da programação de ordens específicas para tomar 
decisões de forma autônoma, baseadas em padrões de enormes bancos de dados. Assim, 
podemos definir IA, no grosso modo, como a capacidade das máquinas de pensarem como 
seres humanos: aprender, perceber e decidir quais caminhos seguir, de forma racional, diante 
de determinadas situações.
Errado.
007. (FGV/SEFAZ MG/AUDITOR FISCAL DA RECEITA ESTADUAL/ÁREA TECNOLOGIA DA 
INFORMAÇÃO/2023) Machine Learning é um subconjunto da Inteligência Artificial que utiliza 
dados e algoritmos para imitar o raciocínio humano.
Em relação aos algoritmos de machine learning, assinale a afirmativa incorreta.
a) Algoritmo de regressão: prevê valores de saída usando recursos de entrada dos dados fornecidos 
ao sistema. Os algoritmos mais populares são Linear Regression, Logistic Regression Multivariate 
Adaptive Regression Splines (MARS) e Locally Estimated Scatter plot Smoothing (LOESS).
b) Algoritmo de agrupamento: agrupamento de pontos de dados com base em recursos 
semelhantes. Alguns algoritmos são KMeans, K-Medians e Hierárquical Clustering.
c) Algoritmo de regularização: é um processo de diminuir informações adicionais para evitar 
o overfitting ou resolver um problema mal definido. Os algoritmos mais comuns são Least 
Absolute Shrinkage and Selection Operator (LASSO), Least-Angle Regression (LARS) e Elastic 
Net and Ridge Regression.
d) Algoritmos de redução de dimensionalidade: reduzem o número de características obtendo 
um conjunto de variáveis principais. Alguns algoritmos são Principal Component Analysis (PCA) 
e Principal Component Regression (PCR).
e) Algoritmos de regras de associação: é usado para descobrir a relação entre os pontos de 
dados. Alguns algoritmos comuns são o algoritmo Apriori e o algoritmo Eclat.
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
48 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
a) Certa. Algoritmo de regressão: prevê valores de saída usando recursos de entrada dos 
dados fornecidos ao sistema. Os algoritmos mais populares são Linear Regression, Logistic 
Regression Multivariate Adaptive Regression Splines (MARS) e Locally Estimated Scatter plot 
Smoothing (LOESS).
b) Certa. Algoritmo de agrupamento: agrupamento de pontos de dados com base em recursos 
semelhantes. Alguns algoritmos são KMeans, K-Medians e Hierárquical Clustering.
c) Errada. Algoritmos de regularização otimizam os dados utilizando pesos. Os mais comuns 
são o LASSO e RIDE, conforme destaca
https://medium.com/turing-talks/turing-talks-20-regress%c3%a3º-de-ridge-e-lasso-a0fc467b5629.
d) Certa. Algoritmos de redução de dimensionalidade: reduzem o número de características 
obtendo um conjunto de variáveis principais. Alguns algoritmos são Principal Component 
Analysis (PCA) e Principal Component Regression (PCR).
e) Certa. Algoritmos de regras de associação: é usado para descobrir a relação entre os pontos 
de dados. Alguns algoritmos comuns são o algoritmo Apriori e o algoritmo Eclat.
Letra c.
008. (FGV/TRT-MA/2022) Com relação aos conceitos de aprendizado de máquina, assinale 
V para a afirmativa verdadeira e F para a falsa.
I – Os três principais paradigmas de aprendizado de máquina são os de aprendizado supervisionado, 
não supervisionado e por inteligência profunda.
II – Os algoritmos de classificação e clusterização estão correlacionados com paradigma de 
aprendizado supervisionado.
III – Os algoritmos de Support Vector Machines e Random Forest são paradigmas do aprendizado 
de inteligência profunda.
As afirmativas são, respectivamente,
a) V, V e V.
b) V, V e F.
c) V, F e V.
d) F, V e V.
e) F, F e F.
I – Errado. Os três principais paradigmas de aprendizado de máquina são:
• aprendizado supervisionado: os algoritmos são treinados por meio de exemplos rotulados 
(categorizados), como uma entrada na qual a saída desejada é conhecida, isto é, o algoritmo 
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
https://medium.com/turing-talks/turing-talks-20-regress%C3%A3o-de-ridge-e-lasso-a0fc467b5629
49 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
receberá os dados de entrada e as possíveis saídas. O objetivo é aprender regras que 
mapeiam entradas em saídas;
• aprendizado não supervisionado: os algoritmos são utilizados em dados sem rótulos 
(categorias) predefinidos. A “resposta certa” não é informada para o sistema, isto é, não 
são informadas as possíveis saídas. O objetivo éexplorar os dados e encontrar alguma 
estrutura dentro deles;
• aprendizado por reforço: o algoritmo descobre através de “tentativa e erro” quais ações 
trazem resultados mais efetivos.
