Logo Passei Direto
Buscar

Hernandez Chavez, Olga Leticia_ Uriarte Rivera, Hector Javier y Pacheco Quintanilla, Mario Efrain - Conferencias sobre Fisica de altas energias -Fisica Cuantica -Feynman en Mexico Spanish - Gina Solo

Ferramentas de estudo

Material
páginas com resultados encontrados.
páginas com resultados encontrados.

Prévia do material em texto

FEYNMAN EN MÉXICO 
CONFERENCIAS SOBRE 
FÍSICA DE ALTAS ENERGÍAS 
 
 
Prólogo de 
Feliciano Sánchez Sinencio 
 
 
 
 
Olga Leticia Hernández Chávez 
Héctor Javier Uriarte Rivera 
Mario E. Pacheco Quintanilla 
 
 
 
 
 
INSTITUTO POLITÉCNICO NACIONAL 
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
Índice general
Presentación I
Prólogo VII
1. Física experimental de altas energías 1
1.1. Motivación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1. Un poco de relatividad . . . . . . . . . . . . . . . . . . . . . 4
1.2. Aceleradores de partículas . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1. Acelerador lineal . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2. Sincrotrón . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3. Detectores de partículas . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1. Cámara de burbujas . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2. Cámara de chispas . . . . . . . . . . . . . . . . . . . . . . . 13
1.4. La relatividad y la mecánica cuántica . . . . . . . . . . . . . . . . 15
1.4.1. Breve repaso de mecánica cuántica . . . . . . . . . . . . . . 15
1.4.2. Predicciones de la relatividad y la mecánica cuántica . . . . 18
2. Tipos de interacciones 21
2.1. Temas selectos de electrodinámica cuántica . . . . . . . . . . . . . 21
2.2. Interacciones débiles . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3. Particularidades de interacciones fuertes . . . . . . . . . . . . . . . 34
i
i
i
i
i
i
i
i
 
3. El modelo de quarks y regularidades en partículas hadrónicas 47
3.1. Quarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.1. Momento magnético del protón . . . . . . . . . . . . . . . . 56
3.2. Regularidades en hadrones . . . . . . . . . . . . . . . . . . . . . . . 57
4. Modelo de partones y estructura de protones 63
4.1. La estructura del protón . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2. ¿Pueden los partones ser quarks? . . . . . . . . . . . . . . . . . . . 71
A. Preguntas 81
A.1. Capítulo 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.2. Capítulo 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.3. Capítulo 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
B. Memoria gráfica 89
i
i
i
i
i
i
i
i
Presentación
El material del curso corto de Física de altas energías impartido por Richard
P. Feynman en la Escuela de Verano del año de 1972, en el Instituto Politécnico
Nacional, cuenta con una historia propia en la que me tocó participar y que puede
resultar de interés para los lectores de este libro.
Habían transcurrido sólo cuatro años desde el movimiento estudiantil de 1968,
al que siguieron otros episodios oscuros de enfrentamientos entre estudiantes y
fuerzas de seguridad del gobierno, que culminaron el 10 de junio de 1971. Como
secuela del movimiento, en el IPN y en la UNAM se formaron grupos políticos
de estudiantes que se autodenominaron comités de lucha.
Es en este contexto que el Dr. Feliciano Sánchez Sinencio, entonces Jefe de la
Sección de Graduados de la Escuela Superior de Física y Matemáticas (ESFM),
organiza esta Escuela de Verano, contando con una lista de relevantes expositores
que encabeza Richard P. Feynman, Premio Nobel de Física 1965.
El programa se estructura de tal forma que se debería desarrollar en el pe-
riodo intersemestral, es decir, en los meses de julio y agosto. Los cursos tendrían
una duración de una a dos semanas, salvo el de Electrodinámica cuántica, que
impartiría el Dr. José Leite Lopes, con duración de un mes.
En ese año yo era estudiante de la maestría en física, y me encontraba de-
sarrollando mi trabajo de tesis de la licenciatura. Al igual que otros compañeros
del posgrado, me faltaba cumplir con el requisito del servicio social, indispensa-
ble para titularme. De esta manera, cuando el Dr. Feliciano Sánchez realiza una
i
i
i
i
i
i
i
i
i
ii Presentación
reunión para informarnos de los cursos y pedirnos colaboración para la edición
de los materiales que resultarían de ellos, la oportunidad no hubiera podido ser
mejor. De esta forma fui asignada, junto con otros alumnos, a tomar las notas de
los cursos: Física de altas energías, que dictaría el Dr. Feynman y Electrodinámi-
ca cuántica, que ofrecería el Dr. Leite Lopes; y como resultado de este apoyo, se
liberaría mi servicio social.
Inicialmente los cursos se llevarían a cabo en el auditorio del edificio 6, que
en esos tiempos ocupaba la ESFM. Sin embargo, dado el clima de efervescencia
estudiantil que imperaba en la época, el comité de lucha convoca a los estudiantes
a una asamblea, y bajo la consigna pública de mayores recursos para libros y un
no a estos cursos, deciden no permitir que se impartan en estas instalaciones.
Con este problema por resolver y con el tiempo para iniciar ya encima, los
organizadores se ven en la necesidad de conseguir una sede alterna. Es así que
un día antes de la inauguración de la Escuela de Verano, telefónicamente se me
comunicó que la sede sería el auditorio del Centro Médico Nacional, actualmente
Siglo XXI.
De entre los recuerdos del inicio de los cursos, viene a mi memoria la negativa
de Feynman a ofrecer entrevistas a la televisión, argumentando que: No ayudo
a vender sopa o papel higiénico, opinión que externa ante Patricia Escandón,
una guapa reportera colaboradora del noticiario de Jacobo Zabludovzky; una
admirable disposición y condescendencia puesta de manifiesto al ofrecer el curso
en español; así como su magistral capacidad para desmenuzar los conocimientos
físicos con una habilidad innata, aun los de frontera.
La elaboración preliminar de lo que se formalizaría en las notas del curso
se encomendó a Gerardo Cisneros Stoianowski, Miguel Ángel Jiménez Zavaleta
y Olga Leticia Hernández Chávez; trabajo que consumió largas horas y que en
varias ocasiones se desarrolló en el domicilio del Dr. Feliciano Sánchez.
El material, cuya edición final fue realizada por los Doctores Augusto García
González, Jorge S. Helman y Feliciano Sánchez Sinencio, lo publicó la Comisión
de Apoyo a las Actividades Académicas, por lo que fue poco difundido y de
alcances muy limitados.
i
i
i
i
i
i
i
i
iii
Ahora nos remontamos hasta el año 2004, cuando al realizarse las adecua-
ciones para el nuevo equipo de sonido en el auditorio de la ESFM, el profesor
Héctor Uriarte Rivera, Jefe del Departamento de Extensión de la Cultura, en-
cuentra las cintas con el audio original de las conferencias del verano del 72. Al
poco tiempo nos enteramos de la publicación del libro Feynman’s Lost Lecture
de David L. Goodstein y Judith R. Goodstein, que contiene un CD con una hora
de grabación de Feynman. Y para colmo de la fortuna, en junio de ese año, la
UNESCO declara el año 2005, como el Año Mundial de la Física.
Lo que habría de seguir era de esperarse. Se organizó un pequeño, pero en-
tusiasta grupo de trabajo, integrado por los profesores Uriarte, Mario Pacheco
Quintanilla y Olga Leticia Hernández Chávez. Las tareas a realizar se fueron
planteando según iban apareciendo los problemas.
Lo primero fue tratar de localizar, con directorio en mano, empresas que
pudieran reproducir las cintas; sin éxito, ya que las que se ubicaron no contaban
en sus estudios con reproductoras a la velocidad de grabación que se utilizó ori-
ginalmente (que ciertamente era moderno, pero en su época). Ante este fracaso
decidimos apoyarnos en el Laboratorio de Acústica de la ESIME, adonde llevamos
la cinta cuya caja tenía escrito el título de “Primera plática del profesor Feyn-
man”, para caer en cuenta que las cintas con las grabaciones de todos los cursos
se habían revuelto y que el contenido de las cajas no correspondía con los títulos.
La cinta que inicialmente entregamos, y que habían podido reproducir, era de
una conferencia de Leite Lopes y no de la plática de Feynman. Posteriormente,
nuestra labor fue de detectives; buscar entre el equipo de la escuela dado de baja a
través de los años –unaaguja en el pajar– la grabadora original, fracasando en
el intento. Por último, cuando la esperanza se perdía, felizmente la encontramos
en la bodega de un laboratorio de enseñanza, bajo la responsabilidad del profesor
José Antonio Peralta. Ahora sólo faltaba la prueba de fuego; tenía que funcionar,
y lo hizo, no sin antes nuevamente tener que recurrir al Ing. Javier Moedano del
Laboratorio de Acústica de la ESIME, para recibir asesoría técnica.
Cuando finalmente escuchamos la grabación donde el Dr. Feliciano Sánchez
da la bienvenida a los conferencistas y presenta la primera conferencia del Dr.
Feynman, todo fue alegría, sin embargo, el gusto no nos duró mucho. De las seis
i
i
i
i
i
i
i
i
iv Presentación
conferencias sólo pudieron rescatarse cuatro; con el paso de los años y el descuido,
dos de ellas habían sido regrabadas.
La Dirección de Publicaciones del IPN recibió con entusiasmo el proyecto,
ofreciéndonos cristalizarlo. Se responsabilizó de la transferencia profesional del
audio y ofreció su ayuda para la edición de un libro que incluiría el audio original.
Las notas publicadas por la COFAA-IPN se rescribieron, el material se reor-
ganizó para apegarse en lo posible al audio, se rehicieron las figuras, y se tuvo
particular cuidado en lo que se refiere a las transparencias que utilizó el Dr.
Feynman, con las que no se contaba, para que fuesen sustituidas por fotos que
correspondieran a la época en que se realizó el curso. La labor mecanográfica
estuvo a cargo de Silvia Galván Torres, secretaria del Departamento de Física
de la ESFM, y las demás actividades antes detalladas fueron responsabilidad del
mismo grupo de trabajo.
El contenido de las conferencias se organizó en cuatro capítulos. Se incluyeron
dos apéndices: el primero contiene las preguntas formuladas durante las confe-
rencias, separadas por capítulo; el segundo consta de la parte documental que se
logró rescatar, que incluye el tríptico y las notas periodísticas generadas durante
la visita de Feynman. Además, se incorporaron pies de página con comentarios
y actualizaciones realizadas por Alfonso Queijeiro Fontana, investigador de la
SEPI-ESFM. En este punto conviene aclarar que los capítulos son una transcrip-
ción retocada de las conferencias, se transformó la transcripción verbal a una
forma legible respetando el “estilo Feynman”. Se sustituyeron algunas palabras
empleadas por Feynman y que ahora están en desuso, por ejemplo la palabra
cuarco por quark. Se omitieron algunos detalles que muestran el carácter y la
personalidad de Feynman, como son los siguientes: al solicitar que se pase la si-
guiente transparencia y al no ser atendida su petición, jactándose irónicamente
de su buen español, insiste gritando “próxima transparencia por favor”; en otro
momento al solicitar que se encienda la luz para continuar, sin resultado, dice “no
se hablar español”, acto seguido grita “fotones”; en otra ocasión al hablar de jets
de partículas pregunta la forma correcta de decirlo en español, y al indicársele
que “chorros”, se ríe y dice “los chorros son para comer”; por último, cuando es
interrumpido en una conferencia por un fotógrafo de prensa, le solicita que salga,
i
i
i
i
i
i
i
i
v
indicando aquél que está trabajando, a lo que Feynman le contesta, que él tam-
bién. Las conferencias completas, incluyendo sus comentarios, pueden escucharse
en el sitio: www.feynmanenmexico.ipn.mx.
El prólogo del libro se le encargó al Dr. Feliciano Sánchez, actualmente Di-
rector del Centro Latinoamericano de Física, con sede en Río de Janeiro, Brasil,
como reconocimiento a su gran visión, al hacer posible un evento de la relevancia
que para nuestra escuela tuvo aquel verano del 72.
Olga Leticia Hernández Chávez
México, D.F.
Agosto de 2005
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
Prólogo
Las pláticas que aquí se presentan forman parte del curso denominado Física
de altas energías [Física experimental de altas energías. Tipos de interacciones.
Particularidades de interacciones fuertes. Modelo de quarks y regularidades en
partículas hadrónicas. Modelo de partones y estructura de protones.], impartido
en la Ciudad de México por el profesor Richard P. Feynman dentro del programa
de cursos ofrecidos en el verano de 1972.
Estos cursos fueron organizados por la Sección de Graduados de la Escuela
Superior de Física y Matemáticas del Instituto Politécnico Nacional (ESFM-IPN)
y tuvieron como objetivos: complementar los cursos de posgrado, motivar y orien-
tar a estudiantes de la licenciatura dentro del amplio campo de la física, actua-
lizar la formación de profesores, y fomentar y apoyar la investigación en física.
Había transcurrido poco más de una década desde la creación de la ESFM-IPN
y se habían establecido, con gran visión, los programas de posgrado en física.
Los cursos de posgrado en física, iniciaron formalmente en América Latina en
la década de los sesenta. A inicio de la década de los setenta, aún era incipien-
te el desarrollo de los estudios de posgrado en esta área de la ciencia. Hacían
falta investigadores-profesores que impartieran cursos y transmitieran en forma
actualizada el desarrollo de la física en todos los campos de la misma. Es en este
contexto que se organizaron los Cursos de verano de 1972 en los que en forma
destacada participó el profesor Richard P. Feynman.
Conocí a Richard P. Feynman cuando llevé el curso de Física de estado sólido
que él impartió en la Escuela Latinoamericana de Física, que tuvo lugar el año
vii
i
i
i
i
i
i
i
i
viii Prólogo
de 1963 en Río de Janeiro, Brasil. Él ya era ampliamente conocido en el Centro
Brasileiro de Pesquisas Físicas (CBPF), donde había pasado un año sabático.
Aún no obtenía el Premio Nobel, pero ya era ampliamente reconocido por la co-
munidad internacional de físicos, como el físico vivo más destacado y brillante
de la segunda mitad del siglo XX. Sus clases nos dejaban encantados a todos los
estudiantes, por su forma tan clara de preguntar a la naturaleza sobre los pro-
blemas físicos y por la forma tan natural y limpia con la que él iba construyendo
la respuesta. Decía que si debido a algún cataclismo todo el conocimiento cien-
tífico fuera destruido, y sólo fuese posible transmitir una frase a la siguiente
generación de criaturas, entonces la frase que contendría más información con
el menor número de palabras sería la hipótesis atómica: Todas las cosas están
hechas de átomos. Disfrutábamos ampliamente al observar cómo discutía en qué
condiciones los átomos se podrían asociar para crear un sólido en una, dos o tres
dimensiones y en qué condiciones eso era imposible. Después de haber impartido
su clase, lo veíamos circular por el CBPF, ya fuera por las oficinas o por la biblio-
teca. Él no facilitaba un acercamiento personal, era huraño y podía ser áspero.
Sin embargo, a nosotros los estudiantes siempre nos tenía especial paciencia y
atención. En estas condiciones, tuve la fortuna de que se acordara de mí, como
lo comprobé más tarde.
Al inicio del año 1972, en la ESFM-IPN, quien esto escribe era el Jefe del De-
partamento de Física y Jefe de la Sección de Graduados, que en esa época coor-
dinaba las actividades de graduados de cuatro departamentos: Física, Matemáti-
cas, Ciencia de Materiales e Ingeniería Nuclear. Durante mi época de estudiante
en el Brasil, había sido testigo de lo benéfico que era el intercambio científico,
y por lo tanto inicié los cursos de verano con los objetivos antes expuestos. In-
vité al Prof. Walter Baltensperger, del Politécnico de Suiza (ETH), para que
impartiese el curso Conceptos básicos del estado sólido. Baltensperger había sido
mi profesor de Mecánica estadística durante mis estudios de posgrado en Río
de Janeiro, así que aceptó mi invitación con gusto. Conociendo su cualidad de
gran profesor, invité a José Leite Lopes, quien había sido mi profesor en tres
cursos en el CBPF, cuando él era Director General del mismo. En 1972, Leite era
profesor de la Universidad de Estrasburgo, en Francia; por problemas políticos
había dejadotemporalmente el Brasil. Su aceptación y participación en los cursos
i
i
i
i
i
i
i
i
ix
de verano de 1972 fueron muy positivos. La Editorial Trillas, de México, editó
el curso Electrodinámica cuántica, que Leite impartió en el curso de verano en
cuestión. Esta publicación se transformó en el libro de texto, sobre el tema, de las
generaciones que vinieron después de estos cursos. De los EUA tuvimos otros dos
invitados: Richard Williams, quien había sido mi coorientador de tesis en Brasil,
creativo investigador de los Laboratorios RCA en Princeton, N. J., que impartió
el curso Física del agua; y Peter Freund, de la Universidad de Chicago, quien
aceptó impartir el curso Modelo de interacciones débiles. Difracción hadrónica.
Para la organización de los cursos, el Instituto Politécnico Nacional –a través
de la Comisión de Operación y Fomento de Actividades Académicas (COFAA)–
contó con el apoyo del Consejo Nacional de Ciencia y Tecnología (CONACyT) y
de la Organización de Estados Americanos (OEA).
Repasando la lista de mis exprofesores, siempre me llamó la atención Richard
P. Feynman, por muchas razones. Sin embargo, no tenía ninguna seguridad de
que Feynman se acordara de mí y menos de que aceptara participar en los cursos.
De hecho, fue en 1972 la única vez en la vida de Feynman que él vino a enseñar
física a México. A pesar de mi inseguridad, pero con el objetivo bien claro de mi
parte, entré en contacto con él. Le hablé por teléfono a su oficina en el California
Institute of Technology (Caltech) y para mi sorpresa me reconoció. Lo invité y
me pidió que le hablase en una semana más para ver cómo podría agendar mi
invitación. El 28 de febrero de 1972 le volví a hablar por teléfono y me comunicó
que aceptaba mi invitación y que vendría a los cursos para enseñar durante las
semanas del 3 al 14 de julio de 1972. Y una sorpresa más: impartiría su curso
en español. Cuando colgué el teléfono apenas podía creer que el gran Feynman,
hubiese aceptado venir a México a enseñar física, y en español. Helen Tuck, su
secretaria en Caltech, recordaba que la puerta de su cubículo siempre estaba
abierta para los alumnos, pero era frecuente que recusase invitaciones de las
universidades de mayor prestigio del mundo. Así que le escribí inmediatamente
agradeciéndole su participación y explicándole nuestros objetivos, la audiencia
que tendría y que serían seis clases de una hora cada una. Aún conservo copia de
esta carta.
El inicio de los años setenta era de gran animación para los investigadores
i
i
i
i
i
i
i
i
x Prólogo
en física, y como de costumbre Feynman era uno de los actores principales. Du-
rante los años cuarenta contribuyó de manera fundamental al desarrollo teórico
de la electrodinámica cuántica, dando como resultado una excepcional precisión
a la física del electrón y de otras partículas con carga. En los años cincuenta
se dedicó a la teoría de las interacciones débiles, donde conjuntamente con Mu-
rray Gell-Mann desarrolló la Teoría general de la interacción débil. Hacia finales
de los años sesenta, sus resultados importantes estaban en el dominio de las in-
teracciones fuertes. Durante las décadas de los cincuenta y sesenta, partiendo
del análisis de los rayos cósmicos y usando aceleradores cada vez más potentes,
los físicos experimentales observaron un número de partículas subatómicas que
crecía cada vez más. En poco tiempo se acuñó el término “zoológico de partícu-
las” para describir la abundancia de componentes subatómicos existentes. No era
claro el panorama teórico de las interacciones fuertes, es decir, de las fuerzas que
actúan entre los hadrones, familia de partículas que agrupa a los mesones y los
nucleones (protones y neutrones). Existían varias teorías con diferentes hipóte-
sis sobre la estructura interna de estas partículas. En 1963, Murray Gell-Mann,
e independientemente George Zweig, un joven físico que recientemente se había
doctorado en Caltech, lanzaron la hipótesis de que los hadrones estaban consti-
tuidos por tres partículas elementales, llamadas quarks por Gell-Mann (Zweig las
llamó aces). Durante mucho tiempo los quarks fueron sólo una hipótesis, ya que
nunca habían sido observados experimentalmente y presentaban varios problemas
de orden teórico. En estas condiciones apareció Feynman proponiendo en 1968,
su modelo de partones, con la intención de entender el mecanismo de las inte-
racciones entre hadrones en situaciones de alta energía, como las colisiones entre
partículas, provocadas y estudiadas en los grandes aceleradores de la época.
Es en este contexto que se impartieron las clases sobre Física de altas ener-
gías que Feynman vino a dar dentro del programa de cursos de verano 1972.
