Ed
mês passado
Para resolver essa questão, precisamos entender como os resistores estão dispostos no cubo e como calcular a resistência equivalente entre os pontos A e B. 1. Identificação da configuração: No cubo, temos 4 resistores em suas arestas. Quando aplicamos uma diferença de potencial V entre os pontos A e B, a corrente que passa por eles depende da resistência equivalente do circuito. 2. Cálculo da resistência equivalente: Os resistores estão dispostos de forma que, ao aplicar a tensão entre A e B, a corrente se divide entre os caminhos disponíveis. Para um cubo com resistores em suas arestas, a resistência equivalente entre A e B pode ser calculada considerando a simetria do circuito. 3. Resistência equivalente: Para 4 resistores iguais (R) dispostos em um cubo, a resistência equivalente entre A e B é dada por \( R_{eq} = \frac{R}{2} \). 4. Aplicação da Lei de Ohm: A corrente \( I \) que circula entre A e B pode ser calculada pela Lei de Ohm: \[ I = \frac{V}{R_{eq}} = \frac{V}{R/2} = \frac{2V}{R} \] Portanto, a corrente que circulará entre A e B é \( \frac{2V}{R} \). A alternativa correta é: b) 2V/R.
Mais perguntas desse material