II – Errado. Classificação: técnica de aprendizado de máquina que permite aos usuários classificar 
os dados em grupos para facilitar a análise. É usado para prever o comportamento futuro de um 
dado ou para descobrir padrões em um conjunto de dados. O algoritmo de classificação está 
correlacionado com paradigma de aprendizado supervisionado para distribuir um conjunto de 
dados de entrada em categorias ou classes predefinidas de saída.
O algoritmo de clusterização está correlacionado com paradigma de aprendizado não 
supervisionado.
III – Errado. Os algoritmos de Support Vector Machines (SVM) e Random Forest são paradigmas 
do aprendizado supervisionado.
Letra e.
009. (CESPE/POLÍCIA FEDERAL/ESCRIVÃO DE POLÍCIA FEDERAL/2018) Em um big data, 
alimentado com os dados de um sítio de comércio eletrônico, são armazenadas informações 
diversificadas, que consideram a navegação dos usuários, os produtos comprados e outras 
preferências que o usuário demonstre nos seus acessos.
Tendo como referência as informações apresentadas, julgue o item seguinte.
Uma aplicação que reconheça o acesso de um usuário e forneça sugestões diferentes para cada 
tipo de usuário pode ser considerada uma aplicação que usa machine learning.
Machine Learning: é uma área de estudo que busca dar aos computadores a habilidade de 
aprender sem serem programados explicitamente. Segundo artigo da Data Science Academy 
(2018), “a aprendizagem de máquina é um subconjunto da inteligência artificial (IA), o segmento 
da ciência da computação que se concentra na criação de computadores que pensam da maneira 
que os humanos”. A máquina aprende com seus erros e acertos e é capaz de fazer previsões e 
tomar decisões baseadas em sua experiência, que pode ser compartilhada para outras máquinas.
Certo.
010. (CEBRASPE/CESPE/ANALISTA BANCÁRIO/BNB/2018) Não podemos descartar a 
operação humana por trás dos sistemas, muito menos a presença de analistas reais. Vamos 
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
50 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
supor que um sistema de aprendizagem de máquina perceba que todas as pessoas com 
índice de massa corporal regular tomam café com açúcar, enquanto todas as pessoas com 
índice elevado tomam a bebida com adoçante. A inteligência artificial poderá inferir, assim, 
que o adoçante é o responsável pela obesidade dos usuários, o que nós sabemos, pela nossa 
inteligência humana, que não é bem assim.
O sistema de aprendizagem de máquina diminui a ocorrência de falsos positivos e deve contribuir 
para cortes de gastos. Contudo, não podemos deixar de considerar uma pessoa que esteja por trás 
do sistema, pronta para lidar com casos realmente duvidosos, que mereçam ser mais bem avaliados.
Correio Braziliense, 1º/10/2018, p. 14 (com adaptações).
Com relação às ideias do texto, julgue o item subsequente.
De acordo com o texto, a inteligência artificial cometeria um equívoco se associasse o adoçante 
à causa da obesidade das pessoas com índice de massa corporal elevado.
Machine Learning (Aprendizado de Máquina) é uma área de estudo que busca dar aos 
computadores a habilidade de aprender sem serem programados explicitamente. Segundo 
artigo da Data Science Academy (2018), “a aprendizagem de máquina é um subconjunto da 
inteligência artificial (IA), o segmento da ciência da computação que se concentra na criação de 
computadores que pensam da maneira que os humanos”. A máquina aprende com seus erros 
e acertos e é capaz de fazer previsões e tomar decisões baseadas em sua experiência, que 
pode ser compartilhada para outras máquinas.
Na referida questão, o autor afirma a possibilidade de a inteligência artificial inferir “que o 
adoçante é o responsável pela obesidade dos usuários”. No entanto, essa inferência, de acordo 
com a “inteligência humana”, seria incorreta, conforme explicita o texto seguinte: “A inteligência 
artificial poderá inferir, assim, que o adoçante é o responsável pela obesidade dos usuários, o que 
nós sabemos, pela nossa inteligência humana, que não é bem assim.”
Certo.
011. (CESGRANRIO/EPE/ANALISTA DE GESTÃO CORPORATIVA/TECNOLOGIA DA 
INFORMAÇÃO/2012) As técnicas de mineração de dados podem ser categorizadas em 
supervisionadas e não supervisionadas. As técnicas de árvores de decisão, agrupamento e 
regras de associação são categorizadas, respectivamente, como
a) não supervisionada, não supervisionada, não supervisionada
b) não supervisionada, supervisionada e não supervisionada
c) supervisionada, não supervisionada e não supervisionada
d) supervisionada, não supervisionada e supervisionada
e) supervisionada, supervisionada e supervisionada
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
51 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
Conforme visto na figura seguinte, as técnicas de árvores de decisão, agrupamento e regras de 
associação são categorizadas, respectivamente, como supervisionada, não supervisionada e 
não supervisionada.
Letra c.
