Prévia do material em texto
1 SISTEMAS DE AQUECIMENTO SOLAR DE PEQUENO PORTE MANUAL DO PROJETISTA 1 B E L O H O R IZ O N T E , 2 0 1 3 B el o h o ri zo n te , 2 0 1 3 2 CURSO DE CAPACITAÇÃO EM AQUECIMENTO SOLAR SISTEMAS DE PEQUENO PORTE REDE ELETROBRAS PROCEL SOLAR MANUAL DO PROJETISTA 3 Autores e Colaboradores Profª Elizabeth Marques Duarte Pereira Alexandre Salomão de Andrade Luciana Penha de Carvalho Luiz Otávio Marques Duarte Samira Fontes Domingos Bolsistas de Iniciação Científica Ana Carolina Benfica Mariano Eliane Aparecida Leão Filipe Silva Cota Jaqueline Cordeiro da Silva Leilaynne Pascoal Pedro Priscila Alexandre Barbosa Coelho Rodrigo Andrade Este Manual é um produto da Rede Eletrobras Procel Solar, sendo proibida sua reprodução total ou parcial sem prévia autorização da Eletrobras/Procel. 4 SUMÁRIO 1. Apresentação do programa de Capacitação Rede Procel Solar 2. CAPÍTULO 1 – INSTALAÇÕES DE AQUECIMENTO SOLAR DE PEQUENO PORTE 2.1. Classificação quanto ao porte e operação 2.2. Componentes do SAS de pequeno porte 2.2.1. Coletor Solar 2.2.2. Reservatório Térmico 2.2.3. Caixa d’água 3. CAPÍTULO 2 – TERMOSSIFÃO – PRINCÍPIOS DE FUNCIONAMENTO 3.1 Parâmetros para o bom funcionamento do termossifão 3.1.1. Distância topo-fundo 3.1.2. Soluções arquitetônicas 3.1.3. Reservatórios em nível ou híbridos 3.1.4. Alimentação do sistema 3.2 Seleção do melhor coletor 3.2.1. Minicoletores 3.2.2. Coletores compactos 3.2.3. Coletores horizontais e verticais 3.2.4. Coletores invertidos 3.2.5. Coletores a vácuo 3.3 Sistema anticongelamento 3.3.1. Válvula anticongelamento 3.3.2. Circuito indireto 3.3.3. Bombeamento 3.4 Seleção do melhor reservatório 4. CAPÍTULO 3 – DIMENSIONAMENTO DO SAS 4.1. Cálculo da demanda de água quente 4.1.1. Demanda diária de água quente 4.2. Perfil do consumo de água quente no setor residencial 4.2.1. Nível de conforto 4.3. Passo a passo do dimensionamento detalhado 5. CAPÍTULO 4 – INSERÇÃO DO SAS EM EDIFICAÇÕES 5.1. Inserção do SAS em Edificação: Fase do Projeto 5.1.1. Características da cobertura 5.1.2. Tubulações e pontos de consumo 5.1.3. Isolamento de tubulações, sombreamento e acessibilidade 5.2. Inserção de SAS em Edificações Existentes 6. CAPÍTULO 5 – SISTEMA HIDRÁULICO DO SAS DE PEQUENO PORTE 6.1. Distribuição hidráulica do SAS 6.2. Tipos de tubulações 6.3. Dimensionamento das tubulações 6.4. Circuito primário 6.4.1. Cálculo do diâmetro de alimentação e retorno do sistema 6.4.2. Perda de carga 6.5. Circuito secundário 6.5.1. Cálculo do diâmetros da tubulação do circuito secundário do sistema 5 6.6. Isolamento de tubulações 7. CAPÍTULO 6 – QUALIDADE DA INSTALAÇÃO DE UM SAS 7.1. Qualidade de produtos: coletor solar 7.2. Qualidade de produtos: reservatório térmico 7.3. Qualidade da instalação 7.4. Qualidade do isolamento térmico 7.5. Sistema anticongelamento 7.6. Qualidade do sistema auxiliar 7.7. Segurança do sistema 7.8. Acessibilidade e manutenção 7.9. Abastecimento e qualidade da água 6.10. Check-list 8. CAPÍTULO 7 – RECOMENDAÇÕES PARA O INSTALADOR 8.1. Primeiro passo: preparação 8.2. Segundo passo: avaliação do local de instalação 8.3. Terceiro passo: planejamento da instalação in loco 8.4. Quarto passo: instalação do SAS 8.5. Quinto passo: comissionamento do SAS 8.6. Check-list para o instalador 9. CAPÍTULO 8 – SISTEMAS DE AQUECIMENTO SOLARA PARA O PROGRAMA MINHA CASA MINHA VIDA 9.1. SAS de Pequeno Porte: Programa Minha Casa Minha Vida 9.2. Componentes do SAS MCMV 9.3. Inserção do SAS em residências unifamiliares 9.4. Inserção do SAS em residências multifamiliares 9.5. Recomendações para o instalador e boas práticas 10. REFERÊNCIAS BIBLIOGRÁFICAS 6 1. Apresentação do Programa de Capacitação – Rede Procel Solar Ao longo dos últimos anos, uma equipe se formou com apoio da Eletrobras/Procel para o desenvolvimento de projetos e também para a proposição de ações estruturantes à disseminação da energia solar térmica no Brasil, notadamente para o aquecimento solar de água. Acredita-se que uma das mais importantes iniciativas seja exatamente essa: a capacitação de professores para atuar como multiplicadores na formação de profissionais em toda a cadeia produtiva do aquecimento solar. O Programa de Capacitação REDE ELETROBRAS SOLAR surgiu após os resultados dos trabalhos de avaliação em diversas obras realizados por um convênio entre a Eletrobras e a PUC Minas onde se identificou que grande parte das instalações solares avaliadas em sete cidades de estados diferentes estavam com problemas, muitas vezes causados por um projeto ou uma instalação incorretos. Assim surgiu a ideia de criar uma rede de cursos de capacitação que a carência de profissionais capacitados em todo o setor. Esses cursos formam profissionais capazes de analisar, dimensionar, projetar e instalar sistemas de aquecimento solar (SAS) tanto para piscinas e como também para fins sanitários de pequeno, médio e grande porte. Os organogramas a seguir mostram os esquemas dos cursos da REDE. O primeiro organograma (Figura 1.1) ilustra o curso para projetistas solares: Figura 1.1 - Estrutura esquemática do programa de capacitação da Rede Eletrobras Procel Solar – Projetista O segundo cronograma (Figura 1.2) ilustra o curso de instaladores solares: 7 Figura 1.2 - Estrutura esquemática do programa de capacitação da Rede Eletrobras Procel Solar – Instalador A Rede conta, em sua versão inicial, com seis instituições de ensino e pesquisa na área da energia solar, abrangendo todas as cinco regiões do país. A concepção de sua estrutura é dinâmica e aberta, podendo agregar rapidamente outras instituições com interesse no tema. Em sua implantação, a Rede é financiada pela Eletrobras/Procel, através de Convênio de Cooperação com o Instituto UNA de Responsabilidade Social e Cultural, mas tem como meta a busca por sua sustentabilidade técnica e financeira em futuro próximo. Essa iniciativa da Eletrobras/Procel está em plena sintonia com as ações previstas no Plano Estratégico para “Disseminação de Sistemas de Aquecimento Solar no Brasil”, elaborado pelo Grupo de Trabalho em Energia Solar Térmica, coordenado pelo Ministério de Meio Ambiente e que conta com a participação do Ministério de Minas e Energia e da própria Eletrobras, através da equipe técnica do PROCEL. O curso de projetista de pequeno porte tem como público alvo engenheiros, arquitetos, técnicos de concessionárias de energia elétrica e de cooperativas habitacionais, professores, instrutores e técnicos em geral. Esse curso tem como pré-requisito o curso de “Introdução ao Aquecimento Solar – Módulo Básico” e tratará de assuntos como dimensionamento do SAS e do sistema hidráulico, inserção dos equipamentos nas edificações, boas práticas de instalação, materiais utilizados, entre outros. Também teremos um capítulo dedicado ao sistema de aquecimento solar adotado no Programa Minha Casa Minha Vida, que é caracterizado como pequeno porte, mas possui alguns aspectos especiais e distintos do sistema convencional. Para consolidar o conhecimento do aluno estarão disponíveis, além desta apostila, aulas teóricas com recursos multimídia, aulas práticas onde o aluno irá trabalhar com bancadas de simulação de SAS em tamanho real, bancada de simulação de um banheiro com o sistema hidráulico visível, maquetes eletrônicas e o software Dimensol que será usado em muitos exercícios. Avaliação Avaliação 8 Capítulo 1 2 INSTALAÇÕES DE AQUECIMENTO SOLAR DE PEQUENO PORTE Instalações de Aquecimento Solar de Pequeno Porte Componentes de uma instalação de pequeno porte PALAVRAS-CHAVE: Porte das instalações;operação do sistema; coletor solar; reservatório térmico; caixa de água fria. 9 2.Instalações de Aquecimento Solar de Pequeno Porte 2.1 Classificação quanto ao porte e operação No curso “Introdução ao Aquecimento Solar – Módulo Básico” foi visto que os sistemas de aquecimento solar (SAS) possuem diversas aplicações e para cada uma delas existe uma classificação diferente. A mais comum é quanto ao seu porte, que está diretamente relacionada ao volume de água aquecido. Por isso os SAS são classificados, em geral, quanto ao porte e operação. De maneira geral a classificação do SAS quanto ao porte é como mostrada na Tabela 2.1, a seguir: Tabela 2.1 – Classificação de sistemas de aquecimento solar quanto ao porte Classificação SAS Volume diário de armazenamento [L] Pequeno porte V < 1500 Médio porte 1500 < V <5000 Grande porte V > 5000 Quanto à operação dos SAS há dois tipos distintos: circulação natural e circulação forçada ou bombeada. Em regiões de clima mais frio como a América do Norte e a Europa é necessário que o sistema opere em circulação forçada para que não haja risco de congelamento da água no interior do coletor solar, o que provocaria danos no equipamento. Assim, é comum nesses locais o uso de sistemas de bombeamento em todos os tipos de SAS, inclusive nos de pequeno porte. No entanto, países como o Brasil que possuem temperaturas amenas podem dispensar o sistema de bombeamento em SAS de pequeno porte e adotar a circulação natural ou termossifão como forma de operação. Para sistemas maiores, porém, esse tipo de operação se torna ineficiente, sendo necessário operar por bombeamento. A tabela 2.2 mostra a classificação dos sistemas quanto à operação. 10 Tabela 2.2 – Classificação de sistemas de aquecimento solares quanto à operação Classificação SAS Tipo Pequeno porte Termossifão Médio porte Circulação forçada Grande porte Circulação forçada A circulação natural ocorre pela diminuição da densidade do fluido devido ao seu aquecimento, também conhecido como efeito termossifão. O principio de funcionamento e as características desse efeito serão abordadas com mais detalhes no capítulo 2. Mais de 90% dos sistemas de aquecimento solar no Brasil são sistemas termossifão, que oferecem ao consumidor baixo custo, eficiência e confiabilidade. Em relação à circulação da água, vale lembrar que, dividimos os sistemas de aquecimento solar em duas categorias. Nos sistemas bombeados, uma motobomba é responsável pela circulação da água, que sai do reservatório térmico (RT), passa pelos coletores e volta para o reservatório. Já nos sistemas por termossifão, essa circulação ocorre de maneira natural. 2.2 Componentes do SAS de Pequeno Porte Podemos citar como componentes do SAS de Pequeno Porte o coletor solar, reservatório térmico, caixa de água fria (ou caixa d’água) e as tubulações que ligam tais equipamentos, que serão detalhados a seguir: 2.2.1 Coletor Solar O coletor solar tem como função absorver a radiação solar cujo calor será absorvido pela água que passa em seu interior. Existem diversos tipos de coletores solares que também são classificados de acordo com sua configuração física. Os mais comuns são os coletores abertos, os fechados ou planos e os de tubo a vácuo. Os primeiros não possuem cobertura transparente, isolamento térmico e nem caixa metálica, já que operam a baixas temperaturas. São muito utilizados para o aquecimento de piscinas que devem ser aquecidas a temperaturas da ordem de 25°C a 27°C. 11 Os coletores planos são os mais usados no Brasil e operam em temperaturas de 60°C a 70°C. São mais complexos do que os coletores abertos e possuem a seguinte estrutura: Caixa metálica que abriga todos os materiais do coletor; Camada isolante instalada no fundo e nas laterais da caixa metálica, para reduzir as perdas térmicas; Flauta ou tubos metálicos por onde a água circula; Aletas metálicas, que geralmente são pintadas de preto para absorver a maior energia térmica possível, e são soldadas ou encaixadas na flauta; Cobertura transparente que faz o fechamento do coletor, reduz as perdas térmicas e gera o efeito estufa no interior do equipamento; Na Figura 2.1 é possível observar os componentes do coletor solar. Figura 2.1: Componentes do coletor solar A qualidade e desempenho do coletor solar estão diretamente ligados às características dos seus componentes como espessura do isolamento térmico, metal utilizado para a produção das aletas e tipo de vidro da cobertura. No Capítulo 2 veremos como essas características influenciam na escolha do melhor coletor. Finalmente, os coletores de tubo a vácuo trabalham a temperaturas de até 100°C e sua construção difere tanto dos coletores abertos quanto dos fechados. O corpo do coletor é composto por uma série de tubos individuais por onde a água circula. Esses tubos possuem duas camadas de vidro: uma externa e outra interna. Na face interna, que também recebe uma pintura especial para potencializar a absorção da irradiação solar, a água é aquecida e circula através do efeito termossifão. Entre a face interna e externa do vidro existe o vácuo, que servirá como isolamento minimizando as perdas térmicas do coletor. Esses tubos são montados em uma estrutura e, muitas vezes, acoplados diretamente ao reservatório térmico. Para mais detalhes consulte o próximo capítulo. Isolamento Aleta metálica Flauta Caixa metálica Cobertura transparente 12 2.2.2 Reservatório térmico Nos sistemas de aquecimento solar de água é fundamental prever seu armazenamento, visto que ela não será consumida de modo intermitente. Assim, o reservatório térmico se faz necessário e tem a função de armazenar e manter, por um período de tempo razoável, a água aquecida para posterior consumo. Esse equipamento é o responsável por alimentar os coletores solares com água fria e armazenar a água que retorna aquecida. Para isso ele deve conter os tubos de ligação, o corpo interno que ficará em contato com a água, o isolamento térmico, o corpo externo que protegerá todo seu interior das intempéries e os suportes de sustentação. Além disso, o SAS sempre possui um sistema de aquecimento auxiliar que entrará em operação quando os coletores não aquecerem a água – em dias nublados, por exemplo – ou quando o consumo superar o volume previsto. Para o aquecimento elétrico por acumulação uma resistência também é inserida no corpo do reservatório e será acionada nesses casos. A Figura 2.2 ilustra todos esses componentes. Figura 2.2: Componentes do reservatório térmico 2.2.3 Caixa d’água A caixa de água fria é responsável pela alimentação do SAS, seu uso é muito comum no Brasil, pois o abastecimento de nossas casas geralmente é indireto. Para o SAS é possível utilizar a própria caixa d’água da residência ou adicionar outra dedicada apenas à alimentação do sistema. Em casos de abastecimento direto ela não é necessária, pode-se apenas instalar uma caixa de quebra pressão com volume reduzido que irá fornecer água para o SAS. Esse último tipo é muito usado nos sistemas do Programa Minha Casa Minha Vida. Corpo externo Isolamento térmico Corpo interno Tubo de ligação Tubo de ligação Resistência elétrica Suportes 13 Capítulo 2 3 INSTALAÇÕES DE AQUECIMENTO SOLAR DE PEQUENO PORTE Princípios de funcionamento Termossifão detalhado Seleção do melhor coletor Seleção do melhor reservatório térmico PALAVRAS-CHAVE: Circulação natural, coletores solares, reservatórios térmicos, sistema anticongelamento. 