Han pasado más de treinta años y sólo es hasta 1995, que los seis quarks (poste-
riormente fueron previstos otros tres) encontraron apoyo experimental. Los aces
de Zweig, los quarks de Gell-Man y los partones de Feynman son tres caminos
que llevan al mismo destino, ha dicho J. Gleick, biógrafo de R. P. Feynman. El
escenario brevemente descrito aquí, nos da una idea sobre la dificultad que ha
estado presente en la revelación de los constituyentes del enigma en torno a las
i
i
i
i
i
i
i
i
xi
fuerzas fuertes, y parte del cual tuvimos la suerte de presenciar a través de las
conferencias que aquí se presentan impartidas por uno de los actores principales
en la especialidad.
Paralelo al desarrollo de los cursos, tuvimos oportunidad de interactuar en
forma muy variada con Feynman. Hacía poco tiempo que él había publicado un
trabajo sobre polarones, lo que me animó a contarle sobre mi trabajo de tesis de
doctorado, en el desarrollo del cual había detectado polarones en monocristales
de azufre ortorrómbico, los cuales fueron creados mediante la inyección, en el
cristal, de electrones fotoemitidos desde metales o semiconductores. Escuchar
sus comentarios fue un “plus” de su visita. También, como parte del programa
social, organizamos una fiesta en mi casa donde tuve la oportunidad de apreciar
su gusto por el baile. Las semanas que Feynman estuvo en México, volaron y
lamento no haber conversado con él sobre su amplio conocimiento en matemática
y astronomía maya. La presencia de Feynman le dio un cierto glamour a los cursos
de verano 1972; los medios de información lo rodearon desde el principio hasta el
fin de su visita. A través de la TV, el radio y los periódicos se dio a conocer que
un físico famoso, por múltiples razones, estaba enseñando física en México.
Tener entre nosotros a Richard P. Feynman fue una experiencia maravillosa.
Él tenía una personalidad matizada por muchas virtudes. Dentro de la física se
interesó por problemas en diferentes especialidades. Por ser un magnífico profe-
sor, se preocupó por enseñar en forma original y dedicó dos años de su vida a
preparar e impartir las famosas The Feynman Lectures on Physics. Como mag-
nífico investigador en la física de las altas energías, trabajó en otros campos de
la física. Le interesó la pintura y fue pintor. Conoció la escritura y la matemática
Maya y fue conferencista en el tema. Le interesó la música y el baile y fue gran
percusionista y bailarín. Gracias, profesor Feynman.
Feliciano Sánchez Sinencio
Río de Janeiro, Brasil
Mayo de 2005
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
Capítulo 1
Física experimental de altas
energías
1.1. Motivación
Como sabemos, la materia la entendemos como hecha de átomos; los átomos,
hechos de electrones y nucleones; los nucleones, de protones y neutrones. Estos
últimos son muy complicados, a diferencia de los electrones que parecen simples.
En los últimos tiempos, ha costado mucho trabajo entender a los protones y
los neutrones. Se han descubierto muchas partículas diferentes que se parecen a
los protones; de hecho el protón y el neutrón son sólo dos, de tal vez, una infinidad
de partículas, pero de las que ahora solamente conocemos unas 300 a 400. Éstas
son las partículas que quiero describir aquí. Recientemente hemos progresado en
el entendimiento de esta multitud de partículas;en otras palabras, estamos cerca
de poder decir cuáles son los constituyentes del protón y del neutrón, pero aún
no lo podemos decir.
En estos cuatro capítulos voy a dar algunas ideas que tenemos ahora, que tal
vez puedan darnos indicaciones de qué están compuestos el protón, el neutrón y
las otras 400 partículas. Este número no es exacto, depende de cómo se cuente, y
1
i
i
i
i
i
i
i
i
2 Capítulo 1. Física experimental de altas energías
cada día se descubren nuevas partículas; el número no es interesante, sin duda es
bueno saber que hay más partículas nucleares que elementos químicos, por ejem-
plo. Entonces no estamos progresando mucho en entender los elementos químicos.
Entender los átomos, en principio es aparentemente fácil, sólo se distinguen por
el número de electrones que van alrededor del núcleo.
Los núcleos son diferentes, pero sólo por sus masas; es fácil entender que
el número de protones es equivalente a: dar el número atómico o el número de
electrones para que el átomo sea eléctricamente neutro, y el número de neutrones
para que dé la masa total del núcleo, es muy simple. Pero cuando estudiamos el
protón y el neutrón nos encontramos con una caja de Pandora de la que surgen
muchas cosas.
La parte de la física llamada física fundamental tiene el fin de determinar las
reglas fundamentales, los elementos en forma de partículas o en forma de procesos
elementales u otros principios o ideas. Naturalmente, toda la física no es física
fundamental. No obstante conocer bien las leyes que gobiernan el comportamien-
to de los electrones en los átomos, no entendemos muy bien el estado sólido,
porque hay demasiados átomos que tomar en cuenta. Hay fenómenos cuyas leyes
conocemos bien, como la mecánica cuántica, la ecuación de Schrödinger y todo
eso; pero no olvidemos que no entendemos, por ejemplo, la fricción. No hay una
teoría de la fricción.
Es por esto que no estoy hablando de toda la física, aunque parezca que lo
estoy haciendo, ya que hay personas que dicen que si se saben las reglas, saben
todo. Pero, las personas que juegan ajedrez saben bien que aprender las reglas
y aprender el juego son cosas enteramente diferentes. Entonces, sabemos que al
estudiar las reglas fundamentales no estamos estudiando todo el ajedrez, en un
sentido, pero en otro sentido lo hacemos, porque el ajedrez no es nada más que
las reglas.
Hay una parte de la física fundamental que conocemos muy bien, y que es la
electrodinámica cuántica. También conocemos más o menos la llamada interac-
ción débil, que es la fuente de efectos como la desintegración beta.
En esta primera parte voy a describir cosas bien conocidas, para dar las ideas
i
i
i
i
i
i
i
i
1.1. Motivación 3
básicas que podemos usar para imaginar la parte que desconocemos: las interac-
ciones entre el neutrón y el protón, llamadas interacciones fuertes.
El átomo tiene un tamaño de 10−8 cm, que es muy grande, ya que el núcleo
tiene un tamaño de 10−13 cm. Esto es, si un átomo fuera del tamaño de este
auditorio, el núcleo tendría el tamaño de un grano de polvo tan pequeño que casi
no se podría ver, y dentro de él hay muchos protones y neutrones en movimiento,
y nosotros queremos ver qué hay dentro del protón.
La mecánica cuántica demuestra que cada partícula con cantidad de movimien-
to está representada por ondas, cuya longitud de onda es inversamente propor-
cional a la cantidad de movimiento. Entonces, para ver que está aconteciendo
dentro de ese protón tan pequeño, necesitamos usar ondas que tengan una lon-
gitud de onda muy pequeña, y por tanto, precisamos usar partículas que tengan
una cantidad de movimiento grande. Ésta es la razón por la que nuestro tema de
física fundamental de interacciones fuertes es el mismo que el de física de altas
energías, es decir, vamos a usar altas energías para determinar las propiedades
íntimas de protones y neutrones.
A energías bajas, el protón y el neutrón parecen simples, están quietos, calma-
dos; son solamente partículas que tienen una masa, un momento magnético, una
carga, etc., mas no tienen nada adentro, no tienen complicaciones. Pero cuando
se observa más íntimamente, más de cerca, surgen muchas complicaciones, es una
cosa que no entendemos.
Si vamos a hablar de energías altas, entonces necesitamos saber algunas cosas
sobre las unidades que la gente usa para describir la energía. Es conveniente, en
estos tiempos, usar una unidad de energía que es la energía dada a una carga
fundamental, como la carga del electrón o del protón, al atravesar una diferencia
de potencial de un volt; a esta unidad se le llama electronvolt (eV). Las energías
de los átomos son de sólo algunos electronvolt; entre protones y neutrones, éstas
son de más o menos 10 millones de electronvolt. A un millón de electronvolt se le
llama un megaelectronvolt (1 MeV = 106 eV).
Para ver una distancia como el diámetro de los núcleos, del orden de 10−13
cm, hay que usar ésta como la longitud de onda ( λ2π ) en la fórmula
i
i
i
i
i
i
i
i
4 Capítulo 1. Física experimental de altas energías
p =
}
10−13 cm
,
para una partícula que tenga una energía de 20 MeV. Esta energía es suficiente
para ver si la partícula tiene estructura complicada. Para distinguir las partes con
más claridad necesitamos energías todavía mayores. Entonces estamos hablando
de miles de millones de electronvolt (Gigaelectronvolt, 1 GeV = 109 eV), pero no
nos espantemos, ya usamos instrumentos que tienen energías de 20 a 200 GeV. El
acelerador lineal de Stanford (Stanford Linear Accelerator Center, SLAC ) pro-
porciona electrones de hasta 20 GeV; y recientemente creamos un instrumento
que proporciona partículas hasta de 200 GeV, en el acelerador del Laboratorio
Nacional de EUA (National Accelerator Laboratory, NAL [hoy Fermilab]). En
otros lugares del mundo se generan energías intermedias; por ejemplo, protones
de 28 GeV, en el Centro Europeo para la Investigación Nuclear (Centre European
pour la Recherche Nucleaire, CERN ) en Suiza. La fuente del CERN también es
equivalente a una de energía de muchos más GeV. Ahora voy a explicar cómo.
Pero antes quiero decir cuál es el estado actual de este sistema. Está funcionando
más o menos, ya ha producido partículas de energías de 200 GeV, pero el número
de partículas, desgraciadamente, es solamente una parte por mil del número es-
perado, según el diseño. Esto se debe a que tiene muchos imanes y éstos se tienen
que ajustar para generar más corriente.
1.1.1. Un poco de relatividad
Primero quiero explicar la notación que voy a usar. Se tiene la relación entre la
energía, la cantidad de movimiento y la masa. Cuando digo masa quiero decir la
masa en reposo, la masa que la partícula tiene cuando no se mueve. Se usa m0
para denotar la masa en reposo, pero yo voy a utilizar solamente m. Sabemos
bien que la energía total de una partícula, que tiene una cantidad de movimiento
P incluyendo la energía en reposo, está dada por la fórmula de la teoría de la
relatividad:
E2 = P 2c2 +m2c4.
i
i
i
i
i
i
i
i
1.1. Motivación 5
Debo decir que los principios de la relatividad especial formulados por Eins-
tein, dan una simetría entre el tiempo y el espacio, que tiene tres componentes−→x = (x, y, z); es decir, existe una simetría entre las cuatro variables x, y, z, t, o
para ser precisos, entre ct y x, y, z. Voy a utilizar siempre un sistema de unidades
en el que c = 1. Este sistema tiene la dificultad de que no se pueden determinar de
manera correcta las unidades del tiempo, del espacio, etc. No obstante, lo vamos a
utilizar, ya que las fórmulas son más simples. Por ejemplo, para la energía vamos
a usar la unidad GeV y para la masa m también, ¡cómo!, es igual, porque c es
igual a uno. Así, cuando yo diga que la masa del protón es igual a 0.938 GeV eso
quiere decir que la energía mpc2, la energía en reposo, es igual a este número.1
Esta simetría dada por Lorentz, la transformación de Lorentz; y dada por
Einstein en la teoría de la relatividad especial, está de acuerdo con todas las
experiencias con energías de cualquier magnitud.Hasta ahora, no hemos descu-
bierto ninguna excepción o modificación a esta simetría, todo es correcto, todo
funciona bien. Entonces tenemos confianza en que para entender la multitud de
partículas, las complicaciones de las interacciones fuertes, no necesitamos modi-
ficar la relatividad, porque todos los fenómenos están de acuerdo con ella. La
relatividad muestra también una simetría del mismo tipo entre otras cantidades
como: energía y momento (E, Px, Py, Pz), densidad de carga y corriente para el
campo eléctrico (ρ,
−→
j ) y potencial escalar eléctrico y potencial vectorial (φ,
−→
A ).
¿Qué es un invariante? Es, por ejemplo, una combinación de cantidades físicas,
como
E2 − P 2c2 = m2c4,
que es un número igual para cada observador. En esta forma tenemos que el
número m2c4 para una partícula, es un número que no depende de la velocidad
y no puede ser cambiado por una transformación de coordenadas. Naturalmente,
existe un sistema de coordenadas donde la partícula está en reposo, el momento
es cero y la energía es igual a la masa multiplicada por c2, pero c = 1. Entonces,
si es verdad para un sistema es verdad para todos los sistemas.
1La masa del protón es 1.6 × 10−27 kg, con c = 1, es 938 MeV, por lo que 1 MeV equivale
aproximadamente a 1× 10−36 kg.
i
i
i
i
i
i
i
i
6 Capítulo 1. Física experimental de altas energías
Ahora voy a explicar cómo las personas en el CERN han producido energías
mayores utilizando solamente protones con una energía de 28 GeV. El acelerador
utiliza anillos de acumulación (storage rings), un sistema de imanes. Ustedes
saben bien que una partícula cargada en movimiento en un campo magnético
describe una trayectoria circular. Utilizando muchos imanes se produce un cír-
culo, y como la capacidad técnica actual de control de un haz de partículas en
movimiento circular es muy buena, además de poder enfocar utilizando imanes
(cuadrupolos), se puede crear un sistema en el que la partícula puede ir en una
trayectoria circular donde la energía sea cada vez mayor. Debido a que hay pér-
dida de energía por radiación de bremsstrahlung,2 se necesita dar una pequeña
energía para mantener a la partícula en un círculo.
Figura 1.1
La figura 1.1 ilustra la situación: inicialmente se tiene un instrumento (I) que
acelera las partículas y las entrega al acumulador (II) durante una semana o más.
Hay otro sistema (III), situado de manera que se tiene una colisión entre haces
(tal que el sistema de laboratorio coincide con el centro de masa de la colisión,
Cm).
Cuando un haz incide sobre un blanco de hidrógeno en el cual hay muchos
protones por centímetro cúbico, se produce un número grande de colisiones; sin
embargo, como el blanco ahora es otro haz muy tenue, no se tienen muchas
partículas, y la dificultad que se presenta es que no hay muchas colisiones, pero
las energías son las correctas.
Supongamos que tenemos dos partículas que tienen energías W , las cuales se
mueven en línea recta en direcciones opuestas, como se indica en la figura 1.2
2Este fenómeno se explica en el siguiente capítulo.
i
i
i
i
i
i
i
i
1.1. Motivación 7
(sistema centro de masa); queremos obtener la energía equivalente en un sistema
en el que una de las partículas tiene energía E y otra, de masa M , está en reposo
(sistema de laboratorio, figura 1.3). Se le conoce como sistema de laboratorio
porque antiguamente el laboratorio siempre tenía una partícula en reposo, natu-
ralmente el otro sistema también está en el laboratorio, pero se le llama sistema
centro de masa.
Figura 1.2
Figura 1.3
Para pasar de un sistema a otro, se pueden usar las transformaciones de
Lorentz. Otra forma es usando el hecho de que la energía al cuadrado menos el
momento al cuadrado es una constante (un invariante ante transformaciones de
Lorentz). Es más fácil utilizar este modo de calcular en vez de usar transforma-
ciones de Lorentz. El hecho es que no recuerdo más cómo hacer transformaciones
porque siempre puedo realizar los cálculos de esta manera. En nuestro caso:
(P1 + P2)
2 =
¡
P 01 + P
0
2
¢2
= constante,
donde P1 y P2 son los cuadrivectores momento de las partículas 1 y 2 en el sistema
centro de masa, y P 01 y P 02 son los cuadrivectores momento de las partículas 1 y
2 en el sistema de laboratorio.
De la figura 1.2 tenemos:
P1 = (W, K, 0, 0) , P2 = (W, −K, 0, 0)
i
i
i
i
i
i
i
i
8 Capítulo 1. Física experimental de altas energías
sumando los momentos anteriores
P1 + P2 = (2W, 0, 0, 0)
de donde obtenemos
(P1 + P2)
2 = 4W 2. (1.1)
De la figura 1.3 tenemos:
P 01 = (E, P, 0, 0) , P
0
2 = (M, 0, 0, 0)
cuya suma resulta
P 01 + P
0
2 = (E +M, P, 0, 0)
por lo que ¡
P 01 + P
0
2
¢2
= (E +M)2 − P 2 = E2 + 2EM +M2 − P 2,
y como E2 − P 2 =M2 es un invariante, resulta¡
P 01 + P
0
2
¢2
= 2EM + 2M2. (1.2)
Igualando (1.1) y (1.2)
2W 2 = EM +M2.
Si hacemos M ' 1 GeV y W = 28 GeV, obtenemos
E ' 1567 GeV.
Esto es, usando el sistema de haces de 28 GeV en colisión, se producen coli-
siones que tienen el mismo efecto que usar un haz de 1567 GeV en colisión con un
blanco en reposo. Esperamos que 1567 GeV sea suficiente energía para ver todo lo
que queremos ver y entender de las interacciones fuertes. Esto es una predicción.
Sin embargo, siempre necesitamos más energía. Los teóricos siempre esta-
mos diciendo: “necesitamos más experimentos”. Es como una persona que está
trabajando en resolver un problema y quiere siempre ver la respuesta en las pági-
nas al final del libro. Siempre estamos explorando por experimentos que den las
respuestas.
i
i
i
i
i
i
i
i
1.2. Aceleradores de partículas 9
1.2. Aceleradores de partículas
Únicamente las etapas de aceleración son las que nos interesan. La forma más
común de acelerar partículas es usando cavidades resonantes.
1.2.1. Acelerador lineal
Tomemos como primer ejemplo el instrumento llamado acelerador lineal. En este
caso, el haz de partículas pasa sucesivamente a través de una serie de cavidades
con campos eléctricos oscilantes.
Figura 1.4 Esquema de un acelerador lineal
En un instante dado el campo eléctrico de una cavidad está orientado de
tal modo que los electrones del haz se aceleran. Los electrones que lleguen más
tarde no serán acelerados porque el campo ya estará invertido, y estos electrones
se pierden; más tarde, cuando el campo se invierte otra vez, los electrones que
entran pueden ser acelerados nuevamente. El haz que pasa no es continuo; está
constituido por grupos de electrones separados en el tiempo por el período de
oscilación de las cavidades que, por supuesto, tienen que ser exactamente iguales.
El voltaje en una cavidad es del orden de 106 V. Entonces, la energía ganada
al transitar por una sola cavidad es del orden de 1 MeV; pero, por supuesto,
podemos poner muchas cavidades en una línea recta, una después de la otra, de
tal manera que nuestro grupo de electrones recibe una aceleración al pasar por
cada cavidad. Es necesario ajustar la fase de la oscilación en cada cavidad, de
modo que durante el paso de un grupo, el campo en la dirección de la aceleración
sea máximo, de tal manera que el grupo que fue acelerado en la primera cavidad,
al llegar a la segunda se encuentre nuevamente con el campo a favor.
i
i
i
i
i
i
i
i
10 Capítulo 1. Física experimental de altas energías
En cada etapa se van obteniendo sucesivamente 1, 2, 3, ... MeV conforme se
pasa por 1, 2, 3, ... cavidades. Para lograr una energía total de 20 GeV, como en el
SLAC, solamente necesitamos 20 000 cavidades en línea, cada una en determinada
fase en relación con las otras cavidades.
El acelerador de SLAC tiene 4 kilómetros de longitud, cuenta con 20 000
cavidades y desemboca en una curva. Este aparato tiene imanes para dirigir el
haz en diferentes direcciones, para utilizarse en diferentes experimentos; cada
experimento está en un edificio, y hay muchos edificios.
1.2.2. Sincrotrón
Imaginemos que tenemos un campo magnético, de modo que las partículas van
en un círculo; podemos poner nuestra cavidades en un círculo (figura 1.5), y de
esta manera las partículaspueden utilizar las cavidades muchas veces. Este ins-
trumento se llama Sincrotrón. No lo podemos usar para electrones a muy altas
energías porque cuando los electrones viajan en círculo radian demasiada energía,
llamada radiación de sincrotrón. Por supuesto que los protones también radian,
pero como la razón de radiación es inversamente proporcional a la masa y como
la masa del protón es aproximadamente 2 000 veces mayor que la masa del elec-
trón, entonces la radiación de sincrotrón por protones no es tan grande como la
de los electrones. Por ello, podemos usar este sistema con protones, mas no con
electrones.