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
52 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
012. (ENAP/2020) O termo inteligência artificial pode ser definido como:
Escolha uma opção:
a) Uma técnica que realiza tarefas de forma automática.
b) Um campo da ciência que estuda como computadores podem realizar tarefas simples para 
humanos, mas complexas para sistemas de informática.
c) Uma ciência voltada para aumentar a inteligência de seres humanos.
d) Uma área de estudo focada na criação de robôs.
e) Uma técnica ou ferramenta independente de outras ciências.
O foco da inteligência artificial é permitir que um programa seja capaz de realizar atividades 
simples para humanos, mas complexas para máquinas.
Não é uma técnica, é uma área de estudo, e não possui foco na melhoria do ser humano ou na 
criação de robôs, ainda que possa ser utilizada para esse fim.
Letra b.
013. (ENAP/2020) A execução de programas de IA em dispositivos de borda apresenta 
limitações de processamento e memória disponível. Entre as ferramentas que tem foco na 
otimização de modelos para execução em ambientes com essas restrições, podemos citar:
Escolha uma opção:
a) Keras
b) Scikit-Learn
c) Amazon SageMaker Neo
d) PyTorch
e) TensorFlow
O Amazon SageMaker Neo atua especificamente na otimização de modelos para execução em 
dispositivos de borda ou na nuvem. As outras ferramentas apresentadas não apresentam tal foco.
Letra c.
014. (IBADE/PROFESSOR/PREF VILA VELHA/TECNOLOGIAS EDUCACIONAIS/2020) A 
Inteligência Artificial não está presente apenas nos filmes, centros de pesquisas ou empresas 
de tecnologia, mas em nosso cotidiano, à nossa porta.
Os estudos e aplicações de IA visam aprimorar a computação cognitiva, por meio do desenvolvimento 
de algoritmos que permitam às máquinas adquirirem capacidades antes apenas atribuídas a 
seres humanos, tais como, a resoluçãode problemas, a compreensão da linguagem natural das 
conversações, a visão, a apreensão e a interpretação de conteúdo.
(https://www.ibm.com)
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
53 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
A ideia de IA com potencial de substituir o ser humano ou de automatizar determinadas atividades é, 
mais propriamente, uma visão desta última década, substituída pelo desenvolvimento de aplicações 
que ampliam ou complementam as habilidades cognitivas do homem, o que é denominado de:
a) inteligência ampliada.
b) sistema complexo.
c) tecnologia alterada.
d) algoritmo adaptado.
e) linguagem diferenciada.
Conforme destaca https://www.ibm.com/ibm/responsibility/br-pt/downloads/e-book-IA-
na-educacao.pdf, a ideia de IA com potencial de substituir o ser humano ou de automatizar 
determinadas atividades é, mais propriamente, uma visão desta década, substituída pelo 
desenvolvimento de aplicações que ampliam ou complementam as habilidades cognitivas do 
homem, o que é nominado de “inteligência ampliada”.
Suas aplicações atuais buscam emular as faculdades cognitivas humanas de modo a possibilitar que 
sistemas computacionais possam lidar com dados desestruturados, isto é, dados cuja organização e 
semântica não são conhecidas a priori. Tudo o que é publicado em redes sociais, artigos científicos, 
vídeos, textos em geral são considerados dados desestruturados, e estima-se que correspondam 
a 80% dos dados existentes no mundo. Nesse sentido, as máquinas estão sendo “ensinadas” a 
entender esses dados, para poder gerar conhecimento a partir deles. Por meio dessas máquinas, já 
se pode ir além do mero armazenamento de informações para a interpretação dessas informações, 
ou seja, deduzir ou inferir relações entre fatos, conceitos e conhecimentos adquiridos.
Assim, o rótulo de “inteligência ampliada”, que tem uma conotação mais neutra, ajuda as 
empresas a entender que a inteligência artificial simplesmente melhorará os produtos e serviços, 
uma vez que o uso da IA amplia ou complementa as habilidades cognitivas do homem. Essa 
nova terminologia para IA ocorreu porque alguns especialistas do setor acreditam que o termo 
inteligência artificial está intimamente ligado à cultura popular, fazendo com que o público, em 
geral tenha medos irreais sobre a IA e expectativas improváveis sobre como isso mudará o local 
de trabalho e a vida em geral.
Letra a.
015. (CESPE/SLU-DF/ANALISTA DE GESTÃO DE RESÍDUOS SÓLIDOS/COMUNICAÇÃO SOCIAL/
RELAÇÕES PÚBLICAS/2019) Com relação a atendimento ao público, julgue o item subsecutivo.
O serviço de chatbot, um sistema que permite às grandes corporações oferecer um canal direto 
com o consumidor, é um dos exemplos tecnológicos utilizado no atendimento ao público, 
tornando a comunicação entre empresa e cliente mais próxima e personalizada, graças aos 
avanços da inteligência artificial.