14 3. Termossifão: princípios de funcionamento Apesar das instalações solares de pequeno porte que operam por termossifão serem relativamente simples, existem alguns detalhes que o projetista deve ficar atento. Se instalado demodo apropriado, o sistema termossifão é praticamente imune a falhas de circulação. A seguir a circulação por termossifão será detalhada. Apesar de parecer um tanto quanto mágica a forma como o sistema naturalmente promove a circulação da água, o princípio do termossifão é bastante simples. Tudo começa com a mudança da densidade da água que ocorre quando há uma variação na sua temperatura. Para temperaturas acima de 4°C, à medida que a temperatura da água aumenta a sua densidade diminui, conforme mostra a figura 3.1. Figura 3.1 - Variação da densidade da água em função do aumento da temperatura Isso quer dizer que à medida que a água é aquecida, ela fica mais "leve" em relação à água mais fria. Por isso, em um reservatório térmico, a água quente está sempre na parte mais alta. Na verdade, a água quente está flutuando sobre a água mais fria, assim como uma boia cheia de ar flutua sobre a água porque o ar dentro dela é menos denso do que a água. 15 Agora vamos imaginar um tubo em formato de “U” preenchido com água em temperatura constante, como mostra a Figura 3.2: Figura 3.2 - Tubo em “U” preenchido com água com colunas à mesma temperatura A pressão exercida pelas colunas de água A e B, que estão paradas, sobre o ponto C é chamada de pressão estática. A fórmula para a pressão estática manométrica1 (Equação 3.1) diz que a pressão exercida é igual à aceleração da gravidade vezes a densidade do fluido (no caso, água) multiplicada pela altura da coluna, ou seja: onde: Pman: é a pressão manométrica estática [Pa] é a densidade do fluido [kg/m3] g: é a aceleração da gravidade (aproximadamente 9,8 m/s2) h: é altura da coluna [m]. Se então considerarmos as pressões exercidas pelas colunas A e B, podemos ver que elas são iguais, pois as densidades são as mesmas e a altura h também é a mesma. Nessas condições, as duas colunas continuam em equilíbrio e com a mesma altura. Vamos imaginar agora que começamos a fornecer energia para a coluna A, como ilustra a Figura 3.3. 1 A pressão manométrica é a pressão exercida pela coluna descontando-se a pressão atmosférica. Se levarmos em conta a pressão atmosférica, temos o que chamamos de pressão absoluta. = (Equação 3.1) 16 Figura 3.3 - Coluna A recebendo energia para aquecimento. A água no interior da coluna A começará a se aquecer. Porém, como se pode notar na Figura 3.4, se a água está mais aquecida, a sua densidade diminui. Ao observar a equação 3.1, nota-se que ao diminuir a densidade da água, reduz-se a pressão que a coluna exerce. Isso quer dizer que a diminuição da densidade leva a uma redução da pressão da coluna A. Como a temperatura da coluna B não mudou, surge uma diferença de pressão. A coluna A agora exerce menor pressão e assim é empurrada pela coluna B, até que uma nova situação de equilíbrio seja estabelecida (Figura 3.4). Figura 3.4 - Diferença de altura nas colunas gerada pelo aquecimento da coluna A Se agora fecharmos esse tubo na parte superior (Figura 3.5), o efeito causará um fluxo contínuo da água no sentido horário, para a coluna B e depois para a coluna A, onde a água é aquecida. 17 Figura 3.5. Circulação por termossifão em um circuito fechado O coletor solar e o reservatório que operam por circulação natural possuem o mesmo comportamento observado na Figura 3.5, sendo que sua fonte de energia é solar. O efeito termossifão em circuitos hidráulicos não é usado apenas por sistemas de aquecimento solar. Existem muitas outras aplicações na engenharia térmica que utilizam essa diferença de densidade para gerar a circulação do fluido no transporte de calor. Por exemplo, os sistemas de resfriamento de reatores nucleares utilizam esse mesmo fenômeno para evitar o seu superaquecimento, onde a energia nuclear é a fonte de aquecimento. Outro exemplo, mais comum, é o uso do calor dos fogões à lenha para aquecimento de água, que passa por uma serpentina inserida ao lado da chaminé e segue para um tanque que fica sob o telhado. Para observar como esse efeito ocorre em um SAS a Figura 3.6 ilustra os equipamentos e suas ligações: 18 Figura 3.6. Sistema de aquecimento solar operando em circuito por termossifão. Todo o sistema apresentado está cheio de água, inicialmente à temperatura ambiente. As placas serão aquecidas pela radiação solar. Como essas placas são construídas para absorver a maior quantidade de energia, diminuindo as perdas, elas aquecem e transferem essa energia térmica para a água dentro das placas. Essa água, em temperatura superior à água da tubulação, tem uma tendência de subir e irá em direção ao reservatório térmico, assim como no circuito fechado mostrado na Figura 3.5. Em sistemas instalados em residências a água aquecida não é consumida de maneira constante, o que leva a necessidade de armazenamento, que é a função do reservatório térmico. Ele também é responsável por conservar a água quente por um período de tempo tal que garante a autonomia do sistema e conforto do usuário. A diferença de pressão criada por um sistema simples de aquecimento solar que utiliza termossifão é muito pequena, certa de 100 vezes menor que a pressão produzida por uma pequena motobomba. Pode-se concluir então que a força motriz do termossifão é pequena. Pequena, mas suficiente para promover uma boa circulação em um sistema bem instalado. Para isso, basta respeitar as limitações e desafios do termossifão. 3.1 Parâmetros importantes para o bom funcionamento do termossifão O termossifão é um sistema simples e tem muitas vantagens em relação ao sistema bombeado. Uma das principais vantagens é a de não precisar inserir gastos com motobombas e outros instrumentos que são imprescindíveis em um sistema bombeado. Além do custo 19 inicial, não há o custo para manter uma motobomba em funcionamento. Assim, para que o sistema funcione em um dia ensolarado, não há nenhum custo agregado ao sistema que utiliza termossifão. Dessa forma é melhor sempre optar pela circulação natural quando há condições para que ela opere corretamente. Vimos que a diferença de temperatura provoca o “deslocamento” da água no interior dos equipamentos e é a forma pela qual o SAS de pequeno porte funciona na maioria dos casos. Porém, precisamos lembrar que durante o dia o coletor solar é aquecido pela energia solar e está mais quente que a água que passa pelo seu interior, mas durante a noite a placa se resfria enquanto a água está aquecida no reservatório, isso provoca o chamado fluxo reverso. Esse fluxo nada mais é que o próprio termossifão que ocorre em sentido contrário, ou seja, a água aquecida que está no reservatório passa pelo coletor e sofre resfriamento. Assim, vemos a necessidade de evitar esse fenômeno no período noturno e a forma mais adotada é através da inserção dos equipamentos obedecendo algumas medidas que serão detalhadas em seguida. 3.1.1. Distância topo fundo A altura entre o topo dos coletores e o fundo do reservatório térmico (que chamaremos de agora em diante apenas de distância topo/fundo) é uma medida importante a ser considerada em um sistema onde é desejável trabalhar por termossifão. As dimensões mínimas para evitar a ocorrência do fluxo reverso são mostradas na Figura 3.7. 20 Figura 3.7 - Dimensões em uma instalação convencional por termossifão típica (vista lateral). Contudo, podemos ver que para acomodar os equipamentos sob o telhado obedecendo tais medidas precisaríamos de uma cobertura de grande inclinação, ou declividade, o que pode impactar na estética e custo da residência. Se tomarmos como exemplo um coletor solar de 2,0 metros de comprimento, com inclinação de 30°, sua projeção vertical será de 1,0 metro. Ao adicionar 20 centímetros da distância topo/fundo, mais o diâmetro do reservatório térmicode 52 centímetros, mais a distância entre o reservatório e a caixa d’água de 15 cm, mais a altura da caixa d’água de 74 centímetros, temos um telhado com altura total de 2,61 metros. Para efeito de comparação esse valor é 21 centímetros acima do valor mínimo aceitável para o pé-direito de um ambiente. Naturalmente sabemos que essas condições são irreais para se atingir em construções convencionais. Para solucionar esse problema temos alternativas que serão apresentadas a seguir: 3.1.2. Soluções arquitetônicas Para manter o reservatório térmico e a caixa d’água internamente é possível utilizar torres (Figura 3.8) que são soluções arquitetônicas para a “falta de altura” do telhado. Essa opção é simples e relativamente barata, mas possui um maior impacto em termos da estética da construção quando não prevista em projeto. O ponto negativo dessa solução é o potencial para formação de sombra sobre os coletores, e é por isso que a posição da torre em relação aos coletores deve ser bem avaliada antes da sua construção. Figura 3.8 – Exemplos de instalações com torre 3.1.3. Reservatórios em nível ou híbridos Em uma instalação convencional, a caixa de água fria vem em um nível acima do reservatório térmico (Figura 3.9). Essa diferença de altura garante que a caixa de água será capaz de abastecer o reservatório térmico sempre que este for esvaziando. 21 Figura 3.9 - Caixa d’água e RT. Instalação convencional Outra solução para reduzir a altura total do termossifão é o emprego de um reservatório térmico em nível com a caixa d´água (Figura 3.10). Nesse caso, os dois componentes podem ser instalados no mesmo nível, sem a necessidade de que eles estejam próximos, lado a lado. Assim a torre pode ter sua altura reduzida e/ou há a possibilidade de instalá-los diretamente sob o telhado. Figura 3.10 - Caixa d’água e RT. Instalação em nível 22 O inconveniente, porém, é que existe a possibilidade de mau funcionamento em regiões onde ocorre falta de abastecimento de água durante o dia. Quando isso ocorre, se houver consumo de água quente, não haverá reposição, e o nível da água no RT cairá. E a partir do momento em que o nível da água cai abaixo do ponto de retorno da água quente proveniente dos coletores, a água pára de circular no sistema. Além disso, a instalação hidráulica entre o RT e a caixa d’água exige alguns cuidados adicionais. 3.1.4. Alimentação do sistema Um ponto importante para manter o sistema em bom funcionamento é a conexão correta das tubulações, respeitando as saídas e entradas da água quente ou fria. A figura 3.11 a seguir mostra um sistema típico operando em termossifão. Figura 3.11. Sistema de aquecimento solar operando em circuito por termossifão A retirada de água da caixa d´água deve ser realizada por um ponto baixo, como mostra o ponto (1). Isso para garantir que mesmo com a caixa vazia, ainda será possível retirar água. Se a retirada fosse a um ponto muito alto, logo que a caixa diminuísse seu nível, não seria mais possível realizar a retirada de água, e assim a caixa perderia sua função, que é a de armazenar água fria. A saída de água fria deve ser conectada em uma parte inferior do reservatório térmico, como mostra o ponto (2), pois dessa forma é garantido que a água fria estará sempre na parte inferior do reservatório. A tomada de água do reservatório para abastecer o coletor deve ser sempre da parte inferior do reservatório, como mostra o ponto (3). Isso deve acontecer, pois é na parte de baixo que se encontra a parte fria da água dentro do reservatório, e é essa água fria que deve ser aquecida pelo coletor. Essa água fria deve entrar 23 no coletor sempre pela parte de baixo do mesmo, como mostra o ponto (4). Assim, o coletor terá água mais fria na parte de baixo. Como estudado anteriormente, a água quente tem uma densidade menor que a água fria e assim torna-se mais leve, ficando sempre acima da água fria. À medida que a radiação solar vai incidindo na placa, a água fria da parte inferior do coletor será aquecida e assim irá iniciar o termossifão em si, onde a água da parte de baixo do coletor irá iniciar um movimento ascendente. Dessa forma, com o tempo, na parte de cima do coletor haverá uma água mais quente que a da parte de baixo. Por isso a retirada de água do coletor deverá ser feita pela parte de cima, no ponto (5). Essa água quente deverá entrar no reservatório pela parte de cima, no ponto (6). Portanto, dentro do reservatório térmico haverá água fria na parte de baixo e água quente na parte de cima. Na verdade, essa água quase não se mistura, pois a diferença de temperatura garante a separação por densidade, e assim dentro do reservatório haverá “faixas” de água com temperaturas diferentes. Essa configuração é denominada estratificação. Em um reservatório vertical, a estratificação é ainda mais definida que a do reservatório horizontal, garantindo que a água fria fique bem separada da água quente, naturalmente. A retirada da água para o uso deve ser feita pelo ponto (7), que deve ser um ponto alto no reservatório, para garantir que seja uma água mais quente. À medida que essa água for utilizada, mais água fria sai da caixa d´água, preenchendo o reservatório. Porém, se não há utilização de água quente por um período, a circulação de água entre o reservatório e o coletor mantém-se, com o objetivo de aquecer cada vez mais quantidade de água. 3.2. Seleção do melhor coletor No mercado brasileiro, existem vários tipos de coletores que podemos utilizar. A seguir serão detalhadas as vantagens e desvantagens de cada tipo. 3.2.1 Minicoletores Uma alternativa para a redução da altura total do sistema, necessária para garantir o bom funcionamento do termossifão, é diminuir o comprimento do coletor. Para isso existem coletores menores chamados minicoletores (Figura 3.12), que conseguem reduzir até 30 cm dessa altura total. Eles geralmente possuem cerca de 1,0 m de comprimento por 1,0 m de largura. 