Figura 1.5 Esquema de un sincrotrón
i
i
i
i
i
i
i
i
1.2. Aceleradores de partículas 11
Para guiar el haz en un círculo fijo es necesario, además del campo eléctrico
oscilante en la cavidad aceleradora, un campo magnético que aumente conforme
aumenta la cantidad de movimiento del haz. El campo tiene que aumentar de
cero a un máximo; al mismo tiempo el haz aumenta su cantidad de movimien-
to por medio de las cavidades. Por eso, el haz de sincrotrón llega solamente en
pulsos, separados por ejemplo, por segundos, llegando solamente cuando el cam-
po magnético alcanza su máximo. Se conecta aquí con otro campo magnético
más o menos pequeño, pero que también afecta las propiedades de movimien-
to del haz, de manera tal que el círculo tenga un radio definido dentro de las
cavidades. Cuando se crece el campo, las cavidades dan más energía, y la canti-
dad de movimiento aumenta al mismo tiempo, en sincronía, por eso es llamado
sincrotrón, siendo siempre la cantidad justa para mantener el círculo con radio
fijo. Naturalmente, hay muchos imanes, por lo que no se puede cambiar el campo
magnético muy rápido, digamos en un segundo cada vez. Este cambio se reali-
za cada seis segundos en el instrumento de NAL en Batavia, Estados Unidos,
donde se está tratando de generar protones con 200 GeV. Como ejemplo, vamos
a describir un poco este instrumento. Se necesita preparar a las partículas para
entrar a este sistema, que tiene tres etapas, con tres instrumentos en sucesión.
Estas etapas son:
1a. Un acelerador lineal hasta una energía, que no recuerdo muy bien, pero
pienso que es del orden de 0.2 GeV, que constituye la fuente para la 2a.
etapa.
2a. Un sincrotrón pequeño que tiene una energía final de 8 GeV, que constituye
la fuente para la 3a. etapa.
3a. Un anillo grande con diámetro del orden de 2 kilómetros y con una energía
final de 200 GeV.
No tengo una fotografia del interior, ya que en todas las fotografias sólo
aparece un edificio; ni del instrumento, ya que está bajo el suelo. Como otro
ejemplo, el acelerador del CERN de 28 GeV es también un sincrotrón y se usa
para alimentar los anillos de acumulación como expliqué anteriormente.
i
i
i
i
i
i
i
i
12 Capítulo 1. Física experimental de altas energías
Ahora hablaremos de cómo la gente detecta las partículas. La eficiencia es
tan grande que en general observamos cada evento atómico, cada colisión de una
partícula con un átomo, cada evento de dispersión y cada partícula individual
que pasa por el contador. Para hacerlo se necesita una gran amplificación, desde
una partícula o un átomo hasta el nivel de nuestros sentidos. La primera etapa
de amplificación es siempre un gran número de iones que son producidos cuando
una partícula cargada y con energía atraviesa la materia. A causa del campo
eléctrico de Coulomb que acompaña a una carga, este campo al interactuar con
un átomo fijo de materia varía muy rápidamente; esta interacción tiene proba-
bilidades bastantes altas de producir rotación y excitación en el átomo. En una
región que contiene muchos átomos, a lo largo de la trayectoria de la partícula, se
producen muchos iones por cada partícula y estos procesos son los que generan
la amplificación.
Figura 1.6 Esquema de la producción de iones
Sin embargo, para observar finalmente las partículas, necesitamos más que
una etapa de amplificación. Esto se hace de distintas maneras y con distintos
instrumentos.
1.3. Detectores de partículas
1.3.1. Cámara de burbujas
Comenzamos con instrumentos en que podemos ver la trayectoria completa en
forma geométrica. Por ejemplo, la cámara de burbujas.
Tenemos un líquido que quiere hervir, pero no puede porque la presión a la que
está sometido es demasiado alta. De repente disminuímos la presión al valor que le
i
i
i
i
i
i
i
i
1.3. Detectores de partículas 13
permite hervir, es decir, es un líquido con vapor sobresaturado. En algunos puntos
se forman burbujas y son precisamente los iones los que proveen tales núcleos para
la formación de las mismas; es difícil producir burbujas ya que éste es un proceso
inestable. Podemos decir que a lo largo de la trayectoria de la partícula, el líquido
está un poco más caliente de lo normal y las burbujas comienzan a formarse, en
principio, a lo largo de la trayectoria. Cuando las burbujas adquieren un tamaño
tal que podemos verlas, entonces se ve la trayectoria de una partícula, aunque
no veamos directamente los iones. Podemos ver cuándo una partícula tiene una
colisión en el líquido, cuándo cambian las trayectorias de las partículas por una
colisión, medir el ángulo de dispersión, etc. Además, podemos medir la cantidad
de movimiento de las partículas usando un campo magnético y la medición de la
curvatura inducida en las trayectorias.
1.3.2. Cámara de chispas
Una idea semejante (a la de la sección anterior) es usada en la cámara de chispas.
Se tienen dos láminas (placas) entre las que hay un gas, aplicamos repentinamente
un voltaje grande entre las láminas, y los iones producidos por las partículas gene-
ran una corriente en forma de chispas, que puede ser observada fotográficamente.
Otra manera es usar, en vez de láminas, muchos alambres en forma de red, y
a partir de las corrientes producidas en diferentes alambres, una computadora
puede determinar directamente la trayectoria. Cuando hay una chispa se puede
determinar, por medio de impulsos eléctricos, qué alambres detectaron la chis-
pa; de esta manera se determinan los ángulos de inclinación, la ubicación –con
números– y se pueden calcular los ángulos de colisión, etc., ya sea con una com-
putadora o directamente. Tengo que decir que, no obstante que las fotografías se
ven bonitas, no tenemos todavía un aparato que pueda ver la fotografía y deter-
mine los ángulos de colisión para la computadora, por lo que necesitamos de un
nuevo aparato. Para que nosotros veamos, la cámara de burbujas es mejor. La
cámara de chispas funciona mucho más rápido que la cámara de burbujas, pero
la cámara de burbujas da una determinación geométrica más fina.
Hay contadores que sólo indican cuándo una partícula ha atravesado el ins-
trumento, pero no dónde lo ha atravesado; un ejemplo de estos instrumentos es
i
i
i
i
i
i
i
i
14 Capítulo 1. Física experimental de altas energías
el contador Geiger, que es un instrumento muy viejo. Consiste de un recipiente
cilíndrico lleno de gas y un alambre coaxial; entre el alambre y el cilindro hay una
diferencia de potencial tal, que cuando el gas es ionizado por una partícula, se
forma una corriente y se produce un pulso en el circuito eléctrico, sin chispa, que
es amplificado por un amplificador electrónico. Por el tamaño del pulso se puede
determinar el número de iones producidos y de esta manera se calcula la velocidad
de la partícula que pasa por el contador, puesto que a menor velocidad hay mayor
producción de iones; este tipo de contador es llamado contador proporcional.
También se puede determinar la altura del pulso.
Por diversas razones puede ser conveniente usar materia más densa que el gas,
por ejemplo, queremos crear una partícula en el contador y entonces medir su
energía a partir del número total de iones. Podemos usar para este fin un líquido
orgánico transparente, en el que los electrones provenientes de la ionización al
recombinarse produzcan centelleos, fotones, luz. La luz es medida por un foto-
multiplicador, que es por sí mismo un amplificador formidable,puede ver hasta
un fotón.
Finalmente quiero describir otro sistema de detección que no se basa en la
ionización, pero que usa una idea interesante. Cuando un objeto, por ejemplo un
avión, viaja a una velocidad mayor que la del sonido, el sonido que es emitido por
el avión produce una onda de choque que se mueve a un cierto ángulo respecto a
la trayectoria del avión, como se muestra en la figura 1.7.
Figura 1.7
El ángulo θ está dado por sen θ ' V0VA , donde V0 es la velocidad de la onda
de choque y VA la del avión. Para que este efecto se produzca VA debe ser mayor
que V0. El efecto es análogo con una partícula en vez de avión y con luz en vez de
sonido. Consideremos un material transparente, como el vidrio, en el que entra
una partícula con mucha energía que tiene casi la velocidad de la luz en el vacío,
i
i
i
i
i
i
i
i
1.4. La relatividad y la mecánica cuántica 15
que no es la misma que la velocidad de la luz dentro de un material. La luz
producida por la interacción de la carga con el campo electromagnético de los
átomos del material viaja con velocidad igual a la de la luz en el vidrio, que es
menor que la velocidad de la luz en el vacío. Este es el llamado efecto Cherenkov,
mediante el cual se puede ver el paso de una partícula y determinar su energía,
observando los fotones con un fotomultiplicador. También, en el caso en que la
velocidad de la partícula no sea tan grande como la velocidad de la luz se puede,
observando el ángulo, determinar la energía de la partícula.
Figura 1.8
Todos los instrumentos que se han descrito sirven para detectar partículas
cargadas, pero hay otras, como los neutrones, que carecen de carga. No hay
instrumentos, hasta ahora, para observar partículas neutras; siempre usamos un
método indirecto. Por ejemplo, supongamos que en la fotografía de una cámara
de burbujas aparece un trazo que se interrumpe abruptamente debido a una
colisión que tiene como producto una partícula neutra, figura 1.8 a), y en la
misma fotografía hay otras dos trayectorias en forma de V, figura 1.8 b). Podemos
imaginar que se trata de una partícula neutra que tal vez decae en dos partículas
cargadas. Podemos verificar que todo está bien, ¿cómo? Las leyes de conservación
de la energía y cantidad de movimiento dadas por la teoría de la relatividad, deben
ser correctas para cada evento por separado, y observando estas trayectorias
podemos calcular la dirección de movimiento de la partícula neutra.
1.4. La relatividad y la mecánica cuántica
1.4.1. Breve repaso de mecánica cuántica
Ya hemos dicho que la teoría de la relatividad especial funciona. Ahora quiero
hablar de la mecánica cuántica que también parece funcionar perfectamente; es
i
i
i
i
i
i
i
i
16 Capítulo 1. Física experimental de altas energías
decir, los principios de la mecánica cuántica funcionan perfectamente. Nótese sin
embargo, que la ecuación de Schrödinger no es exacta porque no es relativista;
no tenemos una forma para describir todas las posibilidades en la teoría cuántica
relativista. Sin embargo, podemos usar algunos principios generales tales como:
que la función de onda es compleja, que la amplitud de probabilidad es el cuadrado
de la función de onda y el principio de superposición de amplitudes.
Combinar el principio de superposición de amplitudes con el hecho de que los
eventos no dependen de la dirección de los ejes de coordenadas, da lugar a una
cantidad, el momento angular,3 que para las partículas en Mecánica cuántica sólo
puede tener valores enteros o semi-enteros positivos 0, 12 , 1,
3
2 , ... en unidades de
}. Cuando uno habla de que un sistema tiene momento angular total 32 , quiere
decir que el momento angular en una dirección especial, digamos z, puede tomar
los valores 32 ,
1
2 , −12 , −32 ; esto también funciona con relatividad. Hay otras cosas,
como la combinación de momentos angulares; por ejemplo, para dos sistemas con
momentos angulares 12 , hay cuatro estados posibles:
¡
1
2 ,
1
2
¢
,
¡
1
2 , −12
¢
,
¡−12 , 12¢ y¡−12 ,− 12¢. El momento angular total del sistema es 1 o 0. Obviamente, la energía
del sistema en el estado con momento angular total 1 es diferente a la energía del
sistema en el estado con momento angular total 0.
Otra idea que funciona en la mecánica cuántica, es que las amplitudes se
calculan imaginando que las cosas acontecen en vértices (interacción puntual)
en los que se puede satisfacer una condición, llamada virtual, que no cumple
la conservación de la energía. Como un ejemplo de esta situación recuerde la
penetración de barreras. En general, para calcular amplitudes se utiliza la teoría
de perturbaciones. En el caso de un estado transitorio, virtual, que no conserva
la energía, la amplitud es proporcional a 1EV −ER , donde la energía del sistema
real es ER y la del estado virtual es EV . Espero que sepan un poco de mecánica
cuántica. En la teoría de la relatividad, el valor de P ·P no es siempre igual a m2
para un estado virtual; y el inverso de la diferencia entre su valor en un estado
virtual y su valor en un estado real, da la amplitud para hallar este estado virtual,
ésta es: 1
P ·P−m2 .
También tenemos la idea de sistemas ligados en estados excitados, que de-
3Se refiere al momento angular intrínseco o espín.
i
i
i
i
i
i
i
i
1.4. La relatividad y la mecánica cuántica 17
caen, que tienen una vida media finita. Por ejemplo, en la teoría no relativista,
veamos el átomo de hidrógeno en un estado excitado, no en el estado base, que
en primera aproximación puede tener una energía definida, pero en realidad ese
estado puede emitir un fotón y el hidrógeno es sólo transitorio, tiene una vida
media y podemos determinar esa energía por medio de otro experimento: tome-
mos un átomo en el estado base y excitemos con luz ese estado; se puede ver, con
ese estado excitado, la luz dispersada y medir la probabilidad de dispersión como
función de la frecuencia de la luz. Cuando la luz no tiene la suficiente energía, o
frecuencia vía la relación E = hν, no ocurre nada y cuando es mayor, tampoco.
La probabilidad de excitación crece y decrece muy cerca de esta frecuencia que
corresponde a la diferencia de energías entre un estado excitado y el base. Pero
olvidé recordarles que la amplitud de probabilidad para un electrón libre varía
con la energía, tiempo, momento y espacio en esta forma: exp(iEt−
−→
P ·−→x
} ), con
P = hλ y E = hν. Esto funciona en relatividad también, siendo la combinación
E2 − P 2 = m2 un invariante relativista. La energía del estado ligado tiene un
ancho pequeño. Ese ancho tiene una relación con la vida media, es decir con el
promedio de vida. En la gráfica de la probabilidad contra la energía, el ancho a la
mitad de la altura máxima, llamada Γ (figura 1.9), refleja un desconocimiento de
la energía; no es una energía indefinida, tiene una incertidumbre. Γ es el inverso
de la vida media. Se puede recordar esta relación pensando en el principio de
incertidumbre ∆E∆t = 1, aquí ∆t es la duración del estado y ∆E es el ancho de
energía.
Figura 1.9
En la teoría no relativista todos los átomos tienen energía casi igual a la masa,
ya que la energía no es muy grande en relación a la masa, sólo hay una pequeña
i
i
i
i
i
i
i
i
18 Capítulo 1. Física experimental de altas energías
diferencia. Una cosa que es diferente a altas energías, es que la masa y la ener-
gía son totalmente distintas. Entonces, en vez de estados excitados hablamos de
partículas con diferentes masas. De esta forma, una partícula que puede emitir un
fotón para llegar a su estado base, la describimos como una partícula que tiene
una masa tal que decae en un fotón y una partícula con otra masa. Esta es la
forma relativista de la mecánica cuántica no relativista, y esa cosa que tiene una
masa y que decae no tiene, por lo mismo, una masa definida.
1.4.2. Predicciones de la relatividad y la mecánica cuántica
Combinando la relatividad con la mecánica cuántica descubrimos que se pueden
hacer algunas predicciones generales. Con cada partícula hay asociada una an-
tipartícula,por ejemplo electrón-positrón, protrón-antiprotón, neutrón-antineu-
trón, etc. Hay algunos casos en que la partícula es la misma que la antipartícula
correspondiente, por ejemplo fotón = antifotón, pero usualmente son diferentes y
además se predice que las antipartículas tienen propiedades como carga y números
cuánticos opuestos a los de la partícula correspondiente, por ejemplo el positrón
tiene carga positiva y el electrón tiene carga negativa. Las masas de las partícu-
las y antipartículas son iguales, y siempre que una partícula se encuentra con su
antipartícula se desintegran en otras partículas.
También en la relación relatividad y mecánica cuántica hay una conexión
entre el espín y la estadística. La estadística habla de la simetría de la función de
onda cuando hay intercambio de partículas. Resulta que para espín entero (por
ejemplo, los fotones) la función de onda es simétrica, y para espín semientero (por
ejemplo, los electrones), es antisimétrica.
Las ecuaciones que combinan la relatividad y la mecánica cuántica dependen
entonces de la estadística, del espín, ya que la función de onda puede tener varias
componentes
Ψ =
⎛⎜⎜⎜⎝
ψ1
ψ2
...
ψn
⎞⎟⎟⎟⎠ .
i
i
i
i
i
i
i
i
1.4. La relatividad y la mecánica cuántica 19
Las ecuaciones más conocidas son la de Klein-Gordon para espín 0 (una com-
ponente), la de Dirac para espín 12 (cuatro componentes) y las de Maxwell para
espín 1 y masa cero (cuatro componentes).
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
Capítulo 2
Tipos de interacciones
2.1. Temas selectos de electrodinámica cuántica
La electrodinámica cuántica es la teoría que describe casi todo en la naturaleza
fuera de los núcleos atómicos, es la teoría que describe las interacciones entre
electrones y fotones. El muón es una partícula que se comporta exactamente
como el electrón, con la diferencia de que sus masas son distintas (la masa del
muón es aproximadamente 207 veces mayor que la del electrón) y de que hay un
neutrino que acompaña al electrón y un neutrino distinto que acompaña al muón.
La teoría de la electrodinámica cuántica funciona tanto para muones como para
electrones. Actualmente la teoría está de acuerdo con todos los experimentos que
no involucran a los núcleos, hasta energías tan grandes como las que hasta el
momento podemos utilizar para la experimentación. No existe ningún ejemplo de
discrepancia en la región de la naturaleza donde la teoría se aplica, es decir, donde
no intervienen núcleos. Sabemos que la teoría funciona para fotones y electrones
pero, por ejemplo, no entendemos la interacción entre fotones y protones.
La electrodinámica cuántica tiene como elementos dos partículas simples e
ideales: el electrón ideal y el fotón ideal. El electrón ideal es aproximadamente el
mismo que el electrón real pero sin su campo eléctrico.
21
i
i
i
i
i
i
i
i
22 Capítulo 2. Tipos de interacciones
Consideremos el proceso elemental en que un electrón decae en otro electrón
y un fotón (figura 2.1).
Figura 2.1
En este proceso no puede haber conservación de energía y momento, cosa que
está permitida por el principio de Heisenberg. Sin embargo, la ecuación −→q =−→p 1 − −→p 2 vale, sólo que no hay valores físicos para la energía de alguna de las
partículas.
No voy a describir la teoría desde el punto de vista cuantitativo. Para de-
jar las ideas más claras, voy a describir con algunos ejemplos cómo funciona
cualitativamente. Las fórmulas cuantitativas no son difíciles y están relacionadas
íntimamente con los diagramas que haremos a continuación.
Comenzaremos mostrando el diagrama más simple que corresponde a la dis-
persión de un electrón por otro electrón (figura 2.2).
Figura 2.2
Hay otra forma en que dos electrones se pueden dispersar emitiendo cada uno
un fotón, como se muestra en las figuras 2.3 y 2.4.
i
i
i
i
i
i
i
i
2.1. Temas selectos de electrodinámica cuántica 23
Figura 2.3
En estos diagramas los fotones (a, b) y los electrones (c, d) son virtuales. De
acuerdo a la electrodinámica cuántica la amplitud para un proceso fundamental
es proporcional a la carga e, así que para la figura 2.2, la amplitud es propor-
cional a e2, debido a que hay dos procesos fundamentales; para la figura 2.3 es
proporcional a e4, ya que hay cuatro procesos fundamentales, y lo mismo para la
figura 2.4.
Figura 2.4
Como e2, en un sistema de unidades convenientes, es un número pequeño³
e2
~c =
1
137
´
las figuras 2.3 y 2.4 tienen una amplitud que es una fracción muy
pequeña de la amplitud del diagrama 2.2. Si se quiere calcular con mayor pre-
cisión se necesita tomar en cuenta otros diagramas, y eso, es para los expertos.
Por esta razón siempre indicaré el diagrama de orden mínimo para cada proceso
que quiero describir.
Hay otro proceso interesante que se llama bremsstrahlung (radiación por de-
saceleración). Cuando un electrón es dispersado puede emitir un fotón real. El
siguiente diagrama corresponde a la dispersión de un electrón por otro con emisión
i
i
i
i
i
i
i
i
24 Capítulo 2. Tipos de interacciones
de un fotón real, y es el diagrama más simple para bremsstrahlung, aunque no el
más importante.
Figura 2.5
Otro fenómeno es el efecto Compton, que es la dispersión de un fotón por un
electrón, representado en el diagrama de la figura 2.6.
Figura 2.6
Otro diagrama posible para este fenómeno es aquel que corresponde al caso
en que el electrón emite el fotón final antes de absorber al fotón incidente, figura
2.7.
Figura 2.7
i
i
i
i
i
i
i
i
2.1. Temas selectos de electrodinámica cuántica 25
Se puede observar que en cada figura he usado flechas para indicar la dirección
de los electrones.
Podemos indicar un nuevo proceso, la creación de un par electrón-positrón.
Es muy interesante porque tiene una relación geométrica con otro proceso, única-
mente tenemos que girar 90o la figura 2.6 en la dirección contraria a las manecillas
del reloj, para obtener el diagrama que corresponde a dos fotones en interacción
que producen un par (figura 2.8).