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
54 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
A área de atendimento ao público é uma forte candidata para a adoção de soluções de inteligência 
artificial. Existem diversas soluções que abstraem toda a complexidade de implementação 
de uma solução de inteligência artificial e permitem a criação de chatbots apenas inserindo 
exemplos de perguntas e respostas.
Chatterbot (ou chatbot) é um programa de computador que tenta simular um ser humano na 
conversação com as pessoas. O objetivo é responder as perguntas de tal forma que as pessoas 
tenham a impressão de estar conversando com outra pessoa e não com um programa de 
computador. Após o envio de perguntas em linguagem natural, o programa consulta uma base de 
conhecimento e em seguida fornece uma resposta que tenta imitar o comportamento humano.
Os chatbots já são considerados como o futuro do relacionamento com o cliente, tornando a 
comunicação entre empresa e cliente mais próxima e personalizada, graças aos avanços da 
inteligência artificial. Para as empresas, são uma alternativa interessante para interagir com 
clientes em tempo integral. A seguir, tem-se um exemplo do chatbot da IFood Pizzaria:
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
55 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
Também já existem chatbots que usam as técnicas de machine learning (aprendizado de máquina). 
Nesses, os robôs conseguem aprender com o usuário. Através de inteligência artificial, o chatbot 
tem a capacidade de aprender com perguntas e interações para saber como respondê-las no 
futuro, mesmo que outra pessoa faça a pergunta usando palavras diferentes.
Certo.
016. (CESPE/SLU-DF/ANALISTA DE GESTÃO DE RESÍDUOS SÓLIDOS/COMUNICAÇÃO SOCIAL/
JORNALISMO/2019) Acerca de press release e outras produções de assessorias de imprensa, 
julgue o item seguinte.
As novas tecnologias direcionadas para o acompanhamento de tendências facilitam o trabalho 
das assessorias na elaboração do clipping e dos respectivos relatórios, devido aos sistemas 
automatizados de busca e monitoramento de notícias por assunto.
O clipping é uma das maneiras de apresentar resultados de assessoria de imprensa ao cliente, 
além de também mostrar o trabalho feito pela agência de comunicação junto aos jornalistas 
da imprensa e influenciadores digitais no ambiente online.
As ferramentas para o acompanhamento de tendências podem ser utilizadas em pelas assessorias, 
permitindo um monitoramento automatizado de notícias de veículos impressos e online, além de 
vídeos e fotos publicados na internet. O software funciona como um robô, que pesquisa e captura as 
notícias a partir do uso de palavras-chave, temas, nomes de clientes, empresas, entre outras variáveis. 
A busca dura poucos segundos, e a indexação é feita automaticamente pela ferramenta de clipagem.
Referência: https://www.knewin.com/blog/ferramenta-de-clipagem-2/
Certo.
017. (CESPE/EBSERH/JORNALISTA/2018) Quando deixam de chamar a atenção e se tornam 
triviais, as mídias se tornam realmente importantes. Se sua articulação com o cotidiano atinge 
um nível muito alto, a própria vida se transforma. Não por conta da mídia em si, mas pelas 
relações humanas ligadas a elas.
Luís M de Sá Martino Teoria das mídias digitais
Petrópolis: Vozes, 2015 (com adaptações)
Considerando a importância das novas mídias digitais para o jornalismo, julgue o seguinte item.
As informações digitais são processadas através de computadores, o que as torna mais inflexíveis.
As informações digitais são processadas através de computadores, o que possibilita um processo 
muito mais flexível, fluido, rápido e dinâmico do que se poderia supor.
Errado.
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
56 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAçãoPatrícia Quintão
018. (CESPE/INMETRO/PESQUISADOR TECNOLOGISTA EM METROLOGIA E QUALIDADE/
TECNOLOGIA E INOVAÇÃO/2010) As diversas aplicações da inteligência artificial podem ser 
agrupadas em três grandes áreas: ciência cognitiva, robótica e interfaces naturais.
Assinale a opção correspondente aos itens relacionados à ciência cognitiva.
a) sistemas de aprendizagem, lógica delphi e locomoção
b) sistemas especialistas, lógica difusa e algoritmos genéricos.
c) reconhecimento do discurso, realidade virtual e sensoriamento remoto.
d) condução física, e-business e algoritmos matriciais.
e) lógica vetorial, percepção visual e destreza.
As aplicações da IA podem ser agrupadas em três áreas principais:
• Ciência Cognitiva: esta área da inteligência artificial é baseada em pesquisas em biologia, 
neurologia, psicologia, matemática e muitas disciplinas afins. Ela se concentra em pesquisar 
como o cérebro humano funciona e como os seres humanos pensam e aprendem. Os 
resultados dessas pesquisas em processamento humano de informações são a base para o 
desenvolvimento de uma diversidade de aplicações de inteligência artificial computadorizadas.
• Robótica: percepção visual, locomoção, condução, tatilidade.