24 Figura 3.12 - Instalação com minicoletores. 3.2.2 Coletores compactos O coletor compacto ou acoplado tem uma característica de unir o reservatório à placa coletora. Essa característica pode ser positiva pela facilidade de instalação, dispensando um suporte para o coletor e outro para o reservatório. Porém, a aproximação do reservatório e da placa diminui muito a altura topo/fundo, possibilitando a ocorrência do fluxo reverso durante a noite. A Figura 3.13 a seguir mostra um tipo de coletor acoplado. Figura 3.13 – Coletor acoplado 3.2.3 Geometria dos coletores 25 No mercado existem coletores verticais e horizontais. O coletor horizontal tem a altura menor que o comprimento, já o coletor vertical tem sua altura maior. Contudo, em ambos, os tubos por onde a água flui são sempre posicionados na vertical. Basicamente o parâmetro mais importante para a escolha entre esses dois tipos é a altura disponível do telhado ou suporte. Pois vale lembrar que a caixa d´água e o reservatório devem estar acima da parte superior da placa. Se o coletor é do tipo vertical e tem uma altura de 2,0 m, o reservatório deve estar elevado acima dessa altura, para favorecer o termossifão. A figura 3.14 a seguir mostra coletores horizontal e vertical, respectivamente. Figura 3.14 – Coletor horizontal e vertical É muito comum encontrar em instalações o coletor invertido, que é a instalação de um coletor vertical na horizontal, ou seja, é literalmente um coletor vertical que foi "tombado". Esse tipo de instalação não favorece o bom funcionamento do coletor, pois seus tubos devem sempre estar na vertical permitindo o correto fluxo da água. E há mais um detalhe: essa solução possui os inconvenientes de aumentar a distância percorrida pela tubulação na instalação e de reduzir a força motriz do termossifão. Para usar o coletor vertical na horizontalseria necessário instalar um sistema de bombeamento para forçar a passagem da água pelos tubos da placa, o que seria uma opção mais onerosa para o consumidor. Dessa forma, não é recomendável utilizar um coletor que foi fabricado para trabalhar verticalmente na forma horizontal. Essa solução pode comprometer fortemente o funcionamento da instalação. As figuras 3.15 e 3.16 mostram a construção correta e incorreta de um coletor horizontal. 26 Figura 3.15: Coletor horizontal correto. Fonte: Manual de Referência Curso de Capacitação da CAIXA. VERT Arquitetura e Consultoria/GIZ Figura 3.16: Coletor horizontal incorreto. Fonte: Manual de Referência Curso de Capacitação da CAIXA. VERT Arquitetura e Consultoria/GIZ 3.2.5 Coletores a vácuo Os coletores que possuem tubo evacuado estão cada vez mais presentes no mercado brasileiro. Eles tem a composição diferente de um coletor padrão, mas seu princípio de funcionamento é o mesmo. Esse coletor é composto por tubos com a seguinte estrutura (Figura 3.17): Camada de vidro externa Vácuo Camada de vidro interna Pintura especial 27 Figura 3.17 – Tubo evacuado A água circula no interior desses tubos por efeito termossifão e depois é armazenada n reservatório, que pode ser acoplado diretamente aos tubos ou separado, sendo o primeiro o mais comum (Figura 3.18). Figura 3.18 – Coletor de tubo evacuado – Fonte: http://www.ecosoll.com/o-aquecedor Esses coletores possuem eficiência superior ao coletor solar plano por possuírem o melhor isolamento existente: o vácuo. Isso é uma ótima característica, pois utilizando um coletor mais eficiente, é possível aumentar a temperatura da água ou diminuir a quantidade de placas. Assim, esse tipo de tecnologia pode ser mais bem indicado para obras de pequeno porte que necessitam de muitas placas e não possuem espaço suficiente para acomodá-las. Em geral, esse coletor exige um investimento mais elevado do que de um sistema comum por ser importado. Outro ponto que deve ser destacado é que o Programa Brasileiro de Etiquetagem ainda não realiza testes nesses equipamentos e, portanto, não há garantia de qualidade para o consumidor. Para utilizar esse coletor é recomendável verificar se ele é testado em outros locais, como por exemplo, na Europa e avaliar sua classificação. Assim é possível escolher um equipamento de qualidade. Vidro externo Vácuo Vidro interno Pintura especial 28 3.3 Sistema anticongelamento A água, que é o fluido de trabalho dos coletores solares aplicados para instalações de pequeno porte, sofre um efeito que é denominado “dilatação anômala da água”. A maioria dos elementos conhecidos se contrai com a diminuição da temperatura. Por exemplo, uma chapa de metal terá dimensões maiores quando estiver a altas temperaturas e dimensões menores quando a baixas temperaturas. Porém a água apresenta um comportamento de dilatação incomum. Consiste no seguinte: à temperatura ambiente, a água líquida contrai seu volume à medida que diminui a temperatura, da mesma forma que as outras substâncias. Mas quando a água atinge uma temperatura de 4°C, logo antes de congelar, a água expande-se. Pode-se perceber esse fenômeno facilmente, quando é colocada uma garrafa cheia de água no congelador. Se não tiver para onde essa água expandir, a garrafa estoura. A figura 3.19 a seguir mostra a relação entre temperatura e volume da água. Figura 3.19 – Comportamento anômalo da água. Fonte: http://www.klickeducacao.com.br/simulados/simulados_mostra/0,7562,POR-12062-25-787- 2003,00.html Da mesma forma que uma garrafa com água no congelador pode estourar, um coletor solar também pode. Em regiões onde a temperatura ambiente pode alcançar os 4°C, a água que está dentro do coletor começará a se expandir e assim estourar os tubos dentro do coletor. Existem algumas formas de evitar esse acontecimento, os quais serão citados a seguir. 3.3.1 Válvula anticongelamento A válvula tem como função drenar água fria do coletor, pela parte de baixo do mesmo. Dessa forma, há um retorno de água quente do reservatório térmico, aumentando um pouco a temperatura da água dentro do coletor e evitando que essa água atinja os 4°C. Essa é a forma mais utilizada para evitar o congelamento da água nos coletores. Nas figuras 3.20 e 3.21 é possível observar dois tipos de válvulas anticongelamento, a elétrica e a mecânica, já na figura 3.22 é mostrada sua instalação no coletor solar. 29 Figura 3.20: VAC de acionamento elétrico Figura 3.21: VAC de acionamento mecânico Figura 3.22: VAC instalada em um coletor solar 3.3.2. Circuito indireto Uma forma muito utilizada em países do exterior é a utilização de um circuito indireto. Isso significa que o fluido que irá circular nos coletores não será água, e sim um fluido especial, que tenha um ponto de fusão menor que o ponto da água – por exemplo o etilenoglicol. Assim, dentro do reservatório térmico haverá uma troca de calor entre esse fluido e a água, que será utilizada para o consumo. 3.3.3 Bombeamento Uma forma bastante similar ao da válvula é o sistema que utiliza uma motobomba para retirar um pouco da água fria do coletor e permitir um retorno de água quente do 30 reservatório térmico. Isso será possível com o uso de um controlador diferencial de temperatura (CDT) que tenha entre suas funções a proteção contra congelamento. Assim, essa é uma solução viável para sistemas que já sejam bombeados, e que só precise inserir um CDT. 3.4 Seleção do melhor reservatório A escolha do melhor reservatório depende de diversos parâmetros. Primeiramente do dimensionamento. É preciso dimensionar corretamente o volume de água quente que será consumido por dia na residência. O reservatório deve ser capaz de armazenar esse volume. Depois em relação à arquitetura do telhado. Não adianta escolher um reservatório gigante, se meu telhado não terá uma altura suficiente para alocá-lo. Também, faz-se necessário ter certeza que o suporte irá suportar o peso do reservatório cheio. Caso haja problemas com a altura do telhado e o espaço na cobertura, a utilização de reservatórios horizontais é aconselhável. A Figura 3.23 mostra dois exemplos de reservatórios térmicos, um horizontal e outro vertical. Figura 3.23: Geometrias dos reservatórios: horizontal e vertical Se necessário é possível associar diferentes reservatórios para alcançar o volume desejado. Caso haja muito espaço livre no local da instalação, reservatórios verticais são indicados. Os reservatórios verticais tem uma altura grande e, dependendo do volume, podem provocar sombreamento nos coletores. Porém, a geometria desse reservatório favorece a estratificação, deixando dentro do reservatório, a água fria bem distante da água quente. Isso favorece o aumento da eficiência do sistema. 31 Capítulo 3 4. DIMENSIONAMENTO DO SAS Cálculo da demanda de água quente Cálculo da área coletora Fração Solar Aquecimento auxiliar PALAVRAS-CHAVE: Dimensionamento de um Sistema de Aquecimento Solar (SAS); 32 4. Cálculo da demanda de água quente O dimensionamento adequado de um sistema de aquecimento solar (SAS) não é uma tarefa simples, exigindo o conhecimento prévio dos hábitos de consumo de água quente pelos usuários finais, com base em uma análise criteriosa do tipo da construção que receberá os coletores solares, disponibilidade de radiação solar nas condições específicas da obra, fatores climáticos locais e desempenho térmico dos produtos, dentre outros. Esta seção trata da avaliação da demanda de água quente e da energia requerida para o dimensionamento básico do sistema (volume de água armazenado e quantidade de coletores solares necessários). Tal dimensionamento é muito importante para definição do desempenho térmico de longoprazo da instalação solar e respectiva análise econômica. Para facilitar este estudo, detalha-se na Figura 4.1, o passo a passo do dimensionamento de instalações de aquecimento solar. A visita técnica, caracterizada como Passo 1 do Dimensionamento, evidencia a necessidade de se identificar as expectativas do empreendedor ou usuário final quanto ao nível de conforto e economia a serem atingidos com uso do sistema de aquecimento solar através de questionários, pesquisa de hábitos, etc. Nessa oportunidade, é feita também uma avaliação prévia dos locais disponíveis na obra para inserção dos componentes de uma instalação solar. Figura 4.1. Fases para o correto dimensionamento de uma instalação de aquecimento solar 4.1 Demanda diária de água quente Para dimensionar a necessidade de água quente dos usuários, caracterizada pelo volume diário de água quente e temperatura de operação requerida, é importante se ter conhecimento prévio de padrões de consumo para diferentes edificações brasileiras, em função das classes sociais e das aplicações finais para os setores residencial, industrial e de serviços. 33 O levantamento da demanda de água quente é feito com base em informações gerais obtidas a partir de: Normas de Instalações Prediais de Água Quente, como NBR128 e NBR7198; Pesquisa de hábitos dos usuários potenciais; Observação, sensibilidade e bom senso; Experiência. GHISI, 2005, sugere as faixas de temperaturas de operação, mostradas na Tabela 4.1, enquanto os volumes diários de água quente podem ser estimados com auxílio da Norma ABNT NBR 7198:1993, cujos consumos específicos para diferentes aplicações, estão mostrados na Tabela 4.2. Tabela 4.1 - Temperaturas de operação indicadas para diferentes aplicações Edificação Temperatura de operação Indicada[ °C] Lavanderias Cozinhas Uso pessoal e banhos 75 a 85 60 a 70 35 a 50 Fonte: GHISI, 2005 Tabela 4.2 - Consumos específicos para diferentes aplicações a temperatura de 60°C Edificação Consumo [L] Alojamento Provisório Casa Popular ou Rural Residência Apartamento Quartel Escola Internato Hotel (s/ cozinha e s/ lavanderia) Hospital Restaurante e similares Lavanderia 24 per capita 36 per capita 45 per capita 60 per capita 45 per capita 45 per capita 36 por hóspede 125 por leito 12 por refeição 15 por kg roupa seca Fonte: NBR 7198:1993 34 Entretanto, uma análise simples dos valores apresentados na tabela 4.2 nos leva a buscar explicações: Por que o hóspede de um hotel consumiria água quente de modo similar ao morador de uma casa popular? Por que o morador de um apartamento gastaria mais água quente do que o de uma residência? Por causa de tais paradoxos, é que bom senso, observação crítica e conhecimento prévio da aplicação e tipologia construtiva se tornam tão importantes no dimensionamento da demanda diária de água quente. Outra forma de dimensionamento pode ser desenvolvida com base na vazão e capacidade dos equipamentos de uso final no setor residencial, além do tempo e freqüência de sua utilização. A Tabela 4.3 apresenta valores típicos para uso residencial. Tabela 4.3 - Vazão de água em diversos equipamentos Peças de Utilização Vazão total por peça (litros/minuto) Bidê 6,0 Chuveiro ou ducha 12,0 Chuveiro elétrico 6,0* Lavadora de pratos ou de roupas 18,0** Torneira da Pia da cozinha 15,0 Torneira de jardim ou lavagem em geral 12,0 Banheira 18,0 Torneira do banheiro / Lavabo 9,0 Fonte: NBR 5626 – Instalação predial de água fria * Este número, por exemplo, é bastante controverso. No caso de casas populares onde são instalados chuveiros de potência até 4400W, a vazão do banho é limitada pelo próprio equipamento em 3,0 litros/minuto. ** As máquinas de lavar roupas, assim como as lava-louças consomem quantidades pré- definidas de água para cada ciclo. Recomenda-se verificar com o fabricante do equipamento ou manual de instruções o consumo de água a ser utilizada. Os valores da norma, apresentados na tabela anterior, são valores médios. A vazão do chuveiro elétrico, por exemplo, varia de acordo com o modelo e marca. Um chuveiro mais 35 simples, muito utilizado em habitações populares, possui uma vazão de 3,0 Litros por minuto. Porém, no mercado existem duchas com um nível de conforto elevado que podem chegar a ter uma vazão de 15,0 Litros por minuto. Há diferenças entre os métodos de dimensionamento, assim há necessidade de uma avaliação criteriosa no dimensionamento do volume de água quente a ser armazenado em uma instalação de aquecimento solar. Mais uma vez é possível concluir que o dimensionamento deve ser exclusivo, respeitando as particularidades de cada instalação e voltando-se sempre no conceito fundamental de dimensionamento, mostrado pela Equação 4.1, a seguir: Equação 4.1 Onde: Vtotal-pto: volume total dimensionado por ponto Qpto: vazão no ponto de utilização tpto: tempo de uso do ponto Npto: número de utilizações diárias Além do volume de água quente consumido, é importante conhecer em que período ocorre o consumo do volume dimensionado, isto é, o perfil de consumo da instalação. Por exemplo, nos vestiários de uma determinada indústria, o consumo de água quente estará intrinsecamente associado ao horário de troca de turnos dos seus funcionários. Se nessa indústria, tem-se troca de turno às 23hs e às 7hs da manhã, toda a água usada nos banhos deverá ser gerada no dia anterior e armazenada durante toda a noite. No setor residencial, os horários de banho são muito variáveis, dependendo dos hábitos pessoais e até mesmo do dia da semana. 