Figura 2.8
Un positrón se indica como un electrón para el cual la flecha está en dirección
opuesta a la dirección del tiempo (la energía aparece con valor negativo en las
fórmulas). Las flechas son siempre continuas indicando el movimiento de carga.
Un diagrama como el de la figura 2.9 no es posible porque la carga eléctrica no
se conserva.
Figura 2.9
En la práctica, para producir un par no se utilizan dos fotones reales, porque
experimentalmente es difícil hacer colisiones entre dos fotones; en su lugar se uti-
liza un fotón que interacciona con el campo eléctrico producido por un núcleo y
la idea es la misma.
i
i
i
i
i
i
i
i
26 Capítulo 2. Tipos de interacciones
Podemos invertir la dirección del diagrama de la figura 2.8 que se transforma
así en un diagrama que corresponde a la aniquilación de un electrón y un positrón
con producción de un par de fotones (figura 2.10).
Figura 2.10
También podemos describir estados ligados. Por ejemplo, el átomo de hidró-
geno es un estado ligado que consiste de un protón y un electrón. El átomo más
fácil de describir desde nuestro punto de vista es el positronio, en que el núcleo
es un positrón y el electrón está ligado a él por medio del campo eléctrico. Esto
funciona solamente para energía bastante baja, formándose un estado en el cual
los dos coexisten (figura 2.11).
Figura 2.11
Hay otro diagrama posible (figura 2.12), que corresponde al caso en que el
electrón y el positrón se aniquilan como ya he descrito, produciendo un fotón real
que a su vez produce nuevamente un par electrón-positrón. Como este proceso
acontece en el átomo, necesitamos tomar en cuenta todas las posibilidades al cal-
cular la energía del mismo.
i
i
i
i
i
i
i
i
2.1. Temas selectos de electrodinámica cuántica 27
Figura 2.12
A primera aproximación, figura 2.11, el electrón y el positrón se encuentran
alejados uno del otro, y la aproximación no relativista de Schrödinger funciona
bien. Pero para tener en cuenta el caso de aniquilación virtual, tenemos que calcu-
lar también diagramasdel tipo 2.12. Todo esto está de acuerdo con la experiencia
y ha sido plenamente verificado.
Existen diagramas más complicados que incluyen circuitos fermiónicos cerra-
dos. Por ejemplo, en el caso de dispersión de dos fotones, éstos chocan y tal
vez puedan producir un par, pero tal vez la energía no sea tan grande para
producirlo. Si queremos determinar la probabilidad de hallar dos fotones que
salen en direcciones diferentes a las de los fotones que entran, el diagrama de la
figura 2.13 es el adecuado. Este diagrama corresponde a la dispersión de luz por
luz, y puede calcularse.
Figura 2.13
Finalmente, un diagrama que no es importante, pero que lo mencionamos
i
i
i
i
i
i
i
i
28 Capítulo 2. Tipos de interacciones
para aclarar cuál es la diferencia entre un electrón real y un electrón ideal, es el
de la figura 2.14.
Figura 2.14
El diagrama 2.14 a) corresponde al de un electrón ideal. El diagrama 2.14
b) corresponde al de un electrón físico y muestra varias posibilidades: emisión y
absorción de un fotón virtual; emisión y absorción de dos fotones virtuales (el
segundo es emitido antes de que el primero sea absorbido) y emisión de un fotón
que produce un par virtual, que posteriormente se aniquila formando un fotón que
es absorbido por el electrón. Felizmente, los diagramas más complicados como el
de la figura 2.14 b) tienen muchos factores e2 y entonces producen correcciones
pequeñas.
Si comenzamos con la aproximación cero en que el electrón es ideal, de acuerdo
a la ecuación de Dirac su momento magnético4 debe ser igual a 1 en unidades
adecuadas. La corrección debida a la emisión y absorción de un fotón, mostrado
en la parte inferior del diagrama 2.14 b), consiste en añadir un término 12π
e2
}c ,
la corrección debida a la parte central del mismo diagrama, consiste en añadir
el término 3.2π2
³
e2
}c
´2
. La parte superior del diagrama introduce correcciones del
orden
³
e2
}c
´3
. Así se obtiene para el momento magnético del electrón la expresión:"
1 +
1
2π
µ
e2
}c
¶
+ 3.2
(−1)
π2
µ
e2
}c
¶2
+ ...
#
4Si la partícula tiene espín diferente de cero y está eléctricamente cargada entonces posee
momento magnético. Éste es el caso del electrón, el muón, el protón, etc.
i
i
i
i
i
i
i
i
2.1. Temas selectos de electrodinámica cuántica 29
La diferencia entre el momento magnético del electrón real y del electrón ideal
está bien verificada. También podemos estudiar con la misma técnica al muón,
que parece diferir del electrón solamente en su masa.
Existe un átomo (muonio) que tiene un muón positivo y un electrón ligado a
él (figura 2.15).
Figura 2.15
Los protones interactúan también con los electrones; un ejemplo de ello es
la existencia del átomo de hidrógeno; este estado ligado está representado por el
diagrama de la figura 2.16.
Figura 2.16
Debido a esta interacción, también podemos hacer experimentos de dispersión
de electrones por protones (figura 2.17).
Figura 2.17
i
i
i
i
i
i
i
i
30 Capítulo 2. Tipos de interacciones
Cuando el momento del fotón es bastante pequeño, en otras palabras, cuando
la longitud de onda que le corresponde es bastante grande, el fotón no puede ver
nada, y el protón aparece como un punto; pero cuando el momento q del fotón es
suficientemente grande, es posible observar más detalladamente las propiedades
del protón, y éste aparece muy complicado. La primera indicación de que las
cosas no son sencillas con el protón, es que su momento magnético no es uno, ni
cercano a uno, es 2.79; el protón es complicado desde el punto de vista eléctrico,
tal vez tiene cosas adentro, tal vez existen otras complicaciones, no lo sabemos
con certeza. Vamos a describir nuestra teoría de interacciones en forma simbólica
como
γ (ē e+ µ̄ µ+ “p̄ p”+ . . .?) .
El primer término representa la interacción entre un fotón γ, un electrón
entrante ē y un electrón saliente e, las tres partículas coinciden en un punto; el
segundo término es lo mismo pero con los electrones reemplazados por muones.
Como el protón es complicado y no lo conocemos exactamente lo ponemos entre
comillas; otros términos son indicados por “?”.
2.2. Interacciones débiles
Estudiaremos ahora las interacciones débiles, que más o menos están bien en-
tendidas. Comenzaremos con un ejemplo que involucra al neutrón, al protón, al
electrón y al antineutrino
n→ p+ e+ ν̄e
que se conoce como la desintegración beta del neutrón.5
Desde el punto de vista eléctrico, el neutrón6 es tan complicado como el pro-
5En algunos núcleos atómicos los neutrones decaen de esta manera, conocida como radiac-
tividad beta. Los electrones en estos procesos radiactivos fueron denominados originalmente
como rayos beta, para distinguirlos de los rayos alfa y gama, que se observaron en otros procesos
radiactivos.
6El neutrón es una partícula eléctricamente neutra, de masa ligeramente mayor que la del
protón y de espín 1/2, pero que sí posee momento magnético. Esta última propiedad es conse-
cuencia de que el neutrón no es una partícula elemental, sino que está formada de quarks.
i
i
i
i
i
i
i
i
2.2. Interacciones débiles 31
tón, ya que su momento magnético es −1.91, muy alejado del valor que tendría
si fuera una partícula simple de Dirac. Existen dos tipos diferentes de neutrinos
–hecho que todavía no podemos explicarnos– un tipo de neutrino νe que acom-
paña siempre al electrón y otro tipo νµ que acompaña siempre al muón. Existen
además dos tipos de antineutrinos ν̄e y ν̄µ, pero al tomar en cuenta los estados de
espín (los neutrinos tienen espín 12) no existe en la naturaleza una correspondencia
uno a uno entre neutrinos y antineutrinos, por lo que en interacciones débiles se
viola la operación conjugación de carga. Esto tiene que ver con la violación de la
paridad en interacciones débiles, más adelante hablaremos de estas operaciones.
Podemos esquematizar la desintegración beta como se muestra en la figura
2.18,
Figura 2.18
donde se piensa que la interacción es de alcance infinitamente pequeño. Esta
aproximación puede corregirse si suponemos que existe un bosón intermediario
W , la contraparte del fotón para interacciones débiles. Entonces el diagrama sería
el de la figura 2.19.
Figura 2.19
La masa deW debe ser grande para que el alcance de las interacciones débiles
sea corto, como sabemos que ocurre; se estima que prodía ser como de unos 3
GeV. Si fuera infinitamente grande, entonces la interacción sería puntual, que es
i
i
i
i
i
i
i
i
32 Capítulo 2. Tipos de interacciones
la primera aproximación que mencionamos antes. La existencia de W es intere-
sante desde el punto de vista teórico, sin embargo aún no se le ha encontrado
experimentalmente.7
Describimos en forma simbólica las interacciones débiles por
W (νee+ νµµ+ “p̄n”+ . . .)
Otro proceso similar al anterior, se diría casi su inverso, es la llamada captura
K,
e− + p→ n+ νe,
en el que un electrón en la capa K de un átomo es atrapado por el núcleo,
transformando un protón en un neutrón y emitiendo un neutrino.
El átomo muonio, que es como el hidrógeno pero con el protón reemplazado
por un muón positivo, puede sufrir también desintegración beta
µ+ + e− → νe + ν̄µ,
o bien el muón por sí solo, ya que no es una partícula estable, puede sufrir la
desintegración beta
µ+ → e+ + νe + ν̄µ,
en ambos casos desaparece el átomo de muonio. La vida media del muón es de
2× 10−6 s, por este motivo no estamos tan familiarizados con él como lo estamos
con el electrón, que sí es estable.
La operación paridad corresponde a cambiar el signo del vector de posición−→r en la función de onda, esto es,
−→r → −−→r .
Es como cuando uno se observa en un espejo, en que la izquierda y la derecha
se intercambian. Si se hace esto y lo que se observa es igual a lo que se tenía
7El bosón intermediario W fue descubierto experimentalmente en el CERN en 1983, tiene
una masa de 80 GeV, es decir, 80 veces la del protón.
i
i
i
i
i
i
i
i
2.2. Interacciones débiles 33
antes de la reflexión, se dice que la paridad se conserva y si no, entonces se
dice que se viola.En el caso de la desintregración beta aparecen efectos que
sólo pueden observarse si la paridad no se conserva, cosa que ha sido verificada
experimentalmente.
Debido a que creemos que la operación CPT deja invariante a las interacciones
débiles, y ésta es el producto de las tres operaciones C (conjugación de carga,
o sea cambiar partícula por antipartícula), T (invertir el signo de la coordenada
tiempo) y P (que ya explicamos), si ocurre que una de las operaciones se viola,
entonces cuando menos otra de ellas debe violarse para que la operación total
siga siendo válida. En la desintegración beta ocurre que se viola C además de P ,
y como dijimos antes, esto se debe a que no hay una correspondencia uno a uno
entre los estados de espín de los neutrinos y antineutrinos.
Si W existe, podemos prever la existencia de la dispersión electrón-neutrino,
ya que el siguiente diagrama (figura 2.20) sería posible
Figura 2.20
Se estima que la sección transversal de colisión, del orden de 10−42 cm2, es
tan pequeña que resulta casi imposible observar esta colisión. La sensibilidad de
los experimentos actuales es diez veces menor.
Los neutrinos tienen importancia en astrofísica, pues podrían ser la explicación
de cómo el centro de una estrella puede enfriarse más rápidamente de lo esperado,
como parecen indicar las observaciones. En el centro de la estrella, al aumentar
la temperatura, se producen fotones con mucha energía que crean pares (e−, e+)
y éstos al encontrarse pueden desintegrarse en un par de neutrinos
e− + e+ → νe + ν̄e,
que es el mismo proceso de dispersión anterior si se intercambian dos patitas del
diagrama de la figura 2.20. Como la sección de colisión de los neutrinos es muy
i
i
i
i
i
i
i
i
34 Capítulo 2. Tipos de interacciones
pequeña, éstos pueden escapar desde el centro de la estrella, perdiéndose masa-
energía y enfriándose el centro. Parece que los astrónomos no pueden entender lo
que pasa dentro de una estrella sin este proceso de dispersión electrón-neutrino.
No es una evidencia decisiva en favor de su existencia, pero parece apoyarla.
En la desintegración beta se violan C y P pero se conserva T . Sin embargo,
existe un proceso también de interacción débil en que no se conserva el producto
CP (cambiar partícula por antipartícula e intercambiar izquierda por derecha).
En este proceso si CPT vale, se esperaría que tampoco T se conservara. En
cualquier caso, este efecto es tan pequeño que algunas personas piensan que se
podría atribuir a la existencia de una nueva interacción aún más débil que la
interacción débil ordinaria, se trataría de una interacción superdébil. Sólo que
todavía no tenemos suficiente información sobre ella para poder hacer una teoría.
Ésta es la situación de la muy débil interacción gravitacional, en donde por falta
de evidencia experimental, no hemos podido construir una teoría microscópica,
esto es, cuántica.
2.3. Particularidades de interacciones fuertes
Comenzaremos históricamente con la tentativa hecha por Yukawa en 1934 para
entender la interacción entre protón y neutrón, desde un punto de vista análogo
al de la teoría de la electrodinámica cuántica. Describiremos esta analogía; para
ello usaré modificaciones hechas en diferentes experiencias (1947 y 1948) en que
se descubrieron las partículas que Yukawa predijo y que ahora llamamos piones.
Las ideas de Yukawa son las siguientes. Los electrones, desde el punto de vista
de la electrodinámica, interactúan a través de otra partícula llamada fotón, figura
2.21,
Figura 2.21
i
i
i
i
i
i
i
i
2.3. Particularidades de interacciones fuertes 35
entonces Yukawa pensó que la interacción entre neutrón y protón (nucleones en
general) se hace por intercambio de una partícula a la que llamamos pión (π),
figura 2.22.
Figura 2.22
Una modificación a las ideas de Yukawa es que además de π0 existe otra
partícula, π+, que el protón puede emitir decayendo en un neutrón; a su vez, el
neutrón puede absorberlo formando un protón, figura 2.23.
Figura 2.23
Entonces se tiene una fuerza que tiene una propiedad de intercambio, porque
después de la interacción, la identidad de protón y neutrón se ha intercambiado.
La analogía funciona más o menos así: el fotón corresponde al pión y los electrones
corresponden a los nucleones; sin embargo, se deben tomar en cuenta las siguientes
modificaciones:
1. El pión tiene masa propia, implicando que la interacción es proporcional a
e−mr
r
(m = 140 MeV) en vez de ser proporcional a
1
r
como en la electrodi-
námica cuántica. La primera interacción es de alcance corto, mientras que
la segunda es de alcance infinito.
2. El espín del pión es cero (pseudoescalar) mientras que el del fotón es uno.
i
i
i
i
i
i
i
i
36 Capítulo 2. Tipos de interacciones
3. Hay tres valores de carga para el pión π+, π− y π0; por lo tanto se necesita
dar la amplitud para distintos diagramas con diferentes arreglos n, p y π,
figura 2.24. Por ejemplo:
Figura 2.24
4. La intensidad de la interacción, lo que corresponde a e
2
~c , se puede determinar
por la magnitud de las interacciones y se tiene que g2 = 15.
De esta manera se ve que la contribución del diagrama siguiente
Figura 2.25
es 15 veces mayor al de la figura 2.26, y toda la teoría de perturbaciones cae. En
i
i
i
i
i
i
i
i
2.3. Particularidades de interacciones fuertes 37
estos diagramas N representa n o p. Nadie puede calcular las consecuencias de
esta teoría; no obstante, sabemos que no es correcta porque hay fenómenos que
no pueden ser entendidos en esta forma. Ahora mencionaremos algunos de estos
fenómenos.
Figura 2.26
Primero, cuando r es suficientemente grande, la interacción aparece como en
esta teoría
³
e−mr
r
´
, pero cuando r es pequeña, se hace mucho más complicada,
de tal manera que existen otros términos con otras masas y otras relaciones.
Estas otras fuerzas corresponden al hecho de que existen otras partículas además
del pión. Segundo, la fuerza entre dos protones en el núcleo no es tan simple
como indica esta teoría, depende también de la relación entre los espines de las
dos partículas; en otras palabras, es muy complicada. Sin embargo, hay una regla
que la simplifica, y es que dicha fuerza es aproximadamente igual a la fuerza entre
dos neutrones (por lo menos cuando están en el mismo estado). Por supuesto, las
fuerzas eléctricas entre protón-protón y neutrón-neutrón no son iguales, por la
diferencia de carga. A esta simetría de intercambio de n y p o de π+, π0 y π− se le
llama simetría isotópica. De esto resulta que las partículas aparecen en dobletes,
tripletes y otros pequeños multipletes. Por ejemplo, tenemos un neutrón y un
protón cuyas masas son casi exactamente iguales, la diferencia en sus masas se
atribuye a la energía del campo electromagnético; esto es válido también para los
piones π+, π0 y π−, los cuales tienen masas de más o menos 140 MeV.
Aunque con esta teoría no se puede calcular nada, es importante hacer notar
que si se puede construir el diagrama para un fenómeno, el fenómeno va a ocurrir.
Por ejemplo, vamos a pensar que π0 se desintegre en dos fotones en la forma
siguiente, figura 2.27.
i
i
i
i
i
i
i
i
38 Capítulo 2. Tipos de interacciones
Figura 2.27
Otros diagramas posibles sólo modifican la amplitud para el proceso π0 →
γ + γ. Del hecho que existe la posibilidad de construir este diagrama resulta
que π0 puede desintegrarse en dos fotones. Sin embargo, esta regla tiene algunas
excepciones dado que es necesario que se conserve la energía, el momento lineal,
el momento angular, la carga, etc.; también se necesita estar de acuerdo con la
simetría. Si no hay reglas de simetría contrarias a un fenómeno, si no hay violación
de una ley de conservación, y si se puede construir un diagrama; entonces todo
funciona con una o dos excepciones que no están bien entendidas. Así también
π+ → µ+ + νµ
es un proceso posible, ya que se puede construir el diagrama de la figura 2.28.
Figura 2.28
i
i
i
i
i
i
i
i
2.3. Particularidades de interacciones fuertes 39
También existe un diagramaque describe la emisión de un pión, que corres-
ponde a la reacción p+ n→ n+ n+ π+, figura 2.29.
Figura 2.29
Ésta es una predicción de la teoría de Yukawa. Hay otros fenómenos, por ejemplo:
n+ p→ n+ Λ+K+, (2.1)
más complicados de lo que Yukawa predijo. La partícula Λ es tal que se desintegra
en un protón y un pión,
Λ→ p+ π−, (2.2)
muy lentamente, tiene una vida media de aproximadamente 3×10−10 s que parece
pequeña, pero no lo es. Supongamos que Λ es una cosa hecha de un protón y
un pión que tiene bastante energía. Al desintegrarse Λ, el pión sale, ¿con qué
velocidad se desintegra Λ?, se puede calcular. El tiempo es aquel en el que se
recorre una distancia del orden del tamaño del protón con la velocidad de la luz
(aproximadamente 10−23 s). Si una desintegración se efectúa por interacciones
fuertes, aparecen tiempos de este orden. Así la desintegración Λ→ p+π− es 1013
veces más lenta y por lo tanto se debe a interacciones débiles. También se sabe
que en esta desintegración la paridad no se conserva. ¿Por qué Λ no puede ir a
π directamente en este tiempo? Porque no existe la posibilidad de un diagrama,
esto es, porque Λ no tiene interacción fuerte con p y π−.
Consideremos ahora el número cuántico S llamado extrañeza y los valores de
i
i
i
i
i
i
i
i
40 Capítulo 2. Tipos de interacciones
éste para las diferentes partículas:
S M (MeV)
n, p 0 938
π+, π0, π− 0 140
Λ −1 1115
K0, K+ 1 494
Ξ+, Ξ− −2 1320
Σ+, Σ0, Σ− −1 1190
Una regla importante en interacciones fuertes es que el valor total de la ex-
trañeza no puede cambiar. En interacciones débiles el valor total de S puede
cambiar por ±1. El proceso n+ p→ n+ Λ+K+ para el cual ∆S = 0 es debido
a una interacción fuerte. El proceso de desintegración Λ → p + π− para el cual
∆S = 1 es debido a una interacción débil.
La partícula llamada Ξ− se puede desintegrar en Λ y π− con ∆S = 1
Ξ− → Λ+ π−.
La desintegración de Ξ− en p y π−
Ξ− → p+ π−,
si ocurre, es demasiado débil para ser observada (∆S = 2).
Una partícula con extrañeza igual a la de Λ es Σ, la cual aparece en tres
formas Σ−, Σ0 y Σ+.