• Interface natural: o desenvolvimento de linguagens naturais e reconhecimento do 
discurso, por exemplo, são importantes objetivos desta área. Ser capaz de conversar 
com computadores e robôs em linguagens humanas de conversação e conseguir que 
eles nos “compreendam” é uma meta da pesquisa da IA. Esta área de aplicação envolve 
pesquisa e desenvolvimento em linguística, psicologia, informática e outras disciplinas.
Esforços nesta área incluem:
• Linguagem Natural: uma linguagem de programação que é muito próxima da linguagem 
humana. Além disso, é chamada de linguagem de alto nível.
• Interfaces Multi-sensoriais: a capacidade que os sistemas de computadores possuem para 
reconhecer uma diversidade de movimentos do corpo humano que lhes permite operar.
• Reconhecimento de Voz: a capacidade que um sistema de computador possui para 
reconhecer modelos de voz e para operar utilizando esses modelos.
• Realidade Virtual: a utilização de interfaces multi-sensoriais homem computador que 
permitem aos usuários humanos experimentarem objetos, entidades, espaços e “mundos” 
simulador por computador como se estes realmente existissem.
Letra b.
019. (CESPE/SERPRO/ANALISTA/DESENVOLVIMENTO DE SISTEMAS/ADAPTADA/2008) 
No que concerne a tópicos avançados, julgue o item subsequente
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
57 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
Software de inteligência empresarial, como mineração de dados, CRM e datawharehouse, por 
exemplo, aplicam métodos de inteligência artificial e robótica avançados para a representação 
e extração da informação em grandes bases de dados.
Mineração de dados não é um software!
A mineração de dados é um campo interdisciplinar que reúne técnicas de aprendizado de 
máquina, reconhecimento de padrões, estatísticas, banco de dados e visualização para abordar 
a questão da extração de informações a partir de grandes bases de dados”
(Evangelos Simoudis, citado em Daniel T. Larose, Discovering Knowledge in Data – An Introduction 
to Data Mining).
Figura. Disciplinas envolvidas com Mineração de Dados (HAN & KAMBER, 2006)
É o processo de análise de conjuntos de dados que tem por objetivo a descoberta de padrões 
interessantes e que possam representar informações úteis.
Errado.
020. (QUADRIX/CFO-DF/ANALISTA DE DESENVOLVIMENTO DE SISTEMA DE INFORMAÇÃO/2017) 
Julgue o item que se segue acerca de engenharia de software e inteligência computacional.
Inteligência computacional é um conjunto de métodos e(ou) técnicas que procura desenvolver 
sistemas dotados de comportamento semelhante a certos aspectos do comportamento inteligente.
A Associação Brasileira de Inteligência Computacional (ABRACOM) apresenta uma definição 
do termo Inteligência Computacional (IC): trata-se de um conjunto de métodos computacionais 
bioinspirados, capazes de tratar problemas complexos do mundo real.
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
58 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
Inteligência computacional é um ramo da ciência da computação que utiliza métodos e(ou) 
técnicas que imitam algumas habilidades cognitivas, como reconhecimento, aprendizado e 
evolução, para criar programas, de alguma forma, inteligentes.
A IC difere da Inteligência Artificial (IA) “clássica” por basear-se em modelos inspirados na 
natureza como, por exemplo, Redes Neurais Artificiais, Algoritmos Genéticos, ou Inteligência 
de Enxames. Por outro lado, a IA usualmente utiliza modelos baseados nas diversas formas de 
raciocínio humano. Os métodos de Inteligência Computacional objetivam realizar tarefas que 
requerem raciocínio, aprendizado, tomada de decisão e otimização.
Fonte: https://brainly.com.br/tarefa/30625427.
Certo.
021. (CEBRASPE/CESPE/TÉCNICO/FUB/AUDIOVISUAL/2018) Com relação a tecnologias 
de ensino e ao seu uso, julgue o item que se segue.
Existem programas semiautônomos, proativos e adaptativos, que utilizam recursos de inteligência 
artificial. Eles são usados no ensino a distância porque possibilitam a recuperação de informações, 
a operação de programas, e o monitoramento de recursos de rede utilizados pelos profissionais 
dessa modalidade de ensino.
Alguns programas são hoje semiautônomos, proativos e adaptativos, utilizando recursos de 
inteligência artificial. Em tecnologias de ensino, permitem a recuperação de informações, a 
operação de programas, e o monitoramento de recursos de rede utilizados pelos profissionais 
que lidam nessa modalidade de ensino.
Certo.
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
59 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
referÊnciAS
ANYOHA, R. The History of Artificial Intelligence. Science in the News, Boston, 28 Aug. 2017. 
Disponível em: http://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/. Acesso 
em: 7 dez. 2020.
BONACCORSO, G. Machine Learning Algorithms. Birmingham: Packt Publishing, 2017.