4.2 Perfil do Consumo de Água Quente no Setor Residencial No Brasil, tem-se, ainda, grande carência de informações sistematizadas sobre o perfil de consumo de água quente no setor residencial. Avaliações preliminares realizadas pela CEMIG indicam um perfil bastante concentrado de demanda de água quente nas residências onde seu uso se restringe à aplicação de banho. De uma forma geral, afirma-se que 30% do volume total armazenado de água quente são consumidos nas primeiras horas da manhã e os 70% restantes entre 17 e 21 horas. Em PARKER, 2004 discutem vários perfis de consumo para o Canadá e Estados Unidos, onde é bastante comum nas residências o consumo de água quente na cozinha e lavanderia também. Para efeito de comparação a Figura 4.2 mostra dois perfis de consumo de água quente, um adotado pela American Society of Heating, Refrigerating and Air-Conditioning (ASHRAE) e outro adotado pela CEMIG. 36 Figura 4.2 - Diferentes perfis diários para consumo de água quente 4.2.1 Nível de conforto Entende-se por nível de conforto no uso da água quente a relação entre vazão, tempo de uso e temperatura. O nível de conforto tem uma importante influência sobre o consumo total de água quente em uma residência. As vazões típicas apresentadas por um chuveiro elétrico ficam entre 3 e 6 litros por minuto. Duchas podem apresentar vazões muito maiores e registra-se casos de vazões superiores aos 30 litros por minuto. Em um momento no qual se fala em desenvolvimento sustentável a redução do consumo de água torna-se fundamental e por isto a vazão recomendada para atingir-se um bom nível de conforto deve situar-se entre 6 e 10 litros por minuto. O tempo de banho é o outro fator que determina o nível de conforto e está associado também ao número de banhos diários. Segundo a Pesquisa de Posse de Eletrodomésticos e Hábitos de Uso - 2005 (PPH) identificou-se que 65,4 % dos entrevistados declaram tomar banhos de até 10 minutos. Dessa forma, pode-se tomar como referência nos dimensionamentos, um tempo de 6 a 10 minutos por banho. A Tabela 4.4 é outra referência que pode ser utilizada e coloca lado a lado os pontos de utilização e o consumo diário de água quente. Tabela 4.4 - Consumo médiode água quente por ponto de utilização Ponto de Utilização Consumo diário (a 40 oC) Ducha Lavatório Bidê Cozinha 70 a 90 litros/pessoa 5 a 7 litros/pessoa 5 a 7 litros/pessoa 24 litros/pessoa 37 Banheira 30 a 50% do volume da banheira 4.3 Passo a Passo do Dimensionamento Detalhado O passo a passo a seguir auxilia o dimensionamento de uma instalação de aquecimento solar. Para exemplificar o preenchimento das planilhas seguintes, foi escolhida uma família, composta por 2 adultos e 2 adolescentes, residentes em um apartamento em que o chuveiro elétrico será substituído pelo aquecedor solar. Calcule a demanda diária de água quente, considerando-se um banho diário por morador com duração aproximada de 10 minutos. Passo 1 – Determine o número de moradores por residência ou edificação: 4 moradores Passo 2 – Identifique os pontos típicos de consumo de água quente requeridos pelo futuro usuário do aquecimento solar na listagem apresentada a seguir: Pontos de Utilização 1. Chuveiro 2. Pia da cozinha 3. Torneira do banheiro O morador quis avaliar o potencial de uso do aquecimento solar em sua residência. Após feito o levantamento inicial, estes pontos de consumo de água quente serão reavaliados para compatibilizar conforto, custo inicial e economia pretendida. Passo 3 – De acordo com a vazão de cada peça e número de pontos de consumo encontre o volume diário de água quente: 1. Chuveiro Vamos considerar a vazão do chuveiro elétrico como 6,0 Litros por minuto, de acordo com a norma. Isso significa que o morador irá continuar a usar o mesmo chuveiro, porém no modo desligado. Assim o chuveiro que antes era elétrico agora funcionará como uma ducha. Se considerarmos que cada morador toma apenas um banho por dia de aproximadamente 10 minutos, nesse tempo, ele consume 60 litros de água quente por banho. Dessa forma, para os quatro moradores, tem-se um consumo de 240,0 litros de água quente por dia somente com o chuveiro, o que resulta em um mês de 30 dias, um consumo de 7.200 Litros de água quente. 38 No exemplo em questão, o consumo mensal foi calculado com os seguintes valores: 2. Torneira da pia da cozinha: Vamos considerar a vazão da torneira da pia da cozinha como 15,0 Litros por minuto, de acordo com a norma. Será preciso estimar o tempo de uso durante um dia. Se considerarmos que essa torneira será acionada depois de cada refeição – café da manha, almoço e jantar – durante 10 minutos, chegamos a um tempo de uso de 30 minutos por dia. Nesse tempo serão consumidos 450 litros de água quente por dia. Se na cozinha houvesse mais torneiras com esse perfil, iríamos multiplicar o valor do consumo diário encontrado pelo número de torneiras semelhantes. No exemplo caso em questão, o consumo mensal foi calculado com os seguintes valores: 3. Torneira do banheiro: O dimensionamento da torneira do banheiro é bem próximo do dimensionamento da torneira da pia da cozinha. Haverá uma diferença na vazão que de acordo com a norma é de 9,0 Litros por minuto. Será preciso estimar o tempo de uso durante um dia. Se considerarmos que essa torneira será acionada três vez por dia por cada morador durante 1 minuto, chegamos a um tempo de uso de 3(acionamentos) x 4(moradores) x 1(minuto) = 12 minutos. Nesse tempo serão consumidos 108 litros de água quente por dia. No exemplo em questão, o consumo mensal foi calculado com os seguintes valores: Os valores somados para todos os equipamentos e respectivas participações percentuais são mostrados na Tabela 4.5, abaixo: 39 Tabela 4.5 – Volume diário de água quente por equipamento Local Consumo diário de água quente [L] Participação no consumo total Chuveiro Elétrico 240 30,1% Pia do banheiro 108 13,5% Pia da Cozinha 450 56,4 % Total 798 100% Constata-se que o uso de água quente na pia da cozinha tem um peso importante no volume de água a ser armazenada, além de encarecer significativamente o custo inicial da instalação de aquecimento solar. Excluindo-se tal uso, o consumo diário de água quente é bastante reduzido. Passo 4 – Calcule o volume do reservatório: Após o cálculo do volume diário de água quente, é necessário selecionar o volume do reservatório térmico. No nosso exemplo, o volume calculado de água quente diário será de 798 L. Porém não há um reservatório com esse volume. O ideal será escolher um reservatório com o volume maior que o calculado, o mais próximo que tiver disponível no mercado. Não é aconselhável optar por um reservatório de volume inferior ao estimado, pois assim é possível faltar água quente. No mercado, existem reservatórios testados pelo INMETRO de volumes variados desde 100 até 1000L, variando de 100 em 100. Nesse caso, podemos optar por um de 800 Litros. Passo 5 – Calcule a demanda mensal de energia: Para o cálculo da demanda mensal de energia, faz-se necessário calcular o volume de água quente mensal. Para isso, basta multiplicar o volume diário por 30 dias. Para o exemplo em questão, o Volume mensal de água quente requerido é de 23.940 Litros. Vamos arredonda-lo para 24.000 Litros. A energia necessária para aquecer este volume de água ao final do mês (Lmês), qualquer que seja a forma de aquecimento escolhida é dada pela 1ª Lei da Termodinâmica dada pela Equação 4.2: Equação 4.2 Onde: 40 : densidade da água, considerada igual a 1000kg/m3 Vmês : volume de água quente requerido por mês, em litros Cp : calor específico da água a pressão constante igual a 4,18 kJ/kgC Tbanho e Tamb temperatura da água quente para banho e a temperatura ambiente, respectivamente. Uma Tbanho padrão é 40°C e da Tamb é 20°C. As constantes 1000 e 3600 da equação 4.2 são utilizadas para conversão de unidades. Exemplo 4.1 Calcule a energia consumida por mês para aquecer a água até 40°C, se a temperatura ambiente local é igual a 20°C: Solução: O volume mensal será arredondado para 24.000 litros, correspondendo a um reservatório térmico de 600 litros (valor a ser aquecido por dia): Lmês= 557,3 kWh/mês Passo 6 – Cálculo Simplificado da Área de Coletores A área total de coletores solares necessária para atender à demanda de energia estimada pela equação 4.2 é definida pelas condições climáticas de instalação dos coletores na obra e, claro, pelas características operacionais e de projeto do modelo selecionado. Para um pré-dimensionamento rápido, o número de coletores e, consequentemente, a área coletora total pode ser determinada a partir dos dados da Etiqueta do INMETRO. A Tabela 4.6 mostra os critérios atuais de classificação do coletores solares no Brasil. Nessa tabela, Pme é a produção média mensal de energia. Tabela 4.6 - Classificação de Coletores Solares Planos 41 Fonte : Programa Brasileiro de Etiquetagem/INMETRO Portanto, para dois coletores A e B, com produções mensais de energia da ordem de 80 e 72 kWh/mês por metro quadrado, respectivamente, o exemplo 4.1 exigiria a instalação de: ≈ 7,0 m² do coletor A 7,7 m² do coletor B ou seja, um acréscimo de 10% na área coletora. Cabe ressaltar que este dimensionamento é apenas orientativo e, portanto, não deve ser adotado como metodologia de projeto. O valor da produção de energia mensal do coletor solar expresso na etiqueta do INMETRO só é válido para efeito comparativo entre produtos. Exemplo 4.2 Uma família possui 5 pessoas, sendo os pais e mais três adolescentes. Eles procuraram você para realizar o dimensionamento de um sistema de aquecimento solar. Na casa há um banheiro social e uma suíte com banheira. A banheira tem um volume de 250 L e é utilizada uma vez por semana. Na primeira visita, você percebeu que por dia os pais tomavam 2 banhos e que os filhos tomavam apenas um. Nos dois banheiros estavam instalados chuveiros elétricos aos quais serão substituídospelo aquecimento solar. A Lavadora de louças é utilizada 2 vezes por semana, em um ciclo “eco” que gasta 1 hora para completar. A família deseja colocar solar nos seguintes locais: 1)Chuveiro da suíte do casal 2)Chuveiro do banheiro social 3) Banheira da suíte Para isso você deve calcular o seguinte: a) Encontre o volume diário de água quente para cada ponto de consumo. b) Volume do reservatório c) Área de coletores através do método simplificado 42 Solução: a) A seguir será calculado o volume diário de água quente para cada ponto de consumo: 1) Chuveiro da suíte do casal: Como averiguado na primeira visita, são os pais que usufruem desse chuveiro, ao tomarem dois banhos por dia. Iremos estimar um banho de 10 minutos. Assim: 2) Chuveiro do banheiro social: Os filhos usufruem desse banheiro. São três filhos e cada um toma um banho de 10 minutos por dia. Assim: 3) Banheira da suíte: De acordo com os dados coletados com a família, podemos concluir que o volume semanal de água quente é justamente o volume da banheira (250L), já que ela é utilizada apenas uma vez na semana. Para calcular o consumo diário basta dividir o volume semanal de água quente por 7 dias. b) Para calcular o volume do reservatório é necessário estimar o consumo de água quente diário para todos os pontos de consumo. 1)Chuveiro da suíte do casal – 240L 2)Chuveiro do banheiro social – 180L 43 3) Banheira da suíte – 35,7L Assim, o volume total será de 455,7L de água quente por dia. De acordo com os coletores testados pelo INMETRO, o reservatório que tem o volume maior na sequencia será o de 500L. b) Área de coletores através do método simplificado Portanto, para dois coletores A e B, com produções mensais de energia da ordem de 78 e 71 kWh/mês por metro quadrado, respectivamente, o estudo de casos exigiria a instalação de: 5,84m² do coletor A ou 6,42m² do coletor B. 44 Capítulo 4 1. INSERÇÃO DO SAS Critérios para correta inserção do SAS Integração com o edifício Soluções de projeto PALAVRAS-CHAVE: Qualidade da instalação de SAS; Inserção de coletores no telhado; 45 5.1. Inserção do Sistema de Aquecimento Solar na Edificação – Fase de Projeto Para garantir que o sistema de aquecimento solar funcione corretamente e atinja o melhor desempenho não basta apenas que os equipamentos possuam alta qualidade, é fundamental que sua instalação também seja realizada da melhor maneira possível. Assim é necessário que o projetista considere, em conjunto, as seguintes variáveis: características do sistema (reservatório, coletor e operação); características da edificação (implantação, configuração da cobertura e localização dos pontos de consumo) e perfil do usuário (demanda de água quente e nível de conforto). Na tabela 5.1 pode-se observar um quadro resumo de importantes variáveis para consideração no início do projeto: Tabela 5.1 – Resumo de importantes variáveis para início do projeto Em sistemas de aquecimento solar de pequeno porte no Brasil, o tipo de funcionamento mais usual é a circulação natural ou termossifão. Conforme detalhado no Capítulo 02, para que o sistema funcione corretamente a instalação deve ser realizada de tal maneira que as distâncias entre os componentes sejam garantidas, bem como a melhor inclinação e orientação dos coletores deve ser adotada. Desse modo, ao realizar o projeto de uma residência o arquiteto deve sempre levar em consideração a implantação do aquecimento solar na cobertura. Note que a qualidade da edificação também está diretamente ligada à qualidade de todos os sistemas e subsistemas que a abastecem, o que mostra a importância da compatibilização de projetos por todos os agentes envolvidos. 