La partícula K+ puede desintegrarse en π+ y π0 por interacción débil
K+ → π+ + π0. (2.3)
Existe otra regla que analizaremos ahora. Supongamos que fuera posible que
Λ→ 2π
i
i
i
i
i
i
i
i
2.3. Particularidades de interacciones fuertes 41
entonces por las ecuaciones (2.1) y (2.3), se tendría
n+ p→ n+ 2π + π+ + π0,
esta posibilidad permitiría que dentro de un núcleo, un protón desapareciera
transformándose en piones, los que serían absorbidos por otros nucleones dentro
del mismo núcleo, o por el propio neutrón, así los átomos desaparecerían; la
materia sería inestable. La nueva regla establece que el número de bariones debe
conservarse (n, p, Λ, Ξ y Σ son bariones).
Un ejemplo de desintegración que no puede ocurrir por falta de energía es
Σ0 → Λ+ π0, (2.4)
para ésta el número de bariones es 1 y se conserva, la extrañeza es −1 y también
se conserva, pero
mΣ0 = 1190 MeV < mΛ +mπ0 = (1115 + 140) MeV.
Si ahora en vez de π0 tenemos γ, esto es
Σ0 → Λ+ γ,
la desintegración8 es posible pero es un poco más lenta que 10−23 s, aproximada-
mente por un factor de 100.
Como otro ejemplo tomemos la desintegración:
K+ → π+ + γ,
en este caso no hay bariones, ∆S = −1, indicándonos que es debida a interac-
ciones débiles. Debido a la existencia de γ la interacción es aproximadamente 100
veces menor que la fuerza débil ordinaria, ya que se necesitan dos interacciones:
8Éste es el modo principal de decaimiento de Σ0, casi el 100% de los decaimientos. Su vida
media es 7× 10−20 s.
i
i
i
i
i
i
i
i
42 Capítulo 2. Tipos de interacciones
una débil y otra eléctrica. Este proceso es más lento que el dado por la ecuación
(2.3)9.
Otra propiedad de las partículas que nos permite sistematizarlas es el espín.
Por ejemplo, tomemos solamente partículas cuyo espín es 12 y con un tipo de pari-
dad llamada positiva, como la del protón, con ellas podemos formar la siguiente
tabla:
Carga Masa
S −1 0 1 M (MeV)
−2 Ξ− Ξ0 1318
−1 Σ− Σ0 Σ+ 1193
−1 Λ 1115
0 n p 938
Este conjunto de ocho partículas se llama octete.
Se ha dicho que es posible que una partícula que tiene bastante masa se desin-
tegre por fuerzas fuertes. Veamos ahora cómo determinar la existencia de algo que
tiene una vida media tan pequeña, que no se puede mover antes de desintegrarse.
Supongamos un protón y un pión que son dispersados uno por el otro; medimos
la sección de colisión en términos de la energía del pión, obteniéndose la curva
de la figura 2.30. Esta curva se parece a la curva de dispersión de luz por un
estado excitado de un átomo, donde aparece una resonancia cuyo ancho es inver-
samente proporcional a la vida media del estado excitado. En la curva de la figura
2.30, tenemos una resonancia con cuyo ancho se puede determinar la velocidad
de desintegración de esta cosa cuya vida media es muy pequeña. Esta resonancia
tiene una energía total de 1236 MeV y se llama ∆++. Cuando un protón tiene
una energía muy cercana a ésta, el protón y el pión se combinan para formar
temporalmente un sistema, y debido a las interacciones fuertes termina desinte-
grándose. Si la energía no es la correcta, no se puede formar este estado. Así se
descubre que existen otros estados que dan lugar a cuatro partículas ∆0, ∆+, ∆−
y ∆++, todas con energía 1236 MeV y espín 32 . También hay reacciones de K
+
9Éste es uno de muchos modos de decaimientos de K+, y ocurre como un modo de corriente
débil neutra con una razón menor de 3× 10−7. El bosón intermediario Z, también descubierto
en 1983, es eléctricamente neutro con una masa de 90 GeV (90 veces la del protón).
i
i
i
i
i
i
i
i
2.3. Particularidades de interacciones fuertes 43
y n, y de K− y p, que producen una resonancia que tiene extrañeza negativa,
la cual es llamada Σ∗ (más precisamente Σ 1385). Otra partícula obtenida con
carga negativa y extrañeza −3 es Ω.
Figura 2.30 Resonancia ∆++ → π+ + p
Las partículas ∆, Σ y Ω junto con Ξ− y Ξ0 (exactamente Ξ 1530) forman
un conjunto con espín 32 al cual se le llama decuplete, todas con paridad positiva.
Carga Masa
S −1 0 1 2 M (MeV)
−3 Ω 1672
−2 Ξ− Ξ0 1530
−1 Σ− Σ0 Σ+ 1385
0 ∆− ∆0 ∆+ ∆++ 1236
Un conjunto que tiene una sola partícula es Λ con masa 1405 MeV, espín y
paridad 12
−
. Así, es posible hablar de conjuntos de 1, 8 o 10 partículas en vez de
hablar de cada partícula. Se ha descubierto que los mesones de espín 0 forman
i
i
i
i
i
i
i
i
44 Capítulo 2. Tipos de interacciones
un conjunto de nueve partículas (nonete).
Carga (Masa)2 (GeV)2
S −1 0 1
0 η0
0 η
−1 K− K̄0 0.24
1 K0 K+
0 π− π0 π+ 0.02
Los mesones que tienen espín 1 forman también un nonete, compuesto por ρ
(ρ+, ρ−, ρ0), K∗ (K∗0, K∗+), etc., cuyo patrón es similar al de espín 0 con los
mismos valores de extrañeza.
Carga
S −1 0 1
0 φ
0 ω
−1 K∗− K̄∗0
1 K∗0 K∗+
0 ρ− ρ0 ρ+
La forma en que se descubrió la partícula ρ es interesante y fue como sigue:
se toma la reacción entre e− y e+ en haces en colisión para producir un fotón, el
cual se desintegra en π+ y π−, (figura 2.31).
Figura 2.31
i
i
i
i
i
i
i
i
2.3. Particularidades de interacciones fuertes 45
Se mide la probabilidad de producir π+ y π− en función de la energía,
obteniéndose la curva (I) de la figura 2.32.
Figura 2.32
A la primera resonancia se le llama ρ0. También es posible producir tres
piones (curva II), la resonancia que se obtiene se llama ω0. Otra posibilidad es
producir K+ y K− (curva III), el ancho de la curva en este caso es pequeño. A
esta resonancia se le llama φ.
Dos comentarios a los temas tratados que olvidé mencionar: primero, algunas
personas se refieren a los conjuntos de partículas que tienen diferente carga, por
ejemplo, {n, p}, ©π−, π0, π+ª, etc., como una simetría isotópica o hablan de dos
casos de multipletes isotópicos. Para calcular los coeficientes en cada amplitud,
que cambian al sustituir un miembro del multiplete por otro, las matemáticas
son exactamente iguales que para la composición de momentos angulares en la
mecánica cuántica,pero como las personas son perezosas, usan las mismas fórmu-
las y las mismas palabras. Así, {n, p} es análogo a un sistema de espín 12 cuyas
componentes son −12 , 12 , y
©
π−, π0, π+
ª
es análogo a un sistema de espín 1 con
componentes −1, 0, 1. Naturalmente el espín se tiene en un espacio geométrico
ordinario, pero cuando decimos que el protón tiene espín isotópico 12 , sólo debe-
mos entender que es parte de un multiplete que tiene dos partículas. El espín
isotópico se imagina como el análogo del espín usual pero en un espacio artificial
y abstracto.
i
i
i
i
i
i
i
i
46 Capítulo 2. Tipos de interacciones
El segundo es que nuevos fenómenos de desintegraciones débiles como
Λ→ p+ π−
o
π → µ+ ν,
se pueden describir también suponiendo la existencia del bosón intermediario
W . Así como antes vimos que la interacción entre un fotón y todas las demás
partículas se puede representar simbólicamente como
γ (eē+ µµ̄+ “hadrones”) ,
ahora la interacción débil se puede representar por
W
µ
ν̄ee+ ν̄µ µ+ cos θc“hadrones”
(∆S=0)
+ sen θc“hadrones”
(∆S=± 1)
¶
.
Por ejemplo, si consideramos la desintegración de Λ en:
Λ → p+ µ̄+ νµ,
Λ → p+ e+ ν̄e,
que como diagrama se vería así (figura 2.33).
Figura 2.33
Experimentalmente se descubrió que el término con∆S = ± 1 es menor que el
término con ∆S = 0. Por convención llamamos sen θc al coeficiente del primero,
cuyo valor es 0.24. Cabibbo ha predicho que la suma de los cuadrados de ambos
coeficientes debe ser uno, por lo que el coeficiente del término ∆S = 0 es cos θc.
i
i
i
i
i
i
i
i
Capítulo 3
El modelo de quarks y
regularidades en partículas
hadrónicas
3.1. Quarks
Ahora quiero describir algo que no es una teoría ya que presenta problemas, pues
es un modelo bastante ingenuo; por ejemplo, usa ideas no relativistas aun cuando
se sabe que la teoría debe ser completamente relativista; también tiene ideas
demasiado simples que en principio no están de acuerdo con que cada diagrama
funcione. Así, el modelo de quarks no es una teoría completa, es sólo un modelo
aproximado, pero que funciona bien para predecir o adivinar qué partículas deben
existir en los multipletes, con qué valores de espín, extrañeza, espín isotópico, etc.
Las predicciones que se obtienen con este modelo funcionan, y nadie entiende por
qué un modelo tan crudo puede dar resultados tan cercanos a la verdad; no son
exactos pero sirven para recordar las propiedades de los hadrones.
La idea es que las partículas están constituídas por cosas a las que nombramos
quarks y antiquarks. Un quark tiene espín geométrico 12 y es análogo a un nucleón
47
i
i
i
i
i
i
i
i
48 Capítulo 3. El modelo de quarks y regularidades en partículas hadrónicas
que viene en dos formas: protón y neutrón, el quark se presenta en tres formas
llamadas u (up), d (down) y s (strange); doy las propiedades (extrañeza S y carga
q) de éstos en la tabla siguiente10:
Quarks Q
S = −1 s
S = 0 u d
q 2/3 −1/3
Antiquarks Q
S = +1 s
S = 0 u d
q −2/3 1/3
Voy a dar la idea de cómo los hadrones interactúan con los fotones desde el
punto de vista de este modelo. Los quarks tienen carga y hay interacciones del
tipo:
γ
µ
ēe+ µ̄µ+
2
3
ūu− 1
3
d̄d− 1
3
s̄s
¶
.
El modelo también da ideas respecto a desintegraciones en que d puede cam-
biar a u (como cuando un neutrón va a un protón emitiendo un electrón y un
neutrino) e interacciones con W en las cuales s cambia a u (∆S = 1):
W (νee+ νµµ+ cos θc (ud) + sen θc (us)) .
Como no tenemos una teoría vamos a ver qué ocurre si un protón o un ba-
rión están constituídos de tres quarks (QQQ), ya que cada quark tiene número
bariónico 13 . Vamos a comenzar con el caso en que los espines de los tres quarks
son paralelos, cada uno con componente 12 ; entonces el espín total del estado es
3
2 . Ahora tomemos en cuenta los diferentes tipos de quarks que podemos tener
en un estado bariónico: tres quarks del tipo u, lo que nos da un estado con carga
2; otro estado posible es uud, el cual tiene carga +1, tenemos también udd con
carga 0 y ddd con carga −1:
S = 0 ddd udd uud uuu
Carga −1 0 1 2
10Hoy día se sabe con certeza que hay seis tipos de quarks: a los del tipo, u, d, s, hay que
agregar c (charm), b (bottom), t (top). También se sabe que hay seis leptones: e (electrón), µ
(muón), τ (tauón), y sus neutrinos νe, νµ, ντ .
i
i
i
i
i
i
i
i
3.1. Quarks 49
Inmediatamente quiero decir que u y d deben tener casi la misma masa,
entonces −1, 0, 1 y 2 son diferentes componentes del espín isotópico de un estado.
Se puede reconocer esto como:
∆− ∆0 ∆+ ∆++
Carga −1 0 1 2
Podemos sustituir u o d por s, lo que se tiene es
S = −3 sss
S = −2 dss uss
S = −1 dds uds uus
S = 0 ddd udd uud uuu
Carga −1 0 1 2
Vamos a inventar, a dar una regla, de que para cada s en un estado el cuadrado
de la masa crece por un valor de más o menos 0.4 (GeV)2, después voy a dar
números más exactos. La siguiente tabla muestra las partículas que existen con
espín 32 ; las cuales tienen cargas, masas y extrañezas que están de acuerdo con
nuestro modelo.
Masa (MeV)
S = −3 Ω− 1672
S = −2 Ξ− Ξ0 1530
S = −1 Σ− Σ0 Σ+ 1385
S = 0 ∆− ∆0 ∆+ ∆++ 1236
Carga −1 0 1 2
En lo anterior se utilizó la hipótesis de que el orden de los quarks no importa,
es irrelevante. Ahora continuamos describiendo estados en que un espín está hacia
abajo y los otros dos están hacia arriba (↓↑↑). La componente de espín en el eje
z es 12 ; vamos a determinar cuantos estados existen. Cuando los tres quarks son
u sólo hay un estado; pero cuando uno de los quarks es d (los otros dos siendo
u) existen dos estados físicamente diferentes. El d puede ser el quark que tiene el
i
i
i
i
i
i
i
i
50 Capítulo 3. El modelo de quarks y regularidades en partículas hadrónicas
espín hacia arriba y los dos u tienen espines opuestos. Cuando los tres quarks son
distintos hay tres posibilidades porque el espín que está hacia abajo puede ser el
de u, d o s. En la siguiente tabla indicamos con un círculo el número de estados:
l1
sssl2 l2
dss ussl2 l3 l2
dds uds uusl1 l2 l2 l1
ddd udd uud uuu
Pero ya sabemos que existe un estado en cada caso, ¿por qué? porque el
sistema puede tomar el decuplete anterior, el cual tiene espín total 32 , que tiene
componentes a lo largo del eje z de +32 , pero también cada estado puede tener una
componente +12 . Entonces, uno de los estados se entiende como la componente
3
2 y los otros son cosas nuevas, pero el nuevo estado sólo existe con componente
+12 , es parte de una cosa que tiene espín total
1
2 . Para dar estos estados extras,
podemos borrar un estado en cada caso, lo que se tiene es:
l1 l1
dss ussl1 l2 l1
dds uds uusl1 l1
udd uud
Éstos son todos los estados extra que corresponden a un sistema de bariones
i
i
i
i
i
i
i
i
3.1. Quarks 51
que tiene un espín total 12 . El arreglo de partículas en este sistema es:
Masa (MeV)
S = −2 Ξ− Ξ0 1318
S = −1 Σ− Σ0 Σ+ 1193
Λ0 1115
S = 0 n p 938
Carga −1 0 1
Para quienes quieren ver las cosas más matemáticamente, voy a describir este
problema un poco más detallado. El estado uud tiene tres posibilidades, depen-
diendo de los espines: dos hacia arriba y uno hacia abajo (∙↓); uno hacia arriba,
uno hacia abajo y el otro hacia arriba (↑↓↑); uno hacia abajo y dos hacia arriba
(↓∙); y queremos saber cuál –de las tres posibilidades y de hecho dos, porque
dos son simétricas– es ∆+ y cuál es el protón. Resulta que una combinación
lineal de estas posibilidades es ∆+ y otra combinación lineal es el protón. Como
∆++ (uuu) tiene una simetría completa, se puede demostrar que ∆+ tiene que
ser completamente simétrico, los coeficientes siendo 1, 1, 1:
∆+ → uud 1√
3
(↑↑↓ + ↑↓↑ + ↓↑↑)
con el 1√
3
por normalización. El otro estado debe ser ortogonal:
p→ uud 1√
6
(2 ↑↑↓ − ↑↓↑ − ↓↑↑)
el cual también está normalizado. La teoría es completamente simple, ¡como la
mecánica cuántica!
¿Qué son los mesones? Decimos que los mesones son combinaciones de quark
y antiquark (QQ) de modo que el número bariónico total es cero. Consideremos
el caso de espines paralelos, el sistematiene un espín total uno; como se tienen
tres posibilidades para cada quark y antiquark, así existen nueve estados con
i
i
i
i
i
i
i
i
52 Capítulo 3. El modelo de quarks y regularidades en partículas hadrónicas
diferentes valores de carga, etc.
S = 0 ss
S = 0 dd
S = −1 su sd
S = +1 ds us
S = 0 du uu ud
Carga −1 0 1
También podemos formar combinaciones de espín hacia arriba, el quark; y de
espín hacia abajo, el antiquark; o al contrario. Pero una componente con espín 0
ya se consideró, porque el sistema con espín total 1 tiene componentes a lo largo
del eje z: 1, 0,−1; así, tenemos dos ceros; usamos uno y queda uno. Se sabe bien
que dos espines 12 dan un espín total 1 o 0; entonces tenemos un sistema con espín
0 y un sistema con espín 1, cada uno con nueve estados. Un detalle que es muy
interesante es que en la teoría de Dirac se puede demostrar que si las partículas
tienen espín 12 , el sistema tiene paridad negativa. La siguiente tabla muestra la
situación actual:
Carga −1 0 1 Masa2 −1 0 1 Masa2
Extrañeza (GeV)2 (GeV)2
0 η0 0.92 φ 1.04
0 η 0.30 ω 0.61
−1 K− K0 0.24 K∗− K∗0 0.80
1 K0 K+ 0.24 K∗0 K∗+ 0.80
0 π− π0 π+ 0.02 ρ− ρ0 ρ+ 0.60
Los mesones π con s = 0 son seudoescalares y los mesones ρ con s = 1 son
vectoriales. Para mesones el valor de la masa al cuadrado crece cuando hay un
quark s por un valor aproximado de 0.24 (GeV)2. Pero he dicho muchas veces
que tenemos 400 partículas, hay expresiones para muchas, pero aún hay más
partículas y muchos otros estados. Vamos a ver la situación experimental. Por
ejemplo, voy a describir ahora una secuencia de mesones comenzando con los
de espín 1 y continuando con otros valores de espín y de energía. A la extrema
i
i
i
i
i
i
i
i
3.1. Quarks 53
izquierda de la tabla siguiente tenemos los mesones con espín 1, paridad nega-
tiva, J = 1−, llamados ω, φ,K, ρ, los números representan los cuadrados de sus
masas en (GeV)2. Observe que con momento angular 2 y con paridad positiva,
tenemos otro sistema en donde hay partículas que tienen valores de extrañeza y
de espín isotópico que corresponden exactamente al mismo nonete. Observe que
los cuadrados de las energías de la lista con espín 2 difieren de los de espín 1 en
aproximadamente 1 (GeV)2, esto es una regularidad. Los puntos en la tabla sig-
nifican estados desconocidos debido a que no se tienen suficientes experimentos.
Observe que conforme crece el momento en uno, el cuadrado de la masa crece
por 1.05 GeV2 de acuerdo con la fórmula que es más o menos correcta11.
J 1− 2+ 3− ? ? ?
ω 1.04 f 0 2.29 • • • •
φ 0.61 f 1.57 • • • •
K 0.80 K∗ 2.01 • • • •
ρ 0.60 A2 1.72 G 2.68 3.72 4.82 5.66
M2 0.60 1.65 2.70 3.75 4.80 5.85
M2 = 1.05J − 0.45
¿Existen secuencias de multipletes en el caso de bariones? Sí; éstas ocurren
como aparece en la tabla siguiente, aunque todavía no hay evidencias en donde
hay puntos. La de la izquierda es la secuencia para Λ, nótese que M2 crece en
un valor aproximado de 1.05 (GeV)2 conforme J se incrementa en 1. El ejemplo
de la derecha corresponde a un tipo de Σ; hay también secuencias de ∆, etc.12
Las regularidades son misteriosas. ¿Cómo podemos entender los nuevos estados?
Existen dos posibilidades. ¿Tal vez los bariones están hechos por cuatro quarks y
un antiquark? No, este modelo tiene patrones completamente diferentes; predice
la existencia de estados que no se observan que tienen valores de espín isotópico,
11Se han descubierto varios mesones 3−: ω3 (2.778), ρ3 (2.859), φ3 (3.437). El mesón G de la
tabla es ω3; entre paréntesis aparece el valor de M2.
12El barión Λ con JP = 9
2
+ fue detectado poco después con valor 5.5225 para M2. Para la
secuencia Σ hay varias partículas que podrían llenar esos puntos: Σ(5.062), Σ(6.027), Σ(6.864),
Σ(9.00) pero que no se les ha podido designar valor de JP .
i
i
i
i
i
i
i
i
54 Capítulo 3. El modelo de quarks y regularidades en partículas hadrónicas
pero que no funcionan. En vez de esto vamos a tratar con la idea de que los tres
quarks son reales, se pueden mover y pueden tomar un momento angular orbital.