BRANCO, H. Overfitting e Underfitting em Machine Learning. ABRACD. 2022. Disponível em: < 
https://abracd.org/overfitting-e-underfitting-em-machine-learning/>. Acesso em: 25 jan. de 2023.
BOSCHETTI, A.; MASSARON, L. Python Data Science Essentials. 2. ed. Birmingham: Packt Pu-
blishing, 2016.
CANALTECH. Números curiosos do Facebook: rede social gera mais de 500TB 
de dados por dia. Disponível em: <https://canaltech.com.br/redes-sociais/Face-
book-gera-mais-500TB-de-dados-diariamente/#:~:text=no%20Pr%C3%AAmio%20Canaltech!-
-,N%C3%BAmeros%20curiosos%20do%20Facebook%3A%20rede%20social%20gera%20mais,-
500TB%20de%20dados%20por%20dia&text=Voc%C3%AA%20j%C3%A1%20imaginou%20qual%20
%C3%A9,dados%20a%20cada%2024%20horas>. 2012. Acesso em: 02 mar. 2021.
CHINNAMGARI, S. K. R. Machine Learning Projects: Implement supervised, unsupervised, and 
reinforcement learning techniques using R 3.5. Birmingham: PacktPublishing, 2019.
CIABURRO, G. Regression Analysis with R. Birmingham: Packt Publishing, 2018.
CIÊNCIA E DADOS. As 10 Habilidades de um Cientista de Dados. Disponível em: <https://www.
cienciaedados.com/as-10-habilidades-de-um-cientista-de-dados/>. Acesso em: 02 mar. 2021.
DASGUPTA, N. Practical Big Data Analytics. Birmingham: Packt Publishing, 2018.
DATASCIENCEACADEMY. 2022. Disponível em: <https://www.datascienceacademy.com.br>. 
Acesso em: 05 jan. 2023.
DATA BRIDGE BRIGADE. A diferença entre inteligência artificial, machine learning e deep 
learning. Disponível em: <https://medium.com/data-science-brigade/a-diferen%C3%A7a-entre-
-intelig%C3%AAncia-artificial-machine-learning-e-deep-learning-930b5cc2aa42>. 2016. Acesso 
em: 2 fev. 2021.
ENAP. Inteligência Artificial no Contexto do Serviço Público, 2020.
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
http://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/
https://abracd.org/overfitting-e-underfitting-em-machine-learning/
https://www.cienciaedados.com/as-10-habilidades-de-um-cientista-de-dados/
https://www.cienciaedados.com/as-10-habilidades-de-um-cientista-de-dados/
https://www.datascienceacademy.com.br
60 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
______ Análise de Dados em Linguagem R, 2020.
EXAME. WAZE chega a 3 milhões de usuários em São Paulo. 2016. Disponível em: <https://exame.
com/tecnologia/waze-chega-a-3-milhoes-de-usuarios-em-sao-paulo/>. Acesso em: 7 dez. 2020.
FEIGENBAUM, E. História da Inteligência Artificial. Acesso em: 2 dez. 2017.
FIA. Ciência de Dados ou Data Science: O que é, Aplicações e Perfil Profissional. Disponível 
em: <https://fia.com.br/blog/ciencia-de-dados-data-science/>.2019. Acesso em: 02 mar. 2021.
FOLHAUOL. Aplicativo do Google, Waze depende de 30 mil voluntários. Disponível em: <https://
www1.folha.uol.com.br/tec/2019/09/aplicativo-do-google-waze-depende-de-30-mil-voluntarios.
shtml>. 2019. Acesso em: 02 mar. 2021.
FUTURE OF LIFE INSTITUTE. Research Priorities for Robust and Beneficial Artificial Intelligence. 
2015. Disponível em: <https://futureoflife.org/data/documents/research_priorities.pdf>. Acesso 
em: 2 fev. 2021.
GALILEU. Inteligência artificial prevê câncer de mama cinco anos antes. Disponível em: <https://
dirad.com.br/sala-de-imprensa/atualidades/344/inteligencia-artificial-preve-cancer-de-mama-
-cinco-anos-antes>. 2019. Acesso em: 2 fev. 2021.
GOLLAPUDI, S. Practical Machine Learning. Birmingham: Packt Publishing, 2016.
GOMES, D.S. Inteligência Artificial: Conceitos e Aplicações. Revista Olhar Científico. V. 01, n.2, 
Ago./Dez. 2010.
HACKELING, G. Mastering Machine Learning with scikit-learn. Birmingham: Packt Publishing, 2014.
HONDA, H. Introdução básica à Clusterização. Laboratório de Aprendizado de Máquina em Finan-
ças e Organizações, Brasília, 5 out. 2017. Disponível em: https://lamfo-unb.github.io/2017/10/05/
Introducao_basica_a_clusterizacao/. Acesso em: 26 maio 2020.
IBM. Artificial intelligence in medicine. Watson Health Learning Hub, Armonk, [25 Aug. 2020]. 