5.1.1 Características da cobertura A previsão do aquecimento solar no projeto de uma residência deve ser realizada ainda na fase de concepção, onde o programa de necessidades da família é estabelecido. Assim é possível que o sistema apresente qualidade superior em relação a um SAS que precisa se adaptar às características existentes do local de inserção, que nem sempre favorecem a sua instalação. Um exemplo disso é a inserção dos coletores no telhado, que se prevista em projeto torna sua instalação muito mais correta, segura e barata. 46 Vimos que a melhor orientação para o coletor solar é o Norte Verdadeiro com desvio azimutal de 180° e que são aceitáveis valores de até ±150° de desvio. De posse dessa informação, o projetista pode definir a melhor implantação do edifício considerando a inserção de coletores solares na cobertura. A Figura 5.1 mostra um exemplo de implantação de edifício considerando a melhor orientação de coletores na cobertura. Figura 5.1: Exemplo de boa implantação no terreno: ângulo azimutal de 150° Além de uma boa implantação no terreno é fundamental que o projeto de cobertura seja bem desenhado e o projetista defina a melhor água do telhado para a instalação do coletor solar, de acordo com o valor de seu desvio azimutal (Figura 5.2). Figura 5.2: Exemplo de inserção de coletores em telhado Quando não há a possibilidade de instalar os coletores em cobertura com desvio azimutal de 180° deve-se adotar a água do telhado com orientação mais favorável. Para tal é 47 necessário que o projetista identifique a orientação de todas as águas da cobertura (Figura 5.3). Figura 5.3: Exemplo de orientação de águas de telhado Com relação à inclinação do telhado, recomenda-se que seu valor seja igual ou próximo ao indicado para coletores solares, facilitando assim sua instalação, que nesse caso poderá ser em sua própria estrutura. Vale ressaltar que a inclinação de coletores é sempre dada em graus e valores em porcentagem devem ser convertidos (Figura 5.4). 48 Figura 5.4: Exemplo de telhado com valores de declividade e inclinação A previsão de espaço para a caixa d’água e reservatório térmico também é de fundamental importância para uma boa instalação de SAS. Aqui se devem prever, para sistemas operados por circulação natural, as alturas necessárias para garantir seu funcionamento. No Capítulo 2 vimos que uma solução adotada para tal é a construção de torres para acomodação do reservatório e caixa d’água. Na Figura 5.5 temos um exemplo de edificação cujo espaço sob o telhado é suficiente para a instalação desses elementos. Figura 5.5: Exemplo de SAS inserido no telhado de edificação 49 5.1.2 Tubulações e pontos de consumo Para definir o melhor local de instalação do sistema também é importante verificar a distância entre ele e os pontos de consumo. Quanto menor o valor da distância, menor será a perda térmica na tubulação de distribuição e menor será o tempo de espera para o usuário. Como consequência, reduz-se o tamanho e o custo total da tubulação. Na figura 5.6 é dado um exemplo de solução para a inserção desses elementos em coberturas de casas. Figura 5.6: Exemplo de posicionamento do RT mais próximo possível dos pontos de consumo Após a definição do caminho que a tubulação irá percorrer devem-se evitar curvas desnecessárias e sifões em toda sua extensão para que não haja acúmulo de ar em seu interior, que poderia prejudicar substancialmente o funcionamento do sistema. Ainda assim é provável que o ar acumule no topo do sistema, por isso é importante instalar um eliminador de ar na tubulação de saída do coletor (Figura 5.7) e o respiro no topo do reservatório térmico. 50 Figura 5.7: Exemplo de eliminador de ar em tubulação de saída do último coletor solar Em relação ao reservatório térmico, onde o nível de água pode variar tanto para cima quanto para baixo, recomenda-se que o respiro seja elevado pelo menos de 15 a 20 centímetros acima da caixa d’água. Vale ressaltar que atubulação de água quente deve estar sempre na ascendente. 5.1.3 Isolamento de tubulações, sombreamento e acessibilidade O isolamento das tubulações de distribuição de água quente também deve ser corretamente empregado, a fim de reduzir as perdas térmicas até o consumo final. Tal isolamento pode ser feito com espuma de poliestireno e protegida por fita aluminizada ou chapa de alumínio, no caso de tubulação em contato com as intempéries. Observe nas figuras 5.8 e 5.9 exemplos de tubulações com isolamento térmico. Figura 5.8: Tubulação com isolamento protegido por capa aluminizada Figura 5.9: Tubo com isolamento em espuma de 51 poliuretano A incidência de sombreamento no plano dos coletores solares deve ser minimizada e, portanto, deve-se evitar proximidade principalmente com obstáculos verticais posicionados na porção Norte da cobertura. Tais obstáculos podem ser edificações vizinhas, vegetação de médio e grande porte, torres de caixas d’água, entre outros (Figura 5.10). Figura 5.10: Exemplo de obstáculo que devem ser evitados. No caso de edificações existentes é possível realizar análise de sombreamento na cobertura com o auxílio da carta solar. Na literatura especializada não existem valores aceitáveis para a ocorrência de sombreamento em coletores, contudo, sabe-se que é preciso evitá-lo no horário de maior incidência de irradiação solar, compreendido entre as 10hs e 14hs do dia. Como exemplo disso cita-se o estudo realizado no projeto ECV 184/2006 (Eletrobras/Procel/PUC Minas) em que foram simulados sombreamentos de 95 instalações de aquecimento solar em Belo Horizonte, onde se verificou que, em duas delas, a influência do sombreamento na eficiência do sistema está diretamente ligada ao horário em que ela ocorre. Observe nas figuras 5.11 a 5.14 os resultados do estudo: 52 Figura 5.11: Sombreamento Instalação 1 Figura 5.12: Sombreamento Instalação 2 Figura 5.13: Sombreamento anual Obras 1 e 2 Figura 5.14: Perda na Fração Solar Obras 1 e 2 Outro aspecto importante para garantir uma boa instalação de SAS é a acessibilidade dos equipamentos, que permite a realização de manutenção periódica e/ou substituição de elementos danificados. A figura 5.15 e 5.16 mostram exemplos de acessibilidades em boas e más condições, respectivamente. 53 Figura 5.15: Acessibilidade boa Figura 5.16: Acessibilidade ruim 5.1.4 Inserção do Sistema de Aquecimento Solar em Edificações Existentes Para edificações existentes o projetista deverá realizar detalhado levantamento técnico in loco em que as principais informações serão obtidas. Novamente deverão ser consideradas: a configuração da residência, o perfil do usuário e as características do sistema que será implantado. Inicialmente é necessário observar a viabilidade do local para receber o sistema de aquecimento solar. Para a instalação dos coletores a orientação da cobertura deverá ser conhecida. Aqui é fundamental que o projetista leve consigo uma bússola de precisão e adote o seguinte procedimento: 1. Produzir croqui básico com a configuração da casa em relação a um ponto conhecido (rua, edifício vizinho, praça e etc). 2. Escolher uma parede e posicionar a bússola em paralelo a esse elemento. O valor indicado pela bússola é o do Norte Magnético, que deve ser corrigido com o acréscimo da declinação magnética, como mostra a Figura 5.17 e tabela 5.2 abaixo: 54 Figura 5.17: Visualização Norte Magnético e Norte Verdadeiro em uma bússola 3. Anotar no croqui a orientação da parede escolhida. Tabela 5.2 – Declinação magnética para as capitais brasileiras Cidade Declinação magnética (graus) Cidade Declinação magnética (graus) Porto Alegre -14,74 Fortaleza -21,60 Florianópolis -17,46 Teresina -21,40 Curitiba -17,30 São Luis -20,70 São Paulo -19,60 Belém -19,50 Belo Horizonte -21,50 Macapá -18,50 Rio de Janeiro -21,40 Palmas -19,90 Vitória -22,80 Manaus -13,90 Salvador -23,10 Boa Vista -14,00 Aracaju -23,10 Porto velho -10,60 Maceió -22,90 Rio Branco -7,34 Recife -22,60 Goiânia -19,20 João Pessoa -22,40 Cuiabá -15,10 55 Natal -22,10 Campo Grande -15,20 .. .. Brasília -20,00 Fonte: FINEP/SolBrasil - Manual do Professor A inclinação do telhado também deve ser levantada e pode ser feita de duas maneiras, a saber: medição da superfície inclinada em relação a horizontal e altura do ático; utilização de inclinômetro portátil. Também será necessário identificar onde a caixa de água fria está localizada e qual é seu volume. Para isso é importante acessá-la e verificar as condições em que se encontra, já que seu posicionamento é fundamental para a escolha do tipo de reservatório que será usado. Em alguns casos talvez seja necessário elevar a caixa d’água para garantir o correto abastecimento do SAS. Apesar dessa solução não ser esteticamente agradável, usualmente são projetadas torres de alvenaria onde a caixa será inserida para que atinja a altura necessária (Figura 5.18). Figura 5.18: Torre para caixa d’água Outro tipo de solução é o uso de reservatório térmico que opera em nível com a caixa d’água, dispensando sua elevação (Figura 5.19). 56 Figura 5.19 - Reservatório operando em nível com a caixa d’água. Em casas com instalação hidráulica de água quente é importante verificar as condições de operação, isolamento térmico e esquema de distribuição hidráulica para sanar qualquer problema preexistente, caso seja necessário. Em residências que não possuem instalação hidráulica de água quente deve-se prever o uso de um dispositivo misturador independente que será instalado nos pontos de consumo (Figura 5.20). Como esse misturador é instalado no teto do banheiro torna-se importante impermeabilizar e/ou proteger tal passagem a fim de se evitar infiltrações pelo telhado (Figura 5.21). 57 Figura 5.20: Exemplo de Misturador Figura 5.21: Impermeabilização do furo Além disso, o projetista deverá estabelecer, juntamente com os moradores, os pontos de consumo que serão servidos pelo aquecimento solar e identificá-los em planta (croqui ou desenho esquemático). A vazão dos pontos de consumo precisa ser medida e pode ser feita com uso de balde milimetrado e cronômetro portátil. Recomenda-se que as medidas sejam realizadas pelo menos três vezes para reduzir incertezas e aumentar a precisão dos resultados. Para estabelecer o perfil dos moradores e nível de conforto requerido o projetista deve realizar entrevista com os usuários considerando os seguintes aspectos: número de residentes, número de banheiros, número de banhos e estimativa de tempo de banho de cada um deles. De posse dessas informações será possível verificar a viabilidade da instalação de SAS na residência, iniciar o dimensionamento e projeto do sistema. Após a determinação da demanda de água quente, do volume do reservatório térmico e da área coletora é necessário escolher o local de implantação do sistema de acordo com a proximidade com a caixa de água fria e pontos de consumo. Os critérios de melhor inclinação e orientação de coletores, já mencionados anteriormente, também devem ser atendidos para a escolha do melhor local. 58 Aqui se retoma o exemplo de residência (Figura 5.1), observa-se que é possível instalar os coletores solares na porção Norte do telhado, garantindo que o desvio azimutal seja aceitável e com valor de 150°. Figura 5.1: Exemplo de boa implantação no terreno: ângulo azimutal de 150° Sendo assim, torna-se importante posicionar o sistema o mais próximo possível dos pontos de consumo para amenizar as perdas térmicas da tubulação de distribuição, como no exemplo da figura 5.22. Figura 5.22: Exemplo de posicionamento do RT mais próximo possível dos pontos de consumo 59 O projetista deverá avaliar se a edificação permite que o sistemaseja operado por circulação natural ou termossifão, de acordo com detalhes de funcionamento mostrados no Capítulo 02 deste manual. Em casos onde pequenas adaptações sejam necessárias, as mesmas deverão ser previstas e detalhadas. Como exemplo pode-se citar a elevação da caixa de água fria para garantir o correto abastecimento do sistema. 60 Capítulo 5 6 SISTEMA HIDRÁULICO DO SAS Tipos de tubulações Dimensionamento Isolamento de tubulações PALAVRAS-CHAVE: Circuito primário; circuito secundário; perda de carga; distribuição hidráulica. 61 6.1 Distribuição hidráulica do SAS Um sistema de aquecimento solar é dividido em dois circuitos hidráulicos, a saber: o primário é composto pela interligação dos elementos que compõem o sistema: reservatório térmico e coletores solares; o secundário é composto por toda a tubulação que distribui a água aquecida para os pontos de consumo (Figura 6.1). Figura 6.1: Circuitos primário e secundário O reservatório térmico, por sua vez, é abastecido pela caixa d’água através de tubulação própria para água fria (Figura 6.2). Figura 6.2: Abastecimento do sistema pela caixa d’água 62 6.2. Tipos de tubulações Para um sistema de aquecimento solar a especificação do material da tubulação é uma tarefa simples de ser realizada, já que a rede para o abastecimento do reservatório é de água fria e a destinada aos circuitos primário e secundário é de água quente. No Brasil há muitos tipos de materiais empregados para tubulação de água fria, mas o mais utilizado é o Cloreto de Polivinila ou PVC (Figura 6.3). Tal material pode ser encontrado na série soldável ou roscável com diâmetros que variam de 16mm a 110mm e 17mm a 113mm, respectivamente. Os processos de soldagem devem obedecer aos critérios estabelecidos pelo fabricante. Já a junta roscável é feita com roscas externas (padrão BSP, NBR6414) e também deve seguir as recomendações do fabricante. Figura 6.3: Exemplo de tubulação em PVC Para a tubulação de água quente, que deverá ser empregada na alimentação e retorno do sistema também existem vários materiais como o cobre, CPVC, PPR e aço carbono (Figuras 6.4, 6.5, 6.6 e 6.7). Tradicionalmente no Brasil o cobre é o material mais utilizado para esse tipo de instalação, porém é crescente o uso de polímeros como o CPVC e o PPR por serem mais baratos e de montagem mais simples do que a do cobre. 