Secuencia de Λ
J M2
1/2 + l8 1.24
3/2 − l1 2.31
5/2 + l8 3.30
7/2 − l1 4.41
• 5.52
Secuencia de Σ
J M2
3/2 + l10 1.92
5/2 − l8 3.13
7/2 + l10 4.12
• 5.06
• 6.03
Supondremos que existen osciladores armónicos entre los tres quarks (figura
3.1); los osciladores pueden ser excitados, toman un momento angular orbital que
se tiene que sumar con el momento angular de espín.
Figura 3.1
Por ejemplo, cuando las partículas no tienen movimiento orbital, el estado
es completamente simétrico y tiene un espín 32 ; el tipo de quarks tiene que ser
simétrico y produce un decuplete que es indicado con l10 ; pero cuando tenemos
movimiento interno, podemos distinguir los diferentes quarks diciendo qué quark
tiene el momento angular y el primer estado excitado no es simétrico; entonces, si
el espín es simétrico, el tipo de quarks no puede ser simétrico; en otras palabras,
cuando se tiene un momento orbital 1 y espín 32 , el sistema es un octete, el
tipo cambia por razones de simetría. Otra posibilidad es cuando el estado es
antisimétrico (uds), para el que tenemos una posibilidad, y es un singulete. El
caso en que tenemos un espín 32 que se combina con un momento angular orbital
1, produce estados con momento total 52 ,
3
2 o
1
2 , en otras palabras, se usan reglas
i
i
i
i
i
i
i
i
3.1. Quarks 55
bien conocidas, sólo es un poco más complicado con orbitales y hay que tener
cuidado al hacerlo. Con los orbitales se pueden determinar las posibilidades que
existen para los estados excitados de bariones, los que se muestran en la tabla
siguiente:
J 1/2 3/2 5/2 7/2 9/2
[56, 0−] l8 0.88 l10 1.55l1 1.97 l1 2.31l8 2.36 l8 2.31
[70, 1−] l8 2.89 l8 l8 2.79l10 2.72 l10 2.79
[56, 0+] l8 2.16 l10
[56, 2+] l10 3.65 l8 l8 2.85l10 l10 3.57 l10 3.80l1
[70, 0+] l8 3.17 l8l10
[70, 2+] l1 l1l8 3.46 l8l8 l8 l8l10 l10 l8 3.96l1 l1 4.41
[70, 3−] l8 l8l8 l8 l8 4.80 l8l10 l10
i
i
i
i
i
i
i
i
56 Capítulo 3. El modelo de quarks y regularidades en partículas hadrónicas
No ponga atención a los números en círculo. El primer renglón corresponde a
los valores del momento angular total. El segundo número en el corchete es el valor
del momento orbital y la paridad se escribe como superíndice + o −. El segundo
renglón (primera región) corresponde al estado que no está excitado internamente,
el cual como se ha visto produce un octete y un decuplete con espines 12 y
3
2 . Los
valores numéricos indican que los multipletes se conocen experimentalmente y
representan el cuadrado de la masa de la partícula. La segunda región corresponde
al momento orbital 1, el cual produce octetes con tres valores distintos de espín,
éstos son los asociados a 2.89, nada y 2.79; este nada es una predicción que
todavía no observamos; es decir, existen indicaciones de la presencia de un estado
aquí, pero no se ha determinado el valor de su masa al cuadrado. También en la
segunda región, con L = 1, están todos los casos con primera excitación interna; y
observen que todo está completo, con una excepción, funciona muy bien. Los tres
valores de J tienen más o menos la misma energía, indicando que ésta no depende
de la combinación de espín orbital interno; sin embargo hay una excepción con
los singuletes 1.97 y 2.31. La tabla continúa con estados de doble excitación
de resortes del sistema, etc. Hay muchos lugares para partículas y hay algunos
multipletes bien conocidos, pero, naturalmente no es completa, todos los lugares
dan posibilidades que existen. Lo anterior nos lleva a pensar que estas excitaciones
internas son las que producen los diferentes sistemas o estados de bariones, y lo
mismo se puede hacer para los mesones.
3.1.1. Momento magnético del protón
Ahora voy a dar algunas indicaciones de que el modelo cuantitativamente fun-
ciona: calculemos el momento magnético del protón. Dentro del protón tenemos
quarks con diferentes componentes de espín; el valor del momento magnético de
una partícula fundamental es
e}
2mc
.
La masa del quark en el protón, considerandola teoría no relativista, es apro-
ximadamente 13 de la masa del protón; entonces, por la teoría de Dirac, su valor es
1 en unidades de momento magnético natural. El momento magnético del quark
i
i
i
i
i
i
i
i
3.2. Regularidades en hadrones 57
d es −1 porque su carga es negativa, y el del quark u es 2. En la situación actual,
el protón está representado por la suma
p→ uud 1√
6
(2 ↑↑↓ − ↑↓↑ − ↓↑↑) ;
la probabilidad de la presencia de cada quark es el cuadrado de la amplitud
respectiva, con esto tenemos que el momento magnético del protón es:
4
6
(2 + 2− (−1)) + 1
6
(−1) + 1
6
(−1) = 3.
Sólo he hecho el cálculo para demostrar que la teoría es muy simple. Para el
neutrón, en que tenemos que usar ddu en vez de uud, el momento magnético es:
4
6
(−1− 1− 2) + 1
6
(2) +
1
6
(2) = −2.
Entonces esperamos que el momento magnético del protón sea 3 unidades y el
del neutrón sea −2. Los valores correctos de éstos son 2.79 y −1.93, indicándonos
que el modelo no es correcto, pero tiene indicios de verdad. La siguiente tabla
muestra los elementos diagonales de matriz calculados del operador momento
magnético para p, n y Λ.
Momentos magnéticos
Partícula Calculado Experimental
p 3 2.79
n −2 −1.93
Λ −0.84 −0.74 ± 0.15
Indicando que el modelo es más o menos correcto. ¡Formidable! El misterio es
grande.
3.2. Regularidades en hadrones
¿Cómo saber si la idea de los orbitales es más o menos correcta? Podemos tomar
elementos de matriz, amplitudes en que un estado excitado del oscilador armónico
i
i
i
i
i
i
i
i
58 Capítulo 3. El modelo de quarks y regularidades en partículas hadrónicas
emite un fotón y va a un estado no excitado, como un protón. Por ejemplo, una
resonancia R emite γ para producir un protón (R→ p+ γ).
Tenemos experimentos para determinar los elementos de matriz fotoeléctricos,
emisión de γ, calcularlos con la teoría y ver si son más o menos correctos o están
completamente errados. La siguiente tabla muestra los resultados obtenidos para
las amplitudes de estas transiciones teórica y experimentalmente.
Elementos de matriz fotoeléctricos
Estado inicial Onda Espín Tipo Calculado Experimental
∆ (1236) P33 3/2 p −0.195 −0.244
1/2 p −0.112 −0.138
N (1520) D13 3/2 p 0.127 0.151
1/2 p −0.040 −0.026
3/2 n −0.127 −0.132
1/2 n −0.036
N (1688) F15 3/2 p 0.076 0.139
1/2 p −0.013 ' 0
3/2 n 0.000 ' 0
1/2 n 0.045
N (1535) S11 1/2 p 0.185 0.096
1/2 n −0.128 0.118
N (1670) D15 3/2 p 0 (0.040)?
1/2 p 0 ' 0
3/2 n 0.067
1/2 n 0.048
ω (784) π 1.10 0.80
Observe que en la mayoría de los casos los números más o menos concuerdan.
Hay un error de tal vez 40% en el caso N (1535) (valores 0.185 y 0.096), otros
valores son mejores. ¡Milagro!, tiene que tener algún sentido. Lo anterior nos hace
ver que el modelo no es correcto; los números no funcionan, sin embargo nos da
una idea de lo que está ocurriendo. Es posible calcular las desintegraciones de las
i
i
i
i
i
i
i
i
3.2. Regularidades en hadrones 59
resonancias hasta piones, haciendo un truco
R→ p+ π.
En la teoría tenemos ideas de que el acoplamiento del pión es débil, es axial;
entonces calculando la relación de la teoría V-A se predicen más de 80 elemen-
tos de matriz que se comparan con los resultados obtenidos experimentalmente,
encontrándose que el modelo no funciona. Hay muchas razones por las que no
sabemos que va a pasar cuando la energía crece, las masas son tan diferentes que
no podemos usar la teoría no relativista. Observamos que los elementos siempre
cambian cuando el momento crece de una manera monótona y planteamos una
regla artificial de que cada elemento de matriz debe multiplicarse por una expo-
nencial función del cuadrado del momento de la desintegración. Cuando el mo-
mento de desintegración es mayor, el valor calculado decrece y todo desaparece.
En muchos casos es solamente una constante la que se cambia para tomar los
valores de acoplamiento correctos. Así, en estos 80 elementos de matriz tenemos
dos constantes: una determinada por la desintegración beta y otra determinada
empíricamente. No vamos a enlistarlos aquí, en vez de esto los he calculado todos,
y doy un histograma.
El siguiente histograma (figura 3.2) muestra la situación para mesones y ba-
riones, donde Γ indica la razón de desintegración.
Figura 3.2 Histograma resultado de los cálculos de anchos de resonancias
El valor de abscisa −1 indica que existe un error, por un factor e−1 = 0.37, en
la razón de desintegración; se puede ver que casi el 75% de los resultados tienen
una razón de desintegración que está dentro de un factor 2 (log 2 ' 0.7), lo que
no es muy bueno, pues indica que el elemento de matriz
¡∼ Γ1/2¢ tiene errores
i
i
i
i
i
i
i
i
60 Capítulo 3. El modelo de quarks y regularidades en partículas hadrónicas
dentro de un factor de un 40% (ver tabla siguiente). Hay otros casos que no están
bien; por ejemplo hay un caso de 4.4 (correspondiente a un error en un factor de
100), con ese error tal vez la teoría cae. Pero no es así, resulta que en los casos
en que los errores son tan grandes, como 4.4, los elementos de matriz tienen dos
componentes que casi se cancelan teóricamente; calculando las dos componentes
en que una crece 40% y otra decrece 40%, se tiene una predicción que permite
explicar los resultados experimentales. Naturalmente hay un peligro al decir que
funciona o no funciona, tal vez estamos cometiendo errores, es una cuestión de
suerte.
He hecho predicciones con diferentes identificaciones de resonancias para ver
qué diferencias se han producido en los multipletes, y usualmente el resultado
cambia por factores mayores que 40%. Tengo la impresión de que esto tiene
sentido.
Estado JP Modo ln(Γcalc./Γexp .)
K∗ (1420) 2+ ωK −0.7 ± 0.6
Σ (1765) 5/2 − Σ∗K −0.9 ± 0.5
∆ (1890) 5/2 + Nπ −1.0 ± 0.5
N (1700) 1/2 − Nπ −1.4± 0.7
Σ (2030) 7/2 + Σπ +1.7 ± 0.7
N (1535) 1/2 − Nπ +1.7± 0.6
φ (1019) 1− KK +1.1 ± 0.1
Λ (1690) 3/2 − NK 1.9 ± 0.6
Σ (1915) 5/2 + NK −1.0
Λπ +1.1
Σπ +2.1
N (1470) 1/2 + Nπ −2.9 ± 0.4
Λ (1670) 1/2 − NK +4.4 ± 0.7
N (1780) 1/2 + Nπ −5.5 ± 0.6
Pero también puedo decir, por ejemplo, que para el berilio con cuatro elec-
trones en un estado excitado no se puede determinar la probabilidad de emisión
de un fotón con la misma precisión, no obstante el hecho de que conocemos la
ecuación de Schrödinger bastante bien. Es muy difícil calcular tal composición;
i
i
i
i
i
i
i
i
3.2. Regularidades en hadrones 61
los elementos de matriz son delicados, son sensibles a la teoría, entonces tal vez
el modelo es correcto.
En resumen, ¿qué podemos decir? La teoría no es exacta, es un modelo crudo
que falla aún para altas energías, no funciona bien. Por ejemplo, el sistema de
resortes predice que el factor de forma del protón, o más simple, la distribución
de carga dentro de un protón debe ser gaussiana, figura 7.3 curva I, de acuerdo
a nuestra teoría; pero experimentalmente resulta como se muestra en la curva II,
que es completamente diferente, indicando que alguna cosa no es correcta.
Figura 3.3
Hay otras predicciones con energías altas que no funcionan. Ésta es una teoría
de resonancias con energías más o menos bajas, del orden de 1 GeV; pero cuando
la energía pasa de 20 GeV no funciona más. Describiré ideas que funcionan en
esta región en el próximo capítulo.
Otras dificultades del modelo son las siguientes. Supongamos que los quarks
dentro del protón son no relativistas, entonces la energía del protón tiene que
ser la suma de las masas de los quarks, y la masa del quark sería del orden de
400 MeV (0.3 o 0.4 GeV). Cuando se tienen altas energías los quarks se podrían
separar, sin embargo, hasta ahora nunca hemos observado un estado con carga
2
3 o
1
3 , solamente múltiplos enteros de e. Para evitar esta dificultad, una idea es
que si los quarks tienen una masa muy grande, la fuerza de interacción debe ser
muy grande y la interacción da una energía negativa de magnitud mucho mayor
que la masa total de la partícula, ya no es la suma de la masa de los quarks, es
mucho menor. En este caso las interacciones son muygrandes, no como las que
usamos para nuestros cálculos, y también se puede mostrar que para cosas tan
grandes, el sistema produce virtualmente pares quarks-antiquarks que son muy
i
i
i
i
i
i
i
i
62 Capítulo 3. El modelo de quarks y regularidades en partículas hadrónicas
importantes, más importantes que los estados únicos. En otras palabras, para
masas muy grandes la teoría parece muy complicada y no puede dar resultados
tan simples. Todos nuestros cálculos están hechos desde un punto de vista simple
y si las masas fueran grandes, el sistema no puede ser simple.
Una cosa muy difícil de entender en esta teoría es por qué usamos la idea de
que el estado es simétrico bajo intercambio de un quark con otro; los quarks tienen
espín 12 y las personas dicen que en la teoría relativista de la mecánica cuántica
las partículas con espín 12 obedecen la estadística de Fermi, esto es, la función
de onda tiene que cambiar de signo bajo intercambio de partículas, pero en este
caso no cambia. En otras palabras estamos diciendo que los quarks obedecen a
la estadística de Bose y esto es una locura de acuerdo a las teorías relativistas,
pero funciona. Pienso que el teorema de que las partículas con espín 12 obedecen
la estadística de Fermi necesita una hipótesis adicional, ésta es que la partícula
pueda existir separada de las otras. Con esto espero que expliquemos dos cosas:
primero, por qué no hay quarks libres y segundo, por qué pueden obedecer a la
estadística de Bose. Naturalmente, estamos frente a una paradoja, pero éste es
el modo de progresar en la física. Y la paradoja es una simplicidad aparente que
no esperábamos en casos en que habíamos esperado complejidad.13
13Las respuestas llegaron con la teoría de la cromodinámica cuántica (QCD por sus siglas en
inglés, Quantum ChromoDynamics): los quarks poseen otro número cuántico denominado color,
el cual toma tres valores. La interacción fundamental fuerte entre los quarks es la de color. Ésta
crece con la distancia entre los quarks; así que si queremos ver quarks libres debemos agregarles
energía cada vez mayor conforme los vamos separando, hasta energías infinitas para finalmente
liberarlos.
i
i
i
i
i
i
i
i
Capítulo 4
Modelo de partones y
estructura de protones
En la primera parte de este capítulo quiero continuar hablando sobre el asunto
de si es posible representar al protón como hecho de constituyentes, y en la
segunda, si estos constituyentes pueden tener las propiedades de los quarks. Más
correctamente, si tienen coeficientes y modos de acoplamiento a γ yW dados por
γ
½
ee+ µµ+
2
3
(uu)− 1
3
¡
dd
¢− 1
3
(ss)
¾
, (4.1)
W {νee+ νµµ+ 0.97 ud+ 0.24 us} , (4.2)
según dice la teoría.
Esta vez vamos a usar ideas más sofisticadas que sean consistentes con la
relatividad, hablaremos un poco más en abstracto, ya que cuando se introducen
las ideas relativistas, la teoría aparece muy complicada y no tenemos actualmente
un modelo, entonces tenemos que estudiar algunas propiedades especiales, más
o menos generales, las cuales son consecuencias de la relatividad y la mecánica
cuántica.
63
i
i
i
i
i
i
i
i
64 Capítulo 4. Modelo de partones y estructura de protones
En otras palabras, este capítulo consta de dos partes: ¿qué va a acontecer
si el protón está hecho de constituyentes simples? Así, imaginamos cada consti-
tuyente como un punto que tiene interacciones como el electrón o el muón con
γ, etc. No queremos constituyentes que estén hechos de otros constituyentes,
estamos hablando de constituyentes finales. Voy a usar una palabra para esos
constituyentes teóricos o tentativos: partones; éstos deben ser los constituyentes
del neutrón, de K, de π y de todas las partículas y estados que tienen las interac-
ciones fuertes que describimos antes. La segunda parte del capítulo es: ¿pueden los
partones ser quarks?, en otras palabras, ¿toman los coeficientes de acomplamien-
to dados por (4.1) y (4.2)? Entonces las preguntas son si existen constituyentes
del protón y si éstos pueden ser quarks.
4.1. La estructura del protón
Desde el punto de vista de la teoría de campos, mecánica cuántica relativista,
se dice que existen algunos campos fundamentales y se construyen diferentes
diagramas para las interacciones. Las partículas que se propagan en los diagramas
son fundamentales y simples, éstos son los partones. En otras palabras, la teoría de
campos tiene como partones a los cuantos del campo fundamental. Una idea para
ver cuáles son los constituyentes de un protón es análogo ha descubrir cuáles son
los constituyentes de un reloj, qué tipo de engranes tiene, etc. Se pueden tomar
dos relojes y hacerlos chocar uno contra el otro con una energía muy grande,
todas las partes deben salir. También podemos hacer los mismos experimentos
con protones.
Figura 4.1
En la colisión en el laboratorio uno de los dos protones está en reposo y el otro
en movimiento, pero vamos a verla en el sistema centro de masa. Suponiendo que
tenemos una colisión con energía muy alta (figura 4.1); ¿qué cosas salen?, ¿qué
aparece después?; es parte de la solución. Resulta que hay muchas partículas con
i
i
i
i
i
i
i
i
4.1. La estructura del protón 65
diferentes valores de momento (figura 4.2), más o menos como dos chorros en
direcciones diferentes.
Figura 4.2
¿Salen partones? No. No podemos decir algo tan simple. Salen π,K,Λ,Σ o
cualquier partícula o resonancia como ∆, ρ, etc. Las partículas no están dentro
del protón, ellas se forman en la colisión; por ejemplo, un fotón emitido por un
átomo en un estado excitado no se encuentra dentro del átomo. No entendemos
el estado excitado del átomo diciendo que tenemos ahí un electrón, un protón y
un fotón en un movimiento especial, el fotón no existe en el estado excitado, ese
fotón se crea en la transición, así como el sonido se crea por el movimiento de
las cuerdas vocales. Del mismo modo las partículas son creadas, generadas por
las oscilaciones y movimientos durante la colisión. La teoría relativista da ideas
diferentes. No podemos decir que las partículas emitidas son los constituyentes
originales, en vez de esto, decimos que todas las diferentes partículas están hechas
de alguna manera, que no entendemos, por los mismos constituyentes; esto es,
por diferentes combinaciones de partones.
Quiero mencionar también un aspecto de la teoría de campos relativista, res-
pecto a los constituyentes, que es completamente diferente en la teoría no re-
lativista. Esto es, el número de constituyentes que existen en una partícula no
es constante. Por ejemplo, supongamos que tenemos un constituyente para el
protón; en la teoría de perturbaciones de la mecánica cuántica, hay una amplitud
de probabilidad para que éste pueda producir un par y después el par se aniquile,
etc. Algunas veces tenemos un constituyente, algunas veces tres (que son dos
partones y un antipartón), etc. Hay diferentes probabilidades de hallar diferentes
números de partones en la teoría cuántica. En los sistemas no relativistas el
número de partones es constante, está definido; pero cuando se introduce la teoría
de la relatividad, debido a la posibilidad de producir pares virtuales, el número
de constituyentes no se puede definir exactamente, como era el caso en el capítulo
anterior.
i
i
i
i
i
i
i
i
66 Capítulo 4. Modelo de partones y estructura de protones
Pero en nuestra confusión observamos experimentalmente dos regularidades
interesantes. Una es que las componentes de la cantidad de movimiento perpen-
dicular, transversales a la dirección de colisión son despreciables. La probabilidad
decrece muy rápidamente cuando el momento perpendicular es mayor que 0.4
GeV (figura 4.3). La otra regularidad es que si se hacen experimentos con dos
diferentes valores del momento P , entonces los productos aparecen con la mis-
ma distribución pero a una escala directamente proporcional al valor de P . Por
ejemplo, supongamos que usamos 2P , entonces todos los momentos longitudi-
nales de los productos se duplican. En otras palabras, la probabilidad de hallar,
por ejemplo,una partícula K que tiene un momento PK , que es una fracción x
de P (PK = xP ) es independiente de P ; depende solamente de la fracción.