Disponível em: https://www.ibm.com/watson-health/learn/artificial-intelligence-medicine. Acesso 
em: 7 dez. 2020.
IBM. Possibilidades da IA na Educação. Disponível em: <https://www.ibm.com/ibm/responsi-
bility/br-pt/downloads/e-book-IA-na-educacao.pdf>. Acesso em: 02 mar. 2021.
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
https://exame.com/tecnologia/waze-chega-a-3-milhoes-de-usuarios-em-sao-paulo/
https://exame.com/tecnologia/waze-chega-a-3-milhoes-de-usuarios-em-sao-paulo/
https://fia.com.br/blog/ciencia-de-dados-data-science/
https://www.ibm.com/watson-health/learn/artificial-intelligence-medicine
61 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
ILUMEO. A tour of the top 10 Machine Learning algorithms. 2021. Disponível em: < https://ilumeo.
com.br/todos-posts/2020/06/22/um-tour-pelos-10-principais-algoritmos-de-machine-learning>. 
Acesso em: 26 jan. 2023.
KUMAR, A. Learning Predictive Analytics with Python. Birmingham: Packt Publishing, 2016.
LANTZ, B. Machine Learning with R. 2. ed. Birmingham: Packt Publishing, 2015.
MACHADO, F. N. R. Big Data. São Paulo: Saraiva, 2018. E-book.
MJV. Vantagens da aplicação da Inteligência Artificial nas empresas. Disponível em: <https://
www.mjvinnovation.com/pt-br/blog/vantagens-da-aplicacao-da-inteligencia-artificial-nas-em-
presas/>. 2019. Acesso em: 02 abr. 2021.
NEC. A transformação do mundo low touch com a biometria. Disponível em: <https://blog.nec.
com.br/a-transformacao-do-mundo-low-touch-com-a-biometria>. Acesso em: 02 mar. 2021.
ORACLE. O que é Ciência de Dados? Disponível em: <]https://www.oracle.com/br/data-science/
what-is-data-science/>. Acesso em: 02 mar. 2021.
OZDEMIR, S. Principles of Data Science. Birmingham: Packt Publishing, 2016.
POSITIVOTECNOLOGIA. Entenda o conceito de Inteligência Computacional e suas vantagens. 
Disponível em: < https://www.meupositivo.com.br/panoramapositivo/inteligencia-computacio-
nal/>. 2020. Acesso em: jun. 2021.
QUINTÃO, P. L. Informática para Concursos, 2023.
QUINTÃO, P. L. Informática-FCC-Questões Comentadas e Organizadas por Assunto, 3ª ed. Ed. 
Gen/Método, 2014.
QUINTÃO, P. L. 1001 Questões Comentadas de Informática -Cespe, 2ª. Edição. Ed. Gen/Método, 2017.
RASCHKA, S. Python Machine Learning. Birmingham: Packt Publishing, 2015.
REDHAT. O que é data lake? Disponível em: <https://www.redhat.com/pt-br/topics/data-storage/
what-is-a-data-lake#:~:text=O%20termo%20%22data%20lake%22%20(,n%C3%A3º%20foi%20
filtrado%20ºu%20contido>. 2020. Acesso em: fev. 2021.
RUSSEL, S.; NORVIG, P. Inteligência Artificial. 2. Ed. Rio de Janeiro: Campos, 2004.
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
https://www.mjvinnovation.com/pt-br/blog/vantagens-da-aplicacao-da-inteligencia-artificial-nas-empresas/
https://www.mjvinnovation.com/pt-br/blog/vantagens-da-aplicacao-da-inteligencia-artificial-nas-empresas/
https://www.mjvinnovation.com/pt-br/blog/vantagens-da-aplicacao-da-inteligencia-artificial-nas-empresas/
https://blog.nec.com.br/a-transformacao-do-mundo-low-touch-com-a-biometria
https://blog.nec.com.br/a-transformacao-do-mundo-low-touch-com-a-biometria
https://www.oracle.com/br/data-science/what-is-data-science/
https://www.oracle.com/br/data-science/what-is-data-science/
https://www.redhat.com/pt-br/topics/data-storage/what-is-a-data-lake#:~:text=O termo %22data lake%22 (,n%C3%A3o foi filtrado ou contido
https://www.redhat.com/pt-br/topics/data-storage/what-is-a-data-lake#:~:text=O termo %22data lake%22 (,n%C3%A3o foi filtrado ou contido
https://www.redhat.com/pt-br/topics/data-storage/what-is-a-data-lake#:~:text=O termo %22data lake%22 (,n%C3%A3o foi filtrado ou contido
62 de 63www.grancursosonline.com.br
Aprendizagem de Máquina
TecnologiA dA inforMAção
Patrícia Quintão
SASIKUMAR, S. Data Science vs. Data Analytics vs. Machine Learning: expert talk. Simpli Learn, 
San Francisco. 2020. Disponível em: <https://www.simplilearn.com/data-science-vs-data-analy-
tics-vs-machine-learning-article>. Acesso em: 7 dez. 2020.