63 Figura 6.4: Tubo de cobre Figura 6.5: Tubo PPR Figura 6.6: Tubo CPVC Figura 6.7: Tubo de Aço carbono As conexões de cobre devem ser realizadas através de soldagem capilar, utilizando metal de enchimento composto basicamente de 50% de estanho e 50% de chumbo (NBR 5883). No caso de roscas macho e fêmea, o padrão a ser seguido é o BSP (ILHA et al, 2008). Já as conexões de materiais poliméricos devem seguir as recomendações dos fabricantes. 6.3 Dimensionamento de tubulações Para realizar o dimensionamento das tubulações o projetista deverá possuir alguns dados da instalação para inserir nos cálculos, como o número de coletores, a área de cada um, e a vazão volumétrica (m³/s). A seguir serão apresentados os cálculos, passo-a-passo, para a determinação do diâmetro dos trechos de tubulação representados na Figura 6.8. 64 Figura 6.8: Esquema de distribuição hidráulica do SAS Cálculo do Diâmetro da Tubulação de Água Fria (Trecho 01) Admite-se para este cálculo que a vazão no trecho 01 é a mesma admitida no início da prumada de alimentação do sistema (situação extrema aonde praticamente toda a água que sai da caixa d’água até o reservatório está sendo aquecida pelos coletores solares e sendo enviada para consumo – Prumada de Alimentação), logo: Admite-se: Q: Vazão volumétrica (m³/s); V: Velocidade máxima da água dentro das tubulações de água fria: 3,0 m/s (NBR – 5626/82); Adota-se a Equação 6.1 para o cálculo Diâmetro Nominal (DN): V Q4 D Equação (6.1) 65 Exemplo 01: Determinar o diâmetro da tubulação de água fria que serve um sistema de aquecimento solar com área coletora de 6m². Dados: Vazão máxima estipulada para coletores fechados: 1,2 l/min/m² V=3,0 m/s Assim: Q= Qcoletores → Q = 1,2 x 6 = 7,2 l/min Para o cálculo é necessário converter l/min para m³/s: Q = (7,2 ÷ 60) ÷ 1000 = 0,00012 m³/s Então utilizando a fórmula XX: V Q4 D D = √(4 x 0,00012)÷(π x 3,00) = 0,00713m D = 7,13 mm → adotaremos o diâmetro comercial mais próximo do calculado, que pela norma é de 20mm. 6.4 Circuito primário Para o circuito primário a tubulação se divide entre alimentação e retorno do sistema, ambos os trechos recebem materiais próprios para a água quente e podem ser quaisquer dos descritos anteriormente. A Figura 6.9 indica quais são os trechos (02 e 03) de alimentação e retorno do circuito primário de um SAS. 66 Figura 6.9: Tubulação de entrada e saída do sistema Nesses trechos também é necessário e fundamental o isolamento térmico das tubulações, conforme mostra a Figura 6.10. Figura 6.10: Isolamento térmico de tubulações 6.4.1 Cálculo do diâmetro da tubulação de alimentação e retorno do sistema (Trechos 2 e 3) A vazão estipulada para coletores fechados para a aplicação banho é de 1,2 l/min por m² de área coletora. Para o dimensionamento adota-se a equação 6.2 detalhada abaixo: Fórmula de Forschheimer: 43,1 XQD Equação (6.2) 67 Onde: X = h / 24horas h = 6,66 horas (horas de uso de água quente). Q: Vazão volumétrica (m³/s). Exemplo 02: Determinar o diâmetro da tubulação de alimentação do sistema de aquecimento solar com área coletora de 6 m². Dados: Vazão máxima estipulada para coletores fechados: 1,2 l/min/m² Então: D = 1,3 x √0,00012 x 4√6,66/24 = 0,010335m = 10,33 mm Para tubulação de água quente não há, comercialmente, produto com o diâmetro calculado, desse modo o diâmetro de 15 mm seria escolhido para esse sistema. No entanto, é usual utilizar para a tubulação de alimentação e retorno, o mesmo diâmetro das conexões do coletor solar. Comumente, adota-se o diâmetro de 22 mm. 6.4.2.Perda de carga Como apresentado no Capítulo 02, a força motriz do termossifão é pequena e por isso é fundamental que a perda de carga da tubulação do circuito primário seja pequena, assim é preciso calcular o seu valor para determinar o melhor diâmetro da tubulação de alimentação e retorno do sistema. Para isso não se pode usar tubos de diâmetro muito pequeno, nem trechos de tubulação muito longos e/ou com excesso de curvas e conexões. Usualmente são utilizados tubos de 22 mm (3/4") em instalações de até 8 m2 e 28 mm para instalações acima disso, até um limite de 12 m2 . Para áreas superiores a solução é dividir o sistema em dois ou mais sistemas separados e em casos de instalações maiores, digamos com 400 m2, o recomendável é optar pelo sistema bombeado. 68 Mesmo com a influência da perda de carga o sistema operado por termossifão irá funcionar, só que sua operação será com temperaturas cada vez mais altas. Isso afeta a eficiência dos coletores e de todo o sistema. Normalmente um sistema opera com uma diferença de temperatura entre a entrada e a saída dos coletores na faixa de 10 a 15°C, sendo aceitáveis variações até 20°C. Acima disso há perdas consideráveis na eficiência da instalação, como quando for encontrado o valor de 35oC ou maior, em que provavelmente existe um problema de circulação no sistema. Isso pode ocorrer por diversos fatores, a saber: diâmetro da tubulação muito reduzido, muitas curvas de interligação entre os equipamentos, trechos retos muito extensos ou bloqueio na tubulação. Para que essesproblemas sejam evitados adotam-se regras práticas no dimensionamento, como o cálculo do comprimento equivalente de tubulação. Através dele relacionam-se as conexões a trechos retos equivalentes que para cada diâmetro de tubo possuem um valor máximo estipulado para garantir o bom funcionamento do sistema. Nos anexos deste manual apresenta-se uma tabela com os comprimentos equivalentes para tubulações de diferentes diâmetros (no termossifão normalmente utilizam-se tubos de 22mm e 28mm). Exemplo 03 Cálculo de comprimento equivalente Em uma instalação, deseja-se calcular o comprimento equivalente das conexões e o comprimento equivalente total. As conexões são as seguintes: 04 cotovelos de 90o /22 mm, 02 Curvas de 45o/22 mm, 02 registros de gaveta abertos/22 mm e 15 metros de tubos retos/22 mm Observando-se a tabela 6.1, pode-se calcular: Tabela 6.1: Conexões e comprimentos equivalentes Peça Quantidade Comprimento equivalente p/ peça Comprimento equivalente total Cotovelo 90 o 4 1,2 4,8 Curva 45 o 2 0,5 1 Registro Gaveta 2 0,2 0,4 Trechos retos 15 m 1 15 Conclui-se então que o comprimento equivalente em trechos retos de tubos de 22 mm dessa instalação seria 21,2 m. Para estabelecer o comprimento de tubulação máximo recomendado, incluindo conexões, é necessário saber o volume do sistema e a altura entre o topo dos coletores e o fundo do reservatório térmico ou distância topo/fundo. As tabelas 6.2 e 6.3 mostram os valores recomendados para a cidade de São Paulo, com coletores inclinados a 18°, mas podem 69 ser utilizadas para outras localidades. Observe que o valor máximo geral adotado é de 25 metros de comprimento equivalente, pois dimensões superiores gerariam perdas térmicas nos tubos ainda que o fluxo de água fosse bom. Tabela 6.2 - Comprimentos Equivalentes Máximos para Instalações com Coletores de 2 m x 1 m. Volume Diário de Água Quente (litros) Distância Topo/Fundo (metros) 0,1 0,2 0,3 0,4 0,5 Diâmetro da tubulação de interligação (mm) 22 28 22 28 22 28 22 28 22 28 Comprimento Max. Equivalente na Interligação RT/COLETORES/RT (metros) 200 25 25 25 25 25 25 25 25 25 25 300 24 25 25 25 25 25 25 25 25 25 400 17 25 20 25 23 25 25 25 25 25 500 13 25 15 25 18 25 20 25 22 25 600 10 25 12 25 14 25 16 25 18 25 700 NR 23 10 25 12 25 13 25 15 25 800 NR 19 NR 22 NR 25 11 25 12 25 1000 NR 11 NR 14 NR 17 NR 20 NR 23 NR: Não recomendado Tabela 6.3 - Comprimentos Equivalentes Máximos para Instalações com Coletores de 1 m x 1 m Volume Diário de Água Quente (litros) Distância Topo/Fundo (metros) 0,1 0,2 0,3 0,4 0,5 Diâmetro da tubulação de interligação (mm) 22 28 22 28 22 28 22 28 22 28 Comprimento Max. Equivalente na Interligação RT/COLETORES/RT (metros) 200 25 25 25 25 25 25 25 25 25 25 300 19 25 22 25 25 25 25 25 25 25 400 14 25 16 25 19 25 22 25 24 25 500 10 25 12 25 15 25 17 25 19 25 600 NR 22 NR 25 12 25 13 25 15 25 700 NR 17 NR 21 NR 25 11 25 12 25 800 NR 13 NR 17 NR 20 NR 24 10 25 1000 NR NR NR 10 NR 13 NR 16 NR 19 NR: Não recomendado As tabelas acima foram desenvolvidas para sistemas com isolamento térmico mínimo de 10mm de polietileno expandido na tubulação. Os comprimentos não são reais e sim equivalentes. 70 O projetista deve estar sempre atento as suas escolhas para o projeto do circuito primário, pois suas decisões definirão a eficiência e qualidade do sistema, bem como o custo- benefício da instalação. Imagine um sistema de 500 litros, com distância topo/fundo de 10cm com coletores de dimensões 2,0x1,0m (Largura/Comprimento) cujo circuito primário seja em tubulação de 22mm. Considerando que uma instalação possui, no mínimo, dois cotovelos de 90°, dois de 45° e dois registros gaveta ou esfera encontraríamos um comprimento equivalente de 3,9 metros. Segundo a tabela 6.2, para esse caso o comprimento máximo de interligação entre os equipamentos seria de 10 metros, ou seja, trechos retos com um total de 6,1 metros. Cabe ressaltar novamente a importância da elaboração de um bom projeto, que deve considerar a distância mais curta entre os coletores e reservatório e o percurso com menos interferências possíveis, já que o desvio de peças do telhado ou demais obstáculos acarretam no uso maior de cotovelos que aumentarão o valor do comprimento equivalente. Aqui também é fundamental um bom detalhamento do projeto para que o instalador realize seu trabalho da melhor maneira possível. Quando o comprimento de interligação dos equipamentos excede o estipulado e se esgotaram as opções de desenho da rede, pode-se alterar o diâmetro da tubulação de 22 mm para 28 mm em alguns trechos, já que o último apresenta perda de carga aproximadamente três vezes menor do que a primeira. Tal alteração deverá contar com conexões apropriadas e seu comprimento equivalente dividido por três para somar aos demais trechos da tubulação. Para substituir trechos de 22 mm por outro de 28 mm quando necessário, recomenda- se que seja realizada na tubulação de alimentação dos coletores, onde a temperatura da água é mais baixa, pois as perdas térmicas da tubulação de 28 mm são superiores. Do mesmo modo, atenção especial deverá ser dada quanto ao isolamento do trecho alterado. Exemplo 04 Uso de trechos 22 e 28 mm para redução de perda de carga Uma instalação possui 16 metros de trechos retos, 4 cotovelos de 90o, 4 cotovelos de 45o e dois registros de gaveta abertos. E todas as peças têm 22 mm. Com medo de que a perda de carga total seja excessiva, o projetista decide trocar a tubulação de alimentação entre o RT e as placas por tubos e conexões de 28 mm. Qual seria o comprimento equivalente final em tubos de 22 mm considerando-se que o trecho de alimentação tem 9 m de tubos retos, 2 cotovelos de 90o, 2 cotovelos de 45o e um registro gaveta? Primeiro, calcula-se o comprimento equivalente antes da troca para tubos de 28 mm. Peça Quantidade Comprimento eq. p/ peça Comprimento eq. total Cotovelo 90 o 4 1,2 4,8 Curva 45 o 4 0,5 2 Registro Gaveta 2 0,2 0,4 Trechos retos 16 m 1 16 71 Se somente peças de 22 mm fossem utilizadas, ter-se-ia um comprimento equivalente de tubos retos de 22 mm igual a 23,2 m. A seguir, calcula-se o comprimento equivalente do trecho de alimentação que queremos converter para 28 mm. Peça Quantidade Comprimento eq. p/ peça Comprimento eq. total Cotovelo 90 o 2 1,5 3 Curva 45 o 2 0,7 1,4 Registro Gaveta 1 0,3 0,3 Trechos retos 09 m 1 9 O comprimento equivalente em 28 mm dessa parte seria então de 13,7 m. E para converter esse valor para 22 mm, temos: 13,7 =4,6 3,0 m de comprimento equivalente de 22 mm. Agora, soma-se o que sobrou de peças de 22 mm, ou seja, o retorno dos coletores para o RT. Peça Quantidade Comprimento eq. p/ peça Comprimento eq. total Cotovelo 90 o 2 1,2 2,4 Curva 45 o 2 0,5 1 Registro Gaveta 1 0,2 0,2 Trechos retos 07 m 1 7 O total do trecho em 22 mm agora é de 10,6 m. Somando esse número aos trechos de 28 mm (já convertidos em equivalentes de 22 mm), tem-se um total geral de 10,6 + 4,6 = 15,2 m. Esse valor é bem menor do que os 23,2 m que apenas os tubos e conexões de 22 mm fossem utilizados. 6.5 Circuito secundário 6.5.1. Cálculo do diâmetro da tubulação do circuito secundário Para o cálculo do diâmetro da tubulação do circuito secundário é necessário conhecer todos os pontos de consumo que serão servidos pelo SAS e as vazões de cada um deles. 