Figura 4.3 Esquema del protón de alta energía visto con el modelo de partones.
Los momentos longitudinales son proporcionales a P y los momentos
transversales son pequeños (± 0.4 GeV)
Esto da una indicación de cual puede ser la distribución del momento de
los constituyentes de un protón en movimiento, nos da ideas para hacer una
teoría. Voy a hacer dicha teoría diciendo que un protón en movimiento tiene una
estructura compuesta, sus constituyentes (partones) tienen momentos transver-
sales pequeños, vamos a despreciarlos ya que queremos usar energías muy altas,
y el momento longitudinal de los constituyentes es una fracción x del momento
longitudinal total.
Figura 4.4
i
i
i
i
i
i
i
i
4.1. La estructura del protón 67
La figura 4.4 nos muestra protones en movimiento rápido. Por ejemplo, si
duplicamos P lo indicamos duplicando la longitud de las flechas, lo demás per-
manece invariable. Así, el momento total del protón es compartido en fracciones
por los partones con diferentes probabilidades. Ahora bien, si usamos una colisión
entre dos partículas rápidas, dos relojes que no conocemos de que están hechos,
complicados, las cosas no funcionan; vamos a usar un modo más delicado para
observar nuestros relojes. Una manera más simple es observarlos con luz, la luz
por lo menos es conocida. Así, usamos fotones o electrones en lugar de protones
(figura 4.5).
Figura 4.5
Esto equivale a usar un microscopio electrónico para observar el protón, el
reloj. Pero para observar sus constituyentes, los cuales tienen dimensiones muy
pequeñas, necesitamos que el poder de resolución de nuestro aparato sea grande.
Supondremos que el electrón se conoce, lo único desconocido es el protón. Para
poder observar los constituyentes del protón con electrones necesitamos usar lon-
gitudes de onda bastante pequeñas, y esto indica que los electrones debe tener
una energía alta.
Vamos a recordar la pistola de electrones (electron gun) para producir energías
bastantes altas, la modificación es pequeña, solamente se tiene más energía que en
un microscopio electrónico usual. El experimento en que el electrón es dispersado
por el protón sin cambiar su energía, colisión elástica, es similar a usar luz para
examinar un reloj, las frecuencias de la luz incidente y la dispersada son iguales,
al menos, en el sistema del centro de masa. Esto nos proporciona una gráfica de la
distribución de carga del protón, que representa el comportamiento eléctrico de
los protones, se comporta como una exponencial, es decir, tiene una concentración
de carga máxima en el centro, la cual decrece con la distancia, figura 4.6.
i
i
i
i
i
i
i
i
68 Capítulo 4. Modelo de partones y estructura de protones
Figura 4.6 Distribución de carga del protón, medida a partir de la dispersión
elástica e+ p→ e+ p
No es muy interesante, pero el experimento es muy difícil. La razón por la que
no es interesante es porque los engranes de nuestro reloj están en movimiento,
entonces lo que estaríamos observando es una especie de promedio, es decir, no
se pueden ver los dientes del engrane, ni tampoco los detalles. En la distribución
promedio de la carga dentro del protón hay mucha información, y la información
obtenida es un promedio, por lo que no pueden verse muchos detalles.
Ahora podemos hacer diferentes tipos de observaciones. Imaginemos a nues-
tro protón como un enjambre de abejas y observemos la distribución promedio
de abejas (figura 4.6). Si queremos observar más minuciosamente a las abejas
podemos dispersar luz sobre ellas y determinar la velocidad de las mismas en
función de la frecuencia de la luz dispersada, utilizando el efecto Doppler. Cuan-
do la frecuencia de la luz incidente es definida, la abeja en movimiento dispersa
luz, saliendo ésta con una frecuencia diferente que depende de la velocidad de la
abeja, determinándose así la distribución de la cantidad de movimiento dentro
del enjambre, pero de manera más sofisticada debemos usar la teoría relativista.
A continuación vamos a utilizar electrones en lugar de luz, lo que en principio es
exactamente igual.
Figura 4.7
Imaginemos la situación presentada en la figura 4.7, donde el protón se en-
cuentra en movimiento y el electrón también, pero en dirección opuesta. Para
empezar, consideremos el caso especial en que el electrón es dispersado en direc-
ción opuesta a su dirección original.
i
i
i
i
i
i
i
i
4.1. La estructura del protón 69
Figura 4.8 Esquema de la dispersión e+ p→ e + cualquier cosa
La figura 4.8 muestra este experimento en el sistema de laboratorio. El elec-
trón incide con energía E y observamos que sale con energía E0, diferente a la de
incidencia. Midiendo la distribución de energías de salida E0 podemos determi-
nar la distribución de velocidades de los constituyentes del protón, los partones.
De hecho, como productos de la colisión habrá muchos hadrones diferentes, pero
debido a la dificultad para observarlos, solamente determinamos la distribución
de electrones dispersados.
Figura 4.9 Colisión de un protón y un electrón visto en el sistema centro de
masa
La figura 4.9 muestra la colisión en el sistema centro de masa. A la izquierda
se ve un protón incidente que se representa por un conjunto de partones y se
muestra al electrón incidente con energía E; después de la colisión, el electrón
sale con energía E0. La colisión es en realidad entre un partón con momento P
y el electrón con energía E, después de la colisión este partón sale con momento
P 0 y el electrón con energía E0, moviéndose en direcciones opuestas; los otros
partones permanecen inalterados durante el proceso. Este protón roto se desin-
tegra de alguna manera en hadrones, pero no nos vamos a preocupar por esto,
sólo trataremos de determinar el valor de P observando la distribución de E0.
Los cálculos pueden hacerce basándose en la conservación de la energía y mo-
mento. La ecuación de la conservación de la energía es E + P = E0 + P 0, porque
energía y momento son iguales si se desprecia la masa del electrón y del partón,
i
i
i
i
i
i
i
i
70 Capítulo 4. Modelo de partones y estructura de protones
aproximación válida a muy altas energías. De la conservación del momento en la
dirección horizontal positiva se tiene P −E = E0−P 0, donde P −E es el momen-
to antes de la colisión y E0 − P 0 después, resultando que E0 = P y E = P 0, las
partículas sólo intercambian su momento. Entonces, de las mediciones de la dis-
tribución de E0 determinamos inmediata y directamente las probabilidades para
diferentes valores de P de los partones, y de la expresión xP para el momento del
partón, podemos determinar la fracción x del valor del momento del partón. Si
esto fuese correcto, el resultado de la distribución de probabilidad para los dife-
rentes valores de x no debería depender del valor de P (momento del protón) que
se usa en el experimento y tampoco del valor de E. Así, diferentes experimentos,
hechos con diferentes valores de los parámetros, deberían producirnos la misma
distribución como función de x. También pueden efectuarse las medidas de los
electrones que salen a determinados ángulos y esto debe, a su vez, producir los
mismos resultados. Si se calculan correcciones, la sección transversal de choque
entre el partón y el electrón depende, de alguna manera, del ángulo. La figura 4.10
representa una gráfica en la que el eje horizontal es el recíproco de x, dispensen
pero los experimentales usan el recíproco de x, el eje vertical es una medida de la
distribución (probabilidad de choque); la curva debe ser la misma para distintas
combinaciones de parámetros, de experimentos, una función universal. Esto debe
mostrar, por lo menos desde un punto de vista, que que si existen constituyentes
como los partones, funcionan bien. Voy a discutir esto en un momento.
Figura 4.10
i
i
i
i
i
i
i
i
4.2. ¿Pueden los partones ser quarks? 71
En la figura 4.11 he hecho un gráfico,que indica la distribución de partones
como función de x. Aquí el eje horizontal es x, el cociente de la cantidad de
movimiento del partón y la del protón. Nótese que el eje vertical no es f(x)
sino xf(x), debido a que f(x) es decreciente, lo que la hace difícil de graficar
dándonos problemas; f(x) es el número de partones con fracción de cantidad de
movimiento x. En principio, sólo podemos observar partones que tienen carga, ya
que debe haber dispersión con el electrón. Además, la amplitud de la interacción
con los electrones debe ser proporcional a la carga. La probabilidad de colisión es
proporcional al cuadrado de la carga del partón, y queremos medirla en unidades
de la carga del electrón, para diferentes valores de la fracción x.
Figura 4.11
Una cosa muy interesante es la siguiente: suponiendo que los partones tienen
espín 0, entonces la probabilidad de dispersión con el electrón depende de alguna
forma del ángulo en que salen los electrones. Si ahora suponemos que su espín
es 12 , la dependencia angular de la dispersión es completamente diferente. Para
demostrar que todo experimento nos proporciona el mismo resultado, necesitamos
usar una u otra, o una combinación de las dependencias funcionales en el ángulo
para la función de dispersión fundamental con partones, y esa curva no funciona
como una curva universal si se usa espín 0, no funciona en absoluto. Como todos
los puntos caen en una curva cuando se usa espín 12 ; ya sabemos algo, los partones
cargados tienen espín 12 .
4.2. ¿Pueden los partones ser quarks?
Ahora trataremos la idea sobre la posibilidad de que los partones sean quarks.
Vamos a construir una teoría; podemos describir una función usando quarks,
i
i
i
i
i
i
i
i
72 Capítulo 4. Modelo de partones y estructura de protones
entonces los partones deben ser del tipo de u (up), d (down) o s (strange), los
mismos de antes, y también pueden tener un número de antiquarks del tipo u, d
o s.
A la probabilidad de tener una fracción de momento x para un quark u la
caracterizamos por una función de distribución u (x), donde u (x) dx es el número
de quarks tipo u que tienen una fracción de momento entre x y x+dx. Inmediata-
mente podemos describir a nuestra función de observación fp (x) (el índice p indica
protón), de la manera siguiente: la probabilidad de colisión con un quark tipo u
es igual a 49 (el cuadrado de la carga) multiplicado por el número u (x). También
existe la posibilidad de colisión con un antiquark tipo u, de carga opuesta. Para
el caso de quarks tipo d y s el cuadrado de la carga es 19 ; así finalmente llegamos
a la expresión:
fp (x) =
4
9
[u (x) + u (x)] +
1
9
£
d (x) + d (x)
¤
+
1
9
[s (x) + s (x)] .
Tenemos una función observada y seis funciones teóricas, no podemos decir
mucho, tenemos que hacer otro experimento. Este experimento se hace con neu-
trones, y para ello se utilizan deuterones, sustrayendo el efecto del protón para
descubrir cuál es la dispersión por el neutrón; el resultado es el mismo, pero ahora
u (x) representa el número de quarks del tipo u del neutrón.14
Debido a la simetría isotópica entre protones y neutrones, que nos dice que
cuando cambiamos protón por neutrón deben cambiarse los quarks de tipo u por
los de tipo d, la densidad de quarks tipo u en el neutrón es igual a la densidad
de quarks tipo d en el protón. Entonces, para el caso del neutrón obtenemos la
ecuación:
fn (x) =
1
9
[u (x) + u (x)] +
4
9
£
d (x) + d (x)
¤
+
1
9
[s (x) + s (x)] .
donde u, u, d, d, s y s son las funciones del protón.
14Recordemos que el protón (neutrón) está formado por los quarks uud (udd). Los antiquarks
dentro de esta partícula surgen de la variación de pares quark-antiquark.
i
i
i
i
i
i
i
i
4.2. ¿Pueden los partones ser quarks? 73
La interacción con el fotón la representamos, como en el capítulo anterior, por
γ
∙
ee+ µµ+
2
3
(uu)− 1
3
¡
dd
¢− 1
3
(ss)
¸
.
Los términos que antes correspondían a hadrones ahora quedan representados
por las funciones de distribución u (x) , d (x) y s (x).
Podemos también dispersar neutrinos sobre protones y neutrones. A esta in-
teracción, suponiendo la existencia del bosón intermediario, la representamos por
W [νee+ νµµ+ 0.97 ud+ 0.24 us] .
Nuevamente, en vez de cos θc ponemos 0.97 y en vez de sen θc ponemos 0.24.
La dispersión con neutrinos nos da más ecuaciones para determinar las seis fun-
ciones teóricas.
Figura 4.12
Las dispersiones de neutrinos no se han hecho hasta ahora, son para el futuro,
y solamente con experimentos de este tipo podremos determinar si nuestra teoría
funciona. Ya que en las primeras dos ecuaciones tenemos seis funciones descono-
cidas por determinar (u(x), u(x), d(x), d(x), s(x) y s(x)) y sólo podemos medir
fp y fn, esto no está muy bien. Es evidente que hay algunas restricciones sobre las
funciones u, u, d, d, s y s, éstas deben ser positivas, entones se puede demostrar
matemáticamente que fn no puede ser menor que 14fp. Si medimos la razón de fn
a fp como función de x, entonces, para x = 0, la razón tiene el valor 1 y conforme
x aumenta la razón decrece hasta más o menos 0.15, que es menor que 14 (línea
punteada en la figura 4.12), si esto es cierto, la teoría de los quarks cae, ya que
i
i
i
i
i
i
i
i
74 Capítulo 4. Modelo de partones y estructura de protones
la fracción no puede ser menor. Sin embargo, los experimentos sólo existen con
errores (que se denotan por la barras en la figura); estos errores crecen a partir de
x = 0.8; así, es posible que la curva experimental no se comporte como lo hace la
línea punteada. Por tanto no hay todavía evidencia de que la teoría de los quarks
falle.
También puedo demostrar que los quarks no son los únicos constituyentes del
sistema. Consideremos el momento total del sistema: las partículas u tienen una
fracción de momento x cada una, así que el momento de todas estas partículas esZ 1
0
xu(x)dx.
Esta integral representa el momento total de los quarks tipo u; también puede
hacerse esto para los quarks tipo u, d, d, s y s, el momento total de todos los quarks
es la integral Z 1
0
x
£
u(x) + u(x) + d(x) + d(x) + s(x) + s(x)
¤
dx.
Con la información que tenemos, prácticamente podemos determinar su valor;
para hacerlo suponemos que, en el protón y en el neutrón, d y u son mucho
mayores que s + s y entonces podemos despreciar estos últimos términos. Bajo
esta hipótesis, los experimentos nos dicen que sólo el 60% del momento total
del sistema está proporcionado por los quarks. Consecuentemente debe haber
otras cosas neutras, además de los quarks, que constituyen el sistema: partones
neutros.15
Ahora bien, ¿qué experimentos pueden demostrarnos la veracidad de los
números 49 ,
1
9 , etc.? Realmente no existe hasta hoy ningún experimento que de-
muestre que estos números sean correctos. La fórmula
fp =
4
9
(u+ u) +
1
9
¡
d+ d
¢
+
1
9
(s+ s) ,
15Estos experimentos fueron realizados durante la década de 1970-79 por la colaboración MIT-
SLAC, y revelaron la presencia de quarks dentro de los nucleones. El premio Nobel de 1990 fue
otorgado a los profesores de esta colaboración Richard E. Taylor, Jerome I. Friedman y Henry
W. Kendall.
i
i
i
i
i
i
i
i
4.2. ¿Pueden los partones ser quarks? 75
no da una prueba de que estos números sean correctos, da únicamente una idea
del hecho de que los quarks tienen cargas de tercios. Es muy interesante, pero fp
no es suficiente, no demuestra nada, y por lo tanto necesitamos una demostración.
¿Cómo podemos demostrarlo? He mostrado que experimentos de dispersión con
neutrinos pueden demostrarlo; sí, pero necesitamos medir las funciones de dis-
tribución del electrón y del muón que salen y que proveen estas ecuaciones, pero
no las observamos, sólo vemos la sección de colisión total. La sección total es una
integral sobre las funciones de distribución, se puede demostrar que la sección
para dispersión neutrino-protón es
σνp = 2K
Z 1
0
∙
d (x) +
1
3
u (x)
¸
xdx
con K = G
2ME
π , donde G es la constante de Fermi, M la masa del protón y E la
energía del neutrino.Hay otras integrales que debemos considerar, por ejemplo:Z 1
0
x [fp + fn] dx =
5
9
Z
x
£
u+ u+ d+ d
¤
dx+
2
9
Z 1
0
x [s+ s] dx, (4.3)
aquí, como dijimos antes, podemos despreciar la suma s+ s.
El lado izquierdo de la ecuación (4.3) se mide de experimentos con electrones,
y da como resultado 0.31. Si además observamos la dispersión de neutrinos sobre
helio para determinar la dispersión sobre neutrones, obtenemos σνn. También
podemos hacer experimentos con antineutrinos en vez de neutrinos. Combinando
todo tenemos
σνp + σνn + σνp + σνn
2
' 4
3
K
Z 1
0
x
£
u+ u+ d+ d
¤
dx (4.4)
donde se ha despreciado s+ s. Combinando las ecuaciones (4.3) y (4.4) tenemos
σνp + σνn + σνp + σνn
2
' 4
3
9
5
K
Z 1
0
x [fp + fn] dx. (4.5)
Experimentalmente se obtiene el valor de 0.74 para el segundo miembro de
(4.5). Como s(x) es positiva, entonces el lado izquierdo de (4.4) debe ser menor
i
i
i
i
i
i
i
i
76 Capítulo 4. Modelo de partones y estructura de protones
que 0.74. Si se efectúan mediciones de las secciones eficaces y, por ejemplo, se
obtiene como resultado 0.9 o 1, éste sería el fin de la teoría de quarks como
partones.
Podemos hacer una estimación de la contribución del término con s(x), es
muy fácil. Esperamos que el número de quarks con extrañeza en una cosa como
el protón, el cual no tiene extrañeza, sea menor que el número de quarks d o u.
Esto inmediatamente nos dice que:Z 1
0
x (s+ s) dx <
1
2
Z 1
0
x [u+ u+ d+ d] dx
entonces, 29
R 1
0 x (s+ s) dx puede contribuir a lo más con un 20% en la ecuación
(4.3).
Pero hay otros argumentos que pueden demostrarnos que cuando se está pe-
sando con x, esta relación es necesariamente menor y entonces, si este término
fuera más del 10% del otro, estaríamos en problemas, pero no espero que pueda
ser tan grande. Por lo tanto, espero que la suma (4.4) sea mayor que 0.67 (y menor
que 0.74); este límite, 0.67, no es absoluto, sólo es un poco más difícil entender
las cosas cuando es menor, y no puede ser mucho menor. Pero el límite 0.74 sí es
absoluto; si el resultado es mayor que 0.74 estaremos en graves dificultades, pues
esto indicaría que la integral
2
9
Z 1
0
x (s+ s) dx
es un número negativo.
Los experimentos de dispersión necesarios actualmente ya están hechos, pero
se tienen que revisar los números, determinar el background y calcular la intensi-
dad del haz (para un haz de neutrinos es complicado determinar su intensidad),
así que necesitamos dos meses o más para conocer los resultados de la suma
(4.4) hasta el 10 o 15 por ciento. Ésta es la primera prueba con neutrinos del
rango (0.67, 0.74). Yo no puedo esperar. Como éste es un rango muy pequeño
pondremos a prueba una predicción concreta.16
16Los primeros experimentos de dispersión de neutrinos sobre nucleones fueron realizados
i
i
i
i
i
i
i
i
4.2. ¿Pueden los partones ser quarks? 77
Si observamos las reacciones necesitamos pensar qué partículas serán produci-
das por nuestro protón roto después de la colisión; esto necesita de más hipótesis,
he hecho algunas hipótesis más y no funcionan, quizá el modelo de quarks no es
el correcto o quizá mis hipótesis.
Hay otra teoría de partones. Imaginemos que los partones son otras cosas,
que tienen otros valores de carga, cada caso posible produce predicciones que
difieren más o menos por factores de 2 o más. Si los resultados experimentales
concuerdan con las predicciones antes explicadas, sería una buena evidencia a
favor de la identificación de quarks y partones.
Nuestra teoría de partones con las funciones u, u, etc. produce predicciones
para otros tipos de experimentos; voy a dar solamente dos ejemplos. Hay algunos
experimentos sugeridos por el profesor Drell que van a tomar algún tiempo, tal
vez dos o tres años desgraciadamente, que también van a medir las funciones en
otra forma y usan la misma teoría.
Figura 4.13 Aniquilación p+ p→ µ+ + µ−+ cualquier cosa
El primer experimento está indicado en la figura 4.13. Es una colisión entre
un protón y un antiprotón que tal vez produzca un par de muones µ+, µ− y
cualesquiera otros hadrones. El protón y el antiprotón, pensados como sistemas
de partones, se encuentran en movimiento con dirección contraria uno respecto al
otro, en el sistema centro de masa. Entonces, para producir un par de muones, los
cuales no interactúan con los hadrones sino únicamente con fotones, es necesario
un efecto virtual en el cual un par de partones se aniquile produciendo un fotón
virtual, que a su vez produzca un par µ+, µ−. En este caso, la probabilidad de
producir el par de muones es igual a multiplicar las probabilidades de encontrar
también en la misma década que los de dispersión de electrones sobre nucleones, en el sincrotrón
del CERN, y confirmaron la validez del modelo de quarks.
i
i
i
i
i
i
i
i
78 Capítulo 4. Modelo de partones y estructura de protones
un quark u en un protón y un quark u en el otro. Tal vez algún día conozcamos
las funciones u, u, etc. y así podamos predecir los resultados de este experimento;
o inversamente, como actualmente no conocemos las funciones u, u podemos
utilizar este experimento para determinarlas.17
Usando la conservación del momento y la energía, podemos mostrar que µ−
tiene el momento del partón que está en el protón que se mueve hacia la derecha
y µ+ tiene exactamente la cantidad de movimiento del partón del otro protón.
Entonces en este experimento, midiendo las cantidades de movimiento de µ+ y
µ−, podemos determinar la probabilidad de productos como
4
9
u (x+)u (x−) +
1
9
d (x+) d (x−) +
4
9
u (x+)u (x−) + . . .
donde x+ y x− son las fracciones de momento de µ+ y µ−, respectivamente.
La teoría es muy sencilla debido a que no sabemos mucho del protón. Cuando
la teoría tiene matemáticas muy sofisticadas no tengo confianza en ella, porque
no necesitamos matemáticas muy exactas, muy complejas, cuando no tenemos
las hipótesis bien establecidas.
Figura 4.14
Hay otra predicción interesante, en la figura 4.14 se muestra una colisión de
haces electrón-positrón, que se aniquilan para producir hadrones. Sólo hay un
17Durante las últimas tres décadas se ha obtenido una gran cantidad de datos experimentales
con los cuales se han construido estas funciones de distribución de los quarks dentro de los
nucleones.
i
i
i
i
i
i
i
i
4.2. ¿Pueden los partones ser quarks? 79
modo en que se pueden producir hadrones: la aniquilación se efectúa producién-
dose un fotón, debido a que no hay interacción directa entre los partones y los
electrones, y éste a su vez produce un par de partones; este par de partones piensa
algún tiempo y decide la forma en que se va a desintegrar en hadrones, de algu-
na manera desconocida para nosotros.18 Para energías bastante grandes podemos
suponer que las interacciones entre los partones no tienen importancia, entonces la
probabilidad de aniquilación entre e+ y e− para producir cualesquiera hadrones es
igual a la probabilidad de aniquilación entre e+ y e− para producir cualesquiera
partones. Lo anterior se debe a que imaginamos que primero producimos los
partones con una determinada probabilidad y éstos después se desintregran, de
alguna manera, formando hadrones, sin que esto cambie la probabilidad total de
producir cualquier cosa. Así, en la figura 4.14 tenemos un proceso de aniquilación
electrón-positrón del que resulta cualquier par de hadrones, cuya probabilidad,
medida en unidades convenientes, es:
P (e++e− → cualquier
hadrón
) =
X
Tipos
en la
naturaleza
µ
carga
del partón
¶2
P (e++e− → µ++µ−).
La probabilidad de producir un par de partículas con espín 12 , recuerde que los
partones tienen espín 12 , no depende de la masa de las partículas, y así podemos
medir esta sección de colisión en términos de la producción de un par, por ejemplo
µ+ y µ−. La probabilidad de producir un par de partones u, u es igual a 49
multiplicado por la probabilidad de producir un par µ+, µ−; y la probabilidad de
producir un par s, s es 19 por la probabilidad de producir el par µ
+, µ−. En el
caso en que los partones seanquarks, la probabilidad de producir cualquier par
de partones tiene que ser la suma de las tres anteriores, esto es 62 . Ésta es una
predicción.
18La existencia del bosón vectorial neutro Z0 nos da otro modo en el que este proceso puede
ocurrir: solamente debemos reemplazar al fotón γ por el Z0. Cuando el proceso es a baja energía
esta segunda posibilidad contribuye en poco, pero a alta energía ya se hace presente y debe
tomarse en cuenta.
i
i
i
i
i
i
i
i
80 Capítulo 4. Modelo de partones y estructura de protones
Hay otras predicciones en nuestra teoría, pero debemos esperar a que se efec-
túen más experimentos. De hecho, estamos a punto de saber si la idea de que hay
constituyentes (partones) funciona y aún más, si los partones tienen carga y si
ésta corresponde a la de los quarks, pero esto lo dejamos para el futuro.
Estamos a punto de verificar si esto es o no verdadero; tal vez lo que he
explicado en los capítulos anteriores no tiene valor, debido a que el resultado
experimental posiblemente contradiga nuestra teoría. Entonces tendríamos que
comenzar otra vez, por ejemplo, haciendo modificaciones a la idea de quarks;
tomando diferentes tipos de quarks u otras complicaciones; además, no tenemos
la certeza de que los quarks existan con estos números, lo que sabemos es que
no existen separados si tienen masa pequeña. Sin embargo, he querido dar este
curso con el espíritu de aventura que siempre nos proporciona la física.
i
i
i
i
i
i
i
i
Apéndice A
Preguntas
Éstas son algunas de las preguntas que se realizaron al profesor Feynman durante
el curso en aquel verano de 1972.
A.1. Capítulo 2
1.- ¿Qué se entiende por una resonancia? En el ejemplo de p y π+, ¿es cómo si
formaran un átomo?
No podemos decir que las partículas que entran existen dentro de la resonan-
cia. Así, un fotón que entra a un átomo produciendo una resonancia, sale otra
vez, pero no podemos decir que ese estado tiene al fotón dentro. Entonces no se
puede decir que en este sistema (∆++ → p+ π+) hay un protón y un pión que
se mueven uno alrededor del otro, sólo podemos decir que existen estados, pero
no sabemos cuáles son las partes que están en movimiento.
Primero influenciados por Yukawa con ideas simples, pensábamos que las
partículas fundamentales eran protones y piones, todo estaba hecho de éstos, así
se entendió por un tiempo. La existencia de otras partículas (Λ, K, ...) muestra
que esto no funciona, entonces la teoría se complica.
81
i
i
i
i
i
i
i
i
82 Apéndice A. Preguntas
Esta idea de tener unas cuantas partículas fundamentales que sean la base de
las demás, nunca funciona bien, no da predicciones. Así, se puede pensar que Λ
es n + K0, o bien, que Λ es fundamental y K0 no, etc. Finalmente la gente se
da cuenta que no puede escoger un conjunto de partículas como fundamentales;
entonces se habla de que sólo existen estados, y no tenemos forma de explicar
los estados como hechos por otros estados. Tal vez todo está constituido por los
mismos constituyentes, pero los constituyentes fundamentales no son cualquier
partícula en especial.
2.- ¿Cuál es la extrañeza del electrón?
El electrón no tiene extrañeza, ni tampoco el neutrino, o por lo menos esta idea
no da ninguna consecuencia, ya que el electrón no tiene interacciones fuertes. Una
tabla interesante es la de conservación de números cuánticos para los distintos
tipos de interacciones. Todas las interacciones conservan la carga eléctrica, el
número de bariones, energía, momento lineal y momento angular. Cantidades
que no se conservan se ven en la tabla siguiente.
Extrañeza S Simetrı́a isotópica Paridad P CP
Fuerte Sı́ Sı́ Sı́ Sı́
Eléctrica Sı́ No Sı́ Sı́
Débil No No No Sı́
Se podría pensar que el valor CP se conserva siempre, pero desgraciadamente
existe una experiencia en que CP no se conserva; a este otro tipo de interacción
se le llama superdébil y no se sabe mucho sobre ésta.
3.- ¿Por qué no superfuerte?
Porque si fuera superfuerte la falta de conservación CP aparecería en cualquier
reacción y sólo existe una reacción con una fracción pequeñísima, lo que indica
que la interacción no es grande.
4.- ¿La simetría CPT funciona para interacciones superdébiles?
Nadie sabe. La razón del porqué es importante es la siguiente: para describir
una teoría, que está de acuerdo con los principios de la mecánica cuántica y
la relatividad, solamente tenemos una manera, llamada teoría relativista de los
i
i
i
i
i
i
i
i
A.2. Capítulo 3 83
campos cuánticos, que tiene como consecuencia que CPT se conserva. Si CPT
se conserva para interacciones superdébiles entonces podemos continuar.
A.2. Capítulo 3
1.- ¿El modelo de partones es relativista a altas energías?
Sí. Para hacer cálculos sin cosas arbitrarias se necesita hacer algunas preci-
siones, cómo tratar la energía, etc. Las personas han hecho esas decisiones antes
de realizar los cálculos teóricos y un modo de hacerlo está en el artículo llamado
Current matrix elements from a relativistic quarks model hecho por tres hombres:
uno llamado Feynman, otro Kislinger y el otro Ravndal. Muchas personas han
calculado esto, pero las gráficas que he dado aquí son otra manera.
2.- ¿El electrón y el muón se entienden con este modelo?
No. El electrón, el muón y el neutrino solamente existen por sí mismos, son
simples, no son compuestos. No hay ninguna indicación de que sean compuestos.
Todas las predicciones de la electrodinámica cuántica dicen que son fundamen-
tales por sí mismos, esta idea da resultados correctos, por ejemplo, en el cálculo
del momento magnético del electrón. El problema para mi es entender las inte-
racciones fuertes antes de tratar de entender más correctamente las interacciones
débiles; pienso que son independientes en primera aproximación. Tal vez la próxi-
ma generación tratará las interacciones entre leptones y hadrones.
3. ¿Qué tan importante puede ser para la teoría el hecho de que el factor de forma
falle?
Existen indicios de que la teoría no es válida para energías altas. No da detalles
para distancias pequeñas, sólo para distancias más o menos grandes; todas las
experiencias en que funciona involucran energías pequeñas que deben de dar
amplitudes de onda más o menos grandes. Se ve con ojos que necesitan anteojos
y aparecen los quarks, pero cuando se usan los anteojos no parece correcto. Sí,
es dificil de enteder, yo lo sé. Estamos completamente seguros que la idea de los
quarks no es una teoría completa, tenemos razones teóricas y experimentales; sin
i
i
i
i
i
i
i
i
84 Apéndice A. Preguntas
embargo, explica cualitativamente muchas de las regularidades que, sin el modelo,
serían misterios.
4.- ¿Si no se encuentran quarks se puede seguir con todo esto?
No sé; es posible. Si algunas personas descubren estados de quarks se tienen
más problemas, ya que la masa tiene que ser grande, con energías pequeñas no
se observa nada. Con tres quarks, cada uno con masa de 2 GeV, la masa total de
un protón es de 6 GeV pero el sistema tiene energía de 1 GeV por lo tanto las
interacciones poseen una energía negativa de 5 GeV.
Las modificaciones en la energía para diferentes modos de movimiento son de
0.4 GeV y las excitaciones de protones son de 0.4 GeV. Entonces, ¿cómo podemos
entender una interacción fuerte que tiene modos de movimiento y excitaciones tan
pequeñas? Existen tantos problemas con los quarks como sin ellos.
A.3. Capítulo 4
1.- ¿Cuál es el número total de partones en el protón?
Voy a aprovechar su pregunta para decir algunas cosas más. Conociendo que
la extrañeza del protón es 0 y que cada quark s tiene extrañeza −1 y cada s tiene
extrañeza 1; entonces su diferencia integrada sobre todos los valores de x da la
extrañeza total del sistema que debe ser cero:Z 1
0
[s (x)− s (x)] dx = 0.
Además, por conservación de la carga sabemos que:Z 1
0
∙
2
3
(u− u)− 1
3
¡
d− d¢¸ dx = 1,
debido a que la carga del protón es 1; también, ya que tres quarks producen un
barión, el número bariónico de cada quark es 13 , entonces se puede demostrar que
i
i
i
i
i
i
i
iA.3. Capítulo 4 85
el número de quarks tipo u tiene que ser dos; como en este caso sólo hay tres
quarks, dos u y un d, tenemos las ecuaciones:Z 1
0
[u (x)− u (x)] dx = 2,
Z 1
0
£
d (x)− d (x)¤ dx = 1.
Estas fórmulas nos proporcionan números sencillos. Hay otras predicciones
de nuestra teoría que serán verificadas cuando los experimentos se efectúen. No
obstante, he usado estas ecuaciones para demostrar que la contribución de s+ s
tiene que ser pequeña. Pero la pregunta es: ¿cuál es el número total de partones
(quarks)?, éste es: Z 1
0
£
u+ u+ d+ d+ s+ s
¤
dx.
El resultado: pienso que es infinito.
Ya he graficado xf e indiqué que esta función es aproximadamente constante,
pienso por muchas razones, que la función f decrece, cuando x crece a infinito,
como la distribución
dx
x
.
El número de pares es infinito, sin embargo, esto no es muy real, ya que
el momento P siempre está limitado, y las fórmulas no son correctas del todo.
Cuando xP , que es el momento del partón, es finito, del orden de magnitud de 1
GeV, diferentes aproximaciones, como energía y momento iguales para el partón,
no funcionan más; o sea, para x ∼ 1P las fórmulas fallan. Esto quiere decir que el
número de quarks (partones) en un protón crece logarítmicamente con el momento
del protón. El número de pares con momento muy pequeño tiende a infinito, con
energía infinita. Estos números son tan grandes en comparación con la integralR
xf (x) dx, en el intervalo 0 < x < 0.1, que vale solamente 0.18, y creo que si
evitamos esta región en la integral, entonces el número de quarks
Z
f(x)dx es
muy cercano a 3 (en la región 0.1 < x < 1).
2.- En la reacción de e++e− → cualquier hadrón, ¿está suponiendo que cualquier
hadrón se forma cuando los electrones y positrones forman partones?
Sí.
i
i
i
i
i
i
i
i
86 Apéndice A. Preguntas
3.-¿Un electrón y un positrón nunca dan un hadrón directamente?
No, nunca. La idea de los partones como constituyentes del protón es que
todos los acoplamientos del protón con hadrones se forman en base a las inte-
racciones del fotón con los constituyentes. La razón de por qué el protón tiene
carga es porque sus constituyentes la tienen, y la idea es que tal vez algún día
podamos entender las propiedades eléctricas de los protones y otros hadrones
a partir de sus constituyentes. Algo similar sucede en la teoría atómica, donde
decimos que el fotón tiene un término de acoplamiento con el electrón o con el
núcleo, y que los electrones se mueven de acuerdo con la ecuación de Schrödinger;
todo esto es complicado, pero el acoplamiento en sí, es muy simple. En otras
palabras, la teoría de partones nos dice que realmente existen acoplamientos
simples, los cuales pueden expresarse en términos de alguna teoría de campos, o
en alguna otra forma, como campos fundamentales o partículas elementales, que
es lo mismo. Ésta es básicamente la idea y no existe la posibilidad de producir
hadrones directamente. Cuando la energía es pequeña y se producen partones,
éstos interactúan produciendo un par, se cambia el espacio de fases, etc., de modo
que la probabilidad de producir hadrones también cambia.
En la interacción de un electrón con un positrón puede producirse un par de
partones; para algunas interacciones, las cuales aún no se entienden, la probabi-
lidad de producir un hadrón es diferente de aquélla para partones, tal vez éstas
ocurran por medio de partones neutros, no olvidemos que existen partones neu-
tros. Cuando se suma sobre todos los hadrones, la probabilidad no tiene que ser
exactamente igual a la probabilidad de producir partones, esta última calculada
como si los partones no interactuasen. Cuando la energía aumenta quién sabe qué
suceda.
La idea de que para calcular la probabilidad de producir hadrones se consi-
deren las interacciones entre partones como muy pequeñas, al grado de poderlas
despreciar, es muy importante. En la teoría relativista de campos no es evidente,
siempre estoy usando los experimentos, que los momentos transversales son pe-
queños. Esto lo interpreto como una indicación de que las interacciones entre
partones no son muy fuertes, ya que no existen diferencias considerables del mo-
mento transversal. Las interacciones entre ellos ocurren solamente cuando los
i
i
i
i
i
i
i
i
A.3. Capítulo 4 87
momentos relativos son pequeños, y el hecho es que usando esta observación he
predicho que las interacciones son pequeñas en el espacio de los momentos. Como
consecuencia, los productos deben tener la propiedad de que el valor en x de
la distribución es independiente de P . Todo esto aparece como una predicción;
pero en este capítulo he usado esto como un resultado experimental para obtener
una distribución de partones. En realidad, lo que he hecho es predecir que los
partones, y por lo tanto los productos, deben tener esta distribución. Los experi-
mentos actuales, tres años después de estas predicciones, demuestran que esto es
correcto. Entonces, es mejor usar los experimentos que muchos argumentos.
En otras palabras, todas nuestra concepción de los partones trae consigo la
idea de que las interacciones entre dos partones, que tienen una diferencia de
momento relativamente grande, son pequeñas.
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
Apéndice B
Memoria gráfica
19Los artículos periodísticos que aparecen en este apéndice se obtuvieron en la Hemeroteca
Nacional de la UNAM.
89
i
i
i
i
i
i
i
i
Foto 1 Vista aérea del Stanford Linear Acelerator (SLAC)
Foto 2 Cavidad del acelerador lineal
Foto 3 Vista aérea del National Laboratory (NAL),
hoy Fermilab, en 1971
Foto 4 Pistola de electrones (electron gun)
Foto 1 Vista aérea del Stanford Linear Acelerator (SLAC)
Foto 5 Cámara de burbujas
Foto 6 Trayectoria de partículas en una
cámara de burbujas
Foto 7 Cámara de chispas
Foto 8 Trayectoria de partículas
en una cámara de chispas
Foto 9 Portada del tríptico original de los
Cursos de verano de 1972
Foto 10 Interior del tríptico original de los
Cursos de verano de 1972
El Día
Jueves 6 de julio de 1972
El Sol de México
Jueves 6 de julio de 1972
El Sol de México
Jueves 6 de julio de 1972
i
i
i
i
i
i
i
i
Índice alfabético
Acelerador lineal, 9
Anillos de acumulación, 6
Antiquarks, 47
Barión, 48
Bosón W, 31, 46
Bremsstrahlung, 23
Radiación de, 6
Cámara
de burbujas, 12
de chispas, 13
Captura K, 32
Cavidades resonantes, 9
CERN, 4
Colisión
electrón-protón, 69
Contador Geiger, 14
Contador proporcional, 14
Decuplete, 43
Desintegración
razón de, 59
Desintegración beta, 2, 30
Dispersión, 75
Efecto
Cherenkov, 15
Compton, 24
Electrón
ideal, 21, 28
real, 28
Electrodinámica cuántica, 21
Electronvolt, 3
Espín, 18
isotópico, 45
Espín, 42
Estadística
de Bose, 62
de Fermi, 62
Estado
ligado, 16
virtual, 16
Extrañeza, 39
Física fundamental, 2
Fotomultiplicador, 14
Función de observación, 72
Función universal, 70
Gigaelectronvolt, 4
Interacción
91
i
i
i
i
i
i
i
i
92 ÍNDICE ALFABÉTICO
fuerte, 3
superdébil, 82
Invariante, 5
Megaelectronvolt, 3
Mesón, 51
Momento magnético
del electrón, 28
Muón, 21
Muonio, 29, 32
NAL, 4
Neutrino, 21
Nonete, 44
Octete, 42
Paridad
Operación de, 32
positiva, 42
Partón, 64, 72, 77
Pión, 34
Pistola de electrones, 67
Positronio, 26
Quarks, 47, 63
Resonancia, 17
Sección total, 75
Simetría
CPT, 33
Isotópica, 37
isotópica, 72
Sincrotón, 10
Radiación de, 10
SLAC, 4
Vida media, 17
Violación CP, 34
	slac.pdf
	Página 1
	NAL.pdf
	Página 1
	burbujas.pdf
	Página 1
	chispas.pdf
	Página 1
	triptico1.pdf
	Página 1
	triptico2.pdf
	Página 1
	eldia.pdf
	Página 1
	excelsior.pdf
	Página 1
	soldemexico1.pdf
	Página 1
	soldemexico2.pdf
	Página 1
<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5/CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (U.S. Prepress Defaults)
 /AlwaysEmbed [ true
 ]
 /NeverEmbed [ true
 ]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
 ]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
 ]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>/ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

Mais conteúdos dessa disciplina