SCHLEICHER, A. Schoolsfor 21st-century learners: Strong leaders, confident teachers, innova-
tive approaches. International summit on the teaching profession. Paris: OECD Publishing. 2015.
SELDON, A. The Fourth Education Revolution: How Artificial Intelligence is Changing the Face 
of Learning. The University of Buckingham Press, 2017.
STEFANINI. As 7 principais aplicações de inteligência artificial nas empresas! Disponível em: 
<https://stefanini.com/pt-br/trends/artigos/as-7-principais-aplicacoes-de-inteligencia-artificial-
-nas-empres>. Acesso em: 02 mar. 2021.
WIKIPEDIA. Big Data. Disponível em: <https://pt.wikipedia.org/wiki/Big_data>. Acesso em: 
02 mar. 2021.
__________. Disponível em: <https://pt.wikipedia.org/wiki/NEC_Corporation>. Acesso em: 02 abr. 2020.
Patrícia Quintão
Mestre em Engenharia de Sistemas e computação pela COPPE/UFRJ, Especialista em Gerência de Informá-
tica e Bacharel em Informática pela UFV. Atualmente é professora no Gran Cursos Online; Analista Legislati-
vo (Área de Governança de TI), na Assembleia Legislativa de MG; Escritora e Personal & Professional Coach. 
Atua como professora de Cursinhos e Faculdades, na área de Tecnologia da Informação, desde 2008. É 
membro: da Sociedade Brasileira de Coaching, do PMI, da ISACA, da Comissão de Estudo de Técnicas de 
Segurança (CE-21:027.00) da ABNT, responsável pela elaboração das normas brasileiras sobre gestão da 
Segurança da Informação.
Autora dos livros: Informática FCC - Questões comentadas e organizadas por assunto, 3ª. edição e 1001 
questões comentadas de informática (Cespe/UnB), 2ª. edição, pela Editora Gen/Método.
Foi aprovada nos seguintes concursos: Analista Legislativo, na especialidade de Administração de Rede, na 
Assembleia Legislativa do Estado de MG; Professora titular do Departamento de Ciência da Computação 
do Instituto Federal de Educação, Ciência e Tecnologia; Professora substituta do DCC da UFJF; Analista de 
TI/Suporte, PRODABEL; Analista do Ministério Público MG; Analista de Sistemas, DATAPREV, Segurança da 
Informação; Analista de Sistemas, INFRAERO; Analista - TIC, PRODEMGE; Analista de Sistemas, Prefeitura 
de Juiz de Fora; Analista de Sistemas, SERPRO; Analista Judiciário (Informática), TRF 2ª Região RJ/ES, etc.
Redes Sociais: @coachpatriciaquintao (Instagram) /profapatriciaquintao (YouTube) / @plquintao (Twitter) / 
t.me/coachpatriciaquintao (Telegram)
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
https://www.grancursosonline.com.br
https://www.grancursosonline.com.br
https://www.simplilearn.com/data-science-vs-data-analytics-vs-machine-learning-article
https://www.simplilearn.com/data-science-vs-data-analytics-vs-machine-learning-article
https://stefanini.com/pt-br/trends/artigos/as-7-principais-aplicacoes-de-inteligencia-artificial-nas-empres
https://stefanini.com/pt-br/trends/artigos/as-7-principais-aplicacoes-de-inteligencia-artificial-nas-empres
https://pt.wikipedia.org/wiki/Big_data
https://pt.wikipedia.org/wiki/NEC_Corporation
O conteúdo deste livro eletrônico é licenciado para Nome do Concurseiro(a) - 000.000.000-00, vedada, por quaisquer meios e a qualquer título,
a sua reprodução, cópia, divulgação ou distribuição, sujeitando-se aos infratores à responsabilização civil e criminal.
	Sumário
	Apresentação
	Aprendizagem de Máquina
	Inteligência Artificial
	IA, IoT, Big Data
	IA e a Ciência de Dados
	IA nas Organizações
	Ferramentas de IA
	Exemplos de Uso de IA nas Organizações Públicas
	Inteligência Computacional
	Aprendizado de Máquina/Machine Learning)
	Visão Geral
	Exemplos de Aplicações do Machine Learning
	Tipos de Aprendizado de Máquina
	Overfitting (Sobreajuste) e Underfitting (Sub-Ajuste) em Machine Learning
	Visão Geral dos Algoritmos de Machine Learning
	Técnicas e Etapas de Construção do Modelo de Machine Learning
	Resumo
	Questões Comentadas na Aula
	Questões de Concurso
	Gabarito
	Gabarito Comentado
	Referências
	AVALIAR 5: 
	Página 63:

Mais conteúdos dessa disciplina