72 De acordo com a Figura 6.11, a rede de distribuição recebe as seguintes denominações ao longo de seu trajeto: sub-ramais, ramais, colunas de distribuição e barriletes. Os barriletes são as tubulações que se originam nos reservatórios; dos barriletes derivam-se as colunas, e dessas os ramais. Os sub-ramais fazem a ligação final entre o ramal e a peça de utilização ou ponto de consumo. Figura 6.11: Desenho esquemático de rede de distribuição Inicialmenteo projetista deverá calcular as vazões de cada trecho da rede que será detalhado a seguir. A Tabela 6.4 apresenta as vazões mínimas para atender às necessidades dos diversos pontos de utilização das instalações hidráulicas prediais e, portanto, dos sub-ramais e ramais. Tabela 6.4: Vazões e pesos relativos dos pontos de utilização Pontos de utilização para Vazão l/s Peso P Bebedouro 0,10 0,1 Banheira 0,30 1,0 Bidê 0,10 0,1 Caixa de descarga para bacia sanitária 0,15 0,3 Chuveiro ou ducha 0,20 0,4 Máquina de lavar prato ou roupa 0,30 1,0 Torneira ou misturador (água fria) de lavatório 0,15 0,3 Torneira ou misturador (água fria) de pia de cozinha 0,25 0,7 Torneira de pia de despejo ou tanque de lavar roupa 0,25 0,7 73 Torneira de jardim ou lavagem geral 0,20 0,4 Válvula de descarga para bacia sanitária 1,70 32,0 Fonte: BAPTISTA, M. B.; COELHO, M. M. L. P. Fundamentos de Engenharia Hidráulica. Belo Horizonte: Editora UFMG 2003. A velocidade máxima da água nas tubulações não deve exceder o valor de 3,0 m/s. A Tabela 6.5 apresenta as vazões máximas para tubos de instalações de água quente, bem como os diâmetros para cada trecho da rede de tubos. Tabela 6.5: Vazões máximas para tubos de instalações de água quente Diâmetro nominal pol Tubos de cobre Tubos de aço carbono Diâmetro externo mm Espessura da parede mm Diâmetro interno mm Vazão Máxima l/s Diâmetro externo mm Espessura da parede mm Diâmetro interno mm Vazão Máxima l/s 1/2 15 0,5 14,0 0,5 21,0 2,65 15,7 0,6 3/4 22,0 0,6 20,8 1,0 26,5 2,65 21,2 1,1 1 28,0 0,6 26,8 1,7 33,3 3,35 26,6 1,7 1 1/4 35,0 0,7 33,6 2,7 42,0 3,35 35,3 2,9 1 1/2 42,0 0,8 40,4 3,8 47,9 3,35 41,2 4 2 54,0 0,9 52,2 6,4 59,7 3,75 52,2 6,4 2 1/2 66,7 1,2 64,3 9,7 75,3 3,75 67,8 10,8 3 79,4 1,2 77,0 14,0 88,0 4,25 79,5 14,9 4 104,8 1,2 102,4 24,7 113,1 4,50 104,1 25,5 Fonte: BAPTISTA, M. B.; COELHO, M. M. L. P. Fundamentos de Engenharia Hidráulica. Belo Horizonte: Editora UFMG 2003. As vazões de dimensionamento das colunas e barriletes devem levar em conta a possibilidade de uso dos pontos de utilização, ou seja, será atribuído um peso para cada componente. Para ocasiões onde o uso é simultâneo, como em vestiários, por exemplo, a vazão do trecho é a soma das vazões dos pontos que estão sendo utilizados, conforme a Tabela 6.5 (acima), esse cálculo é chamado de Consumo Máximo Possível. Exemplo 05: Dimensione a rede de distribuição de água quente de um vestiário de uma fábrica que servirá quatro chuveiros com vazão de 12 litros/minuto. Então: É necessário converter a vazão do chuveiro para l/s: Qchuveiro = 12 ÷ 60 = 0,20 (l/s). 74 Q = ΣQchuveiros → Q = 4 . 0,2 = 0,80 l/s. Na Tabela 6.5 verifica-se que para 0,80 l/s de vazão na tubulação o diâmetro será de 22 mm ou ¾ de polegada. Assim o diâmetro da prumada de alimentação será de 22 mm. Em seguida os ramais dos possuem diâmetro de 15mm. Todos os sub-ramais que alimentam os chuveiros possuem diâmetro de 15 mm. Observe o desenho esquemático do sistema calculado: No caso de não haver 100% de uso ao mesmo tempo realiza-se o cálculo do Consumo Máximo Provável, em que a Equação 6.3 é utilizada para a estimativa da vazão de cada trecho: PCQ Equação(6.3) Onde: Q: Vazão (l/s); C: Coeficiente de descarga ≈ 0,30 (l/s); ΣP: Soma dos pesos, correspondente a todas as peças de utilização alimentadas através dos trechos considerados. Os pesos podem ser encontrados na Tabela 6.4. Para instalações residenciais ou sistemas de pequeno porte recomenda-se utilizar o cálculo do Consumo Máximo Provável, visto que o padrão de uso nesses casos, na maioria das vezes, não é simultâneo. 75 Exemplo 06: Dimensione a rede de distribuição de água quente de uma casa que servirá três chuveiros com vazão de 12 litros/minuto. Então: É necessário converter a vazão do chuveiro para l/s: Qchuveiro = 12 ÷ 60 = 0,20 (l/s). Segundo a Tabela 6.4 o peso de chuveiros com vazão de 0,20 l/s é 0,4. PCQ Q = 0,30 . √3 . (0,4) → Q = 0,32 l/s Na Tabela 01 verifica-se que para 0,32 l/s de vazão na tubulação o diâmetro será de 15 mm ou ½ polegada. Atenção: é necessário equalizar os diâmetros de entrada de água fria do reservatório e saída de água quente para o consumo, dessa forma o projetista deverá checar se os valores calculados coincidem. Caso não coincidam, o projetista deve optar sempre pelo maior diâmetro dentre os dois. Exemplo 07: Digamos que o diâmetro calculado para a tubulação que sai da caixa d’água e alimenta o reservatório com água fria tenha diâmetro de 32mm, no entanto, o diâmetro calculado para a prumada de alimentaçao (saída do reservatório para o consumo) seja de 28mm. Portanto, o projetista deve optar por instalar a prumada de alimentaçao com 32mm, os ramais e sub- ramais permanecem com os diâmetros previamente calculados. Tal metodologia permite que a vazão necessária para os pontos de consumo não seja prejudicada. 76 6.6 Isolamento de tubulações O isolamento das tubulações de um SAS é essencial para reduzir as perdas térmicas nos circuitos primário e secundário. Tal elemento torna-se ainda mais importante quando o caminho percorrido pela rede é muito extenso. Também é necessário isolar as conexões, registros e válvulas por onde circulem fluidos com temperaturas superiores a 40°C. Os materiais mais utilizados para esse propósito são o polietileno expandido, a lã de rocha, lã de vidro, entre outros (Figura 6.12 e 6.13). Figura 6.12: Isolamento tubulação - Conjunto Mangueira. Fonte: Renan Cepeda/GIZ Figura 6.13: Isolamento tubulação com folha de alumínio corrugado. Fonte: Eletrobras/Procel – PUC Minas. ECV 184/2006. Relatório Belo Horizonte. Para tubulações expostas às intempéries é importante o uso de um segundo material que protegerá o isolamento, garantindo sua qualidade e vida útil adequada. Para essa proteção a folha de alumínio corrugado e a fita aluminizada são muito utilizadas. As Figuras 6.14 e 6.15 mostram exemplos de detalhes de isolamento de tubulações externas e internas: Figura 6.14: Detalhe isolamento tubulação exposta Figura 6.15: Detalhe isolamento tubulação não exposta 77 O isolamento de tubulações poliméricas em contato com o exterior deve ser realizado por motivo adicional, já que tais materiais também sofrem degradação por exposição à radiação solar. Para garantir a qualidade do isolamento térmico pode-se utilizar como referência a Tabela 6.6 abaixo, que estabelece os valores mínimos recomendados para a espessura do isolamento utilizado. Tabela 6.6: Espessura mínima de isolamento de tubulações para aquecimento de água Temperatura da água (°C) Condutividade térmica (W/mK) Diâmetro nominal da tubulação (mm) < 40 ≥ 40 T ≥ 38 0,032 a 0,040 1,0 cm 2,5 cm Fonte: RTQ-C (INMETRO, 2012) 78 Capítulo 6 7 QUALIDADE DA INSTALAÇÃO DE UM SAS Qualidade de produtos Qualidade da instalação Isolamento, acessibilidade, manutenção e segurança PALAVRAS-CHAVE: Instalação de aquecimento solar; recomendações; check-list. 79 7. Qualidade da instalação de um Sistema de Aquecimento Solar Neste capítulo encontram-se informações e recomendações que contribuirão para avaliar, e aprimorar a qualidade das instalações de aquecimento solar para obras de pequeno porte. Sendo assim, serão discutidos fatores que influenciam a qualidade e a eficiência da instalação em todos os âmbitos, desde os produtos, como coletores, reservatórios térmicos, sistema auxiliar e hidráulico, até aspectos, como manutenção periódica, acessibilidade e segurança. Para enriquecer o material também serão apresentadas informações coletadas na pesquisa Avaliaçãode Instalações de Aquecimento Solar no Brasil (Residências de Baixa Renda – Botucatu – SP e Residências de Alta Renda – Campinas – SP), implementado pela Eletrobras Procel em parceria com a Pontifícia Universidade Católica de Minas Gerais (PUC Minas). Ao final do capítulo, será disponibilizado um check-list, que possui itens importantes a serem conferidos durante a instalação do sistema de aquecimento solar. 7.1 Qualidade de produtos: Coletor Solar O coletor solar, um dos mais importantes componentes da instalação, tem a função de promover o aquecimento do fluido de trabalho. Para isso é necessário garantir o melhor aproveitamento possível da radiação solar pelo mesmo, sendo fundamental que ele seja constituído por materiais resistentes e de qualidade. Para a escolha do coletor, uma boa referência de qualidade é a etiquetagem de produtos realizada pelo Programa Brasileiro de Etiquetagem (PBE) do INMETRO. Portanto, recomenda-se a verificação da Tabela de Eficiência do INMETRO para Coletores Solares ao escolher o equipamento. A qualidade de produtos é associada não só a sua eficiência, mas também a sua durabilidade. Durante as pesquisas de avaliação técnica das instalações de pequeno porte, percebeu-se que em coletores com coberturas trincadas ou quebradas (Figura 7.1) alguns problemas eram recorrentes, como a oxidação e infiltração. Na cidade de Campinas, onde 15% dos coletores avaliados apresentaram trinca ou quebra de vidros, a ocorrência de oxidação e infiltração é de 8%. Portanto, é extremamente importante a troca ou reparação dos vidros e superfícies metálicas que estejam quebradas ou trincadas. 80 Figura 7.1: Coletor com vidro quebrado. Fonte: Eletrobras Procel, PUC Minas, ECV 184/2006 – Relatório Campinas O nível de condensação no coletor é um dos fatores mais prejudiciais para o equipamento já que, além da oxidação, ele também é responsável pela deterioração da tinta, que tem impacto negativo em sua eficiência térmica. A aplicação de tintas com alta absortividade nas placas coletoras visa maximizar a energia absorvida por elas e aumentar assim, a eficiência do sistema. A deterioração desta tinta pode ser causada pela má qualidade do produto ou processo de aplicação industrial ineficiente. Em Campinas, 8% dos coletores acessados, apresentaram tal problema. Sendo assim, vale ressaltar a importância da preferência por produtos resistentes e de qualidade, os quais possuem a etiqueta PBE/ INMETRO. 7.2 Qualidade de produtos: Reservatório Térmico O Reservatório térmico tem a função de armazenar e manter aquecida a água proveniente dos coletores solares para posterior consumo. Um bom reservatório deve possuir corpo interno resistente às diferenças de pressão, isolamento adequado ao volume armazenado, corpo externo resistente às intempéries e suportes resistentes à corrosão. Tais equipamentos também participam do PBE/INMETRO, o que permite a escolha de produtos testados e aprovados de acordo com os padrões de qualidade estabelecidos. 81 A escolha de um produto etiquetado garante que o bom estado de conservação do equipamento seja mantido por um período de tempo apropriado e evita que problemas como danos no corpo do boiler ou deterioração do isolamento ocorram (Figura 7.2). Figura 7.2: Exemplos de reservatórios deteriorados. Fonte: Eletrobras Procel, PUC Minas, ECV 184/2006 – Relatório Campinas A oxidação dos suportes do reservatório pode ocorrer por exposição às intempéries de materiais não resistentes aos seus danos. Como sua função é garantir sustentação do corpo do boiler as deformações decorrentes desse problema podem prejudicar o estado do equipamento e resultar na exposição do isolamento térmico que também será danificado. Como consequência disso ocorre a queda na eficiência térmica e redução do tempo de vida útil do reservatório. Assim, recomenda-se a substituição do suporte do reservatório térmico em casos de médio a alto grau de oxidação. 7.3 Qualidade de instalação A avaliação geral do Sistema de Aquecimento Solar no que diz respeito ao dimensionamento, relaciona a capacidade do reservatório térmico à demanda diária de água quente necessária para a instalação. Essa demanda é determinada a partir do conhecimento dos hábitos de consumo do morador, para isso, é necessário o desenvolvimento de um questionário onde o mesmo seleciona os pontos desejáveis de consumo da água proveniente do coletor. Neste questionário, o consumidor deve fornecer informações como: o número de pontos de consumo (torneiras, duchas, banheiras, etc); a vazão do equipamento no ponto de consumo; o tempo de uso e a frequência de uso diário e o nível de conforto desejado. 82 Conhecendo-se o consumo total diário de água quente, pode-se prever o volume do reservatório térmico e em seguida calcular a área coletora requerida. Considerando as diferentes condições climatológicas e características da instalação, a área coletora sofre variações, o que pode alterar a quantidade de coletores necessária para determinada instalação. A Tabela 7.1 fornece os valores de área coletora aquecimento de 100 litros de água para diferentes cidades: Tabela 7.1: Valores de área coletora para aquecimento de 100 litros de águaErro! Fonte de referência não encontrada. Fonte: 100 Dicas Técnicas - Aquecedores Solares de Água, 2005. O correto dimensionamento de uma instalação é extremamente importante. Um superdimensionamento do reservatório térmico, por exemplo, pode elevar consideravelmente o custo do SAS, visto que um maior volume de reservatórios demanda uma maior área coletora e, consequentemente, mais interligações entre os mesmos. Já o subdimensionamento acarreta no desconforto do usuário e maior uso do aquecimento suplementar. As pesquisas realizadas em Botucatu mostraram que o consumo médio diário de água quente é de 59 Litros por morador, já em Campinas, onde há um maior nível de conforto devido à renda dos entrevistados, esse valor é de 100 litros. Um dos principais fatores que influenciam na eficiência de uma instalação, é a forma com que os coletores estão orientados. A orientação inadequada diminui o tempo de exposição das placas coletoras ao Sol, reduzindo assim a quantidade de calor absorvido para o aquecimento da água. Recomenda-se que os coletores sejam orientados para o Norte Verdadeiro, ou seja, com ângulo azimutal de 180°, e admite-se um desvio de até 30° para o Leste ou Oeste (ângulo azimutal de até 150°). O ângulo de inclinação do coletor também tem impacto na quantidade de radiação térmica incidente sobre o mesmo como vimos no Capítulo 4. Os coletores instalados diretamente no telhado das residências (Figura 7.3) podem apresentar inclinação que não é ideal para garantir sua eficiência máxima, por isso o projetista deverá realizar estudos de dimensionamento de acordo com a situação encontrada para definir a necessidade de inserção de um número maior de coletores. 83 Figura 7.3: Coletores solares instalados diretamente sobre o telhado. Fonte: Fonte: Eletrobras Procel, PUC Minas, ECV 184/2006 – Relatório Botucatu Em locais onde a instalação direta no telhado não é possível recomenda-se o uso de suportes como auxílio. Tais elementos devem possuir resistência mecânica adequada e suportarem as ações das intempéries. Além disso, os coletores devem ser instalados de forma adequada respeitando as normas de segurança. É importante garantir a correta fixação dos coletores no telhado, verificando se sua estrutura suportará o peso total do conjunto, além de se utilizar suportes que sejam constituídos por matérias resistentes às intempéries e corrosão. Recomenda-se o isolamento de quaisquer perfurações feitas no telhado durante a instalação, que deve ser feito com aplicação de manta asfáltica. A eficiência do sistema de aquecimentosolar está diretamente associada ao tempo de exposição dos coletores à radiação solar, sendo assim, é imprescindível que não ocorra o sombreamento sobre os mesmos. Porém, evitar o sombreamento nem sempre é possível, devido a elementos construtivos, como a caixa d’água, árvores ou edificações vizinhas, e/ou espaço disponível para a instalação. Na Figura 7.4, pode-se observar uma instalação do Município de Campinas, onde elementos da própria residência bloqueiam a radiação sobre o coletor. É importante que o instalador evite instalar os coletores em locais sujeitos a sombreamento, principalmente, no período de maior incidência solar, compreendido entre 10h e 14h, além de respeitar os espaços mínimos entre os coletores, a fim de evitar que uma placa cause sombra na outra. 84 Figura 7.4 - Coletor solar com sombreamento. Fonte: Eletrobras Procel, PUC Minas, ECV 184/2006 – Relatório Campinas 7.4 Qualidade do isolamento térmico O isolamento térmico (Figuras 7.5 e 7.6), cujo objetivo é minimizar as perdas de calor da água para o meio ambiente, deve apresentar alta resistência à passagem de calor. Os materiais mais utilizados são o poliuretano expandido, a lã de vidro e a lã de rocha. Esse item se torna ainda mais importante em instalações onde a distância entre o reservatório térmico e os pontos de consumo é grande, já que ocorrem maiores perdas térmicas na tubulação que deverá percorrer uma distância maior. Figura 7.5: Tubulação de um SAS com isolamento térmico. Fonte: Fonte: Eletrobras Procel, PUC Minas, ECV 184/2006 – Relatório Campinas Figura 7.6: Exemplo de tubulação de água quente com isolamento térmico 85 Nas pesquisas constatou-se uma quantidade significativa de sistemas que não possuíam isolamento térmico, como na cidade de Campinas, por exemplo, onde não havia isolamento térmico em pelo menos 43% das instalações. Já no Rio de Janeiro, onde foram avaliados dois tipos de sistemas diferentes (tecnologia A e B), não havia isolamento da tubulação entre os equipamentos e o chuveiro em 62,5% e 14,3% das tecnologias A e B, respectivamente. 7.5 Sistema anticongelamento Em regiões com incidência de geadas e onde as temperaturas registradas no período do inverno são muito baixas, indica-se a escolha de coletores que possuam algum dispositivo anticongelamento, o que impede o congelamento da água em seus tubos internos e por consequência seu rompimento. A NBR 15.220-3 estabelece o Zoneamento Bioclimático brasileiro em oito zonas, sendo que nas zonas 01 e 02 é preciso ter cuidado especial, pois a ocorrência de geadas é mais frequente. Um exemplo disso é o município de Botucatu, localizado no interior do estado de São Paulo, que registra fenômenos de geada no período compreendido entre os meses de junho e setembro, com temperaturas que atingem valores próximos a 2°C, o que torna o uso de coletores com dispositivo de anticongelamento indispensável. De acordo com a pesquisa realizada na cidade, apenas 3,8% das instalações não contavam com tal dispositivo, e como consequência todos os coletores estavam danificados devido ao congelamento da água. 7.6 Qualidade do sistema auxiliar Como a geração e consumo de água quente nem sempre ocorrem simultaneamente é necessário sempre prever um sistema de apoio ao SAS que entrará em operação quando o aquecimento pelos coletores solares está abaixo da temperatura desejada. Os sistemas auxiliares mais comuns são o elétrico e a gás (Figura 7.7 e 7.8). Em Campinas a incidência do apoio elétrico foi de 71,28%, configurando a maioria dos casos. Tal predominância é característica em sistemas de aquecimento solar de pequeno porte, onde uma resistência elétrica é inserida no corpo do reservatório e sua operação pode ser controlada de modo automático ou manual. 86 Figura 7.7: Exemplo de aquecimento auxiliar a gás Figura 7.8: Exemplo de aquecimento auxiliar elétrico Para o controle automático do sistema auxiliar é importante que o projetista defina a temperatura de entrada desse dispositivo de forma que não haja sobreposição com o SAS, o que leva a um acionamento desnecessário da resistência e a um aumento no consumo de energia. 7.7 Segurança do sistema Uma das maiores preocupações que se deve ter durante a execução de um projeto de instalação de aquecimento solar diz respeito à segurança, que abrange o isolamento e identificação do cabeamento elétrico e sistema auxiliar. Recomenda-se o isolamento dos fios elétricos por condutores identificados por cores, e em caso de dúvidas, é necessário consultar as normas de condutores elétricos da ABNT. A figura 7.9 corresponde a uma instalação fora padrões de segurança. 87 Figura 7.9: Instalação elétrica com nível baixo de segurança Na cidade de Campinas, em 72% das instalações acessadas não havia isolamento nem identificação do cabeamento elétrico do sistema de aquecimento auxiliar. Além disso, em 83% dos sistemas visitados não havia no reservatório placa de identificação do apoio elétrico. Tais dados mostram que essas instalações apresentaram problemas críticos de segurança que devem ser evitados para garantir a qualidade de todo o sistema. 7.8 Acessibilidade e manutenção Para garantir um bom desempenho de uma instalação, é necessária a realização de manutenções periódicas, como limpeza ou troca de componentes defeituosos. Sendo assim, o usuário deve possuir total acesso aos componentes da instalação. Quando a acessibilidade ao sistema é ruim ou inexistente possivelmente os coletores estarão sujos e, com a ocorrência de trincas ou de vidros quebrados, cuja não substituição leva a problemas mais sérios como infiltração, oxidação e deterioração do isolamento do coletor, por exemplo. 7.9 Abastecimento e qualidade da água O conhecimento acerca da qualidade da água do local de instalação é de extrema importância, tendo em vista que a água com características físico-químicas de baixo ou alto valor de pH, provocam corrosão ou incrustação no reservatório térmico e/ou nas tubulações de cobre existentes no sistema. Para isso, é importante que o projetista observe e pesquise sobre a qualidade da água na localidade, levando em conta fatores como abastecimento de água não tratada ou por caminhões pipa, poços artesianos, ou regiões litorâneas. Nesses casos recomenda-se utilizar coletores constituídos por materiais poliméricos ou resistentes à corrosão. Se necessário, uma análise físico-química da água deve ser feita para que o projetista especifique o produto que melhor se adéqua à situação encontrada. Além disso, sistemas abastecidos diretamente pela rede pública, em regiões onde o abastecimento de água é irregular, podem ter seus componentes e funcionamento prejudicados em caso de abastecimento inconstante por parte da concessionária. Em casos como esse, sugere-se adotar caixas d’água instaladas de forma que garanta a pressão de trabalho pela qual os equipamentos foram submetidos aos ensaios do PBE/INMETRO. 88 7.10 Check-list Para auxiliar o projetista e/ou responsável pela instalação foi elaborado um check-list de referência e disponibilizado a seguir: 89 90 91 Capítulo 7 8 RECOMENDAÇÕES PARA O INSTALADOR Instalação Manutenção e Segurança Operação do sistema PALAVRAS-CHAVE: Instalação de coletores e reservatórios; instalação de rede hidráulica; instalação sistema de aquecimento auxiliar; comissionamento do SAS. 92 8. Recomendações para o instalador A instalação de um sistema de aquecimento solar é um dos pontos que mais influencia em seu desempenho e eficiência, já que a qualidade do sistema não depende apenas de um bom projeto, mas também de sua boa execução. A melhor forma de garantir uma boa instalação é capacitaradequadamente os instaladores do sistema. Adotaremos nesse capítulo o modelo do NABCEP (North American Board of Certified Energy Practitioners) que tem o propósito de elevar os padrões de qualidade da indústria capacitando e certificando profissionais de energias renováveis da América do Norte. Tal modelo identifica, em todas as fases da instalação, as atividades necessárias para a instalação do SAS e as classifica em: Crítico, Muito importante e Importante. As tarefas Críticas são de alta prioridade e todos os instaladores devem possuir conhecimento e competência para realizá-las. Aqui estão contempladas todas as atividades relacionadas com segurança e àquelas com alta probabilidade de erros que podem comprometer a integridade e bom funcionamento do sistema. As atividades classificadas como Muito importantes são aquelas de prioridade média e que devem ser realizadas com qualidade pelos instaladores. Já as atividades de nível Importante são complementares às demais, mas possuem prioridade menor. De qualquer forma todas devem ser bem executadas pelo instalador. Para melhor entendimento do leitor foi criada uma legenda de cores (Figura 8.1) associada a essa classificação e será utilizada para caracterizar as tarefas para o instalador: Crítico Muito Importante Importante Figura 8.1: Legenda de Cores 93 8.1 Primeiro passo: preparação Para iniciar o processo de instalação é preciso reunir todas as informações sobre o local e o sistema, que incluem: caracterização da casa (localização, número de banhos atendidos, localização da caixa de água fria, acesso ao telhado, entre outros); projeto do SAS (número de coletores, número de reservatórios e seu volume, localização dos equipamentos, tipo de aquecimento auxiliar, distribuição hidráulica do circuito primário e secundário, materiais utilizados para a tubulação de água fria e quente e etc). Recomenda-se que o instalador tire todas as dúvidas de projeto com o responsável antes de iniciar a instalação do sistema no local. Em seguida o instalador deve elaborar uma lista de todos os materiais que serão necessários para executar a instalação, bem como os equipamentos de proteção individuais ou EPIs, que deverão ser reunidos e checados antes. Apesar de parecer uma tarefa simples a preparação é muito importante, pois é o momento em que os questionamentos podem ser esclarecidos e o instalador organiza suas atividades e poupa tempo, que será mais bem empregado na prática da instalação. Verifique na Figura 8.2 o organograma proposto para essa fase da instalação: 94 Figura 8.2: Organograma da preparação para instalação. Fonte: Profª Elizabeth M. D. Pereira/GIZ 95 8.2 Segundo passo: avaliação do local de instalação do SAS De posse do projeto do SAS e suas especificações o instalador pode verificar in loco se aquilo que está previsto ou relatado nesses documentos representa a realidade do local. Para isso será necessário checar uma série de informações, tais como: orientação dos telhados da casa; localização da caixa de água fria; observar se há a existência de algum obstáculo que provocaria sombra no local de instalação do coletor solar; verificar quantos pontos de consumo que serão atendidos e onde estão situados; verificar se a inclinação do telhado corresponde a relatada em projeto; verificar as dimensões do telhado (altura, largura e comprimento), entre outros. É recomendável que o instalador relate as incompatibilidades ao projetista para que a melhor solução seja elaborada e adotada. Para isso é sugerido que no momento da instalação ele esteja munido de telefone e/ou outro equipamento de comunicação direta e imediata com o projetista. O organograma apresentado na Figura 8.3 mostra as atividades referentes a essa fase da instalação de acordo com a classificação de prioridades proposta nesse capítulo. Figura 8.3: Organograma para avaliação do local de instalação. Fonte: Profª Elizabeth M. D. Pereira/GIZ 96 8.3 Terceiro passo: planejamento da instalação in loco Para iniciar as atividades no próprio local será necessário organizá-las de modo que o profissional tenha a ideia de todos os procedimentos que ele deverá realizar do início ao fim da instalação. Esse passo também é importante porque permite a identificação prévia de problemas em fases específicas que podem ser resolvidos antes de iniciar a instalação. Nesse momento o instalador deverá marcar os pontos do telhado ou cobertura onde o coletor solar será inserido, realizar adaptações que se fizerem necessárias como a elevação da altura da caixa d’água (conforme projeto) e observar os layouts de distribuição hidráulica tanto do circuito primário quanto secundário. Observe na Figura 8.4 o organograma referente a essa etapa da instalação: Figura 8.4: Organograma para planejamento da instalação in loco. Fonte: Profª Elizabeth M. D. Pereira/GIZ 97 8.4 Quarto passo: instalação do SAS O instalador deverá iniciar a instalação do circuito primário do SAS que compreende: coletor solar, reservatório térmico e interligação entre esses elementos. É fundamental o cuidado e zelo com o local e todas suas características por parte do instalador e seus ajudantes. Na ocasião de um eventual dano em qualquer elemento da edificação, este deverá ser prontamente reparado. Caso a caixa de água fria que irá alimentar o sistema não esteja posicionada adequadamente (como vimos no Capítulo 2) será preciso corrigir essa condição alterando a altura desse componente. Tal mudança deve ser prevista em projeto para garantir o bom funcionamento do sistema e não interferir na estética da edificação. Na ausência de uma solução projetual o instalador deverá comunicar ao responsável. Para a inserção dos coletores solares será necessário fixá-los na estrutura do telhado de forma que o conjunto resista à carga de vento. Um modo muito comum de instalação do coletor é sua amarração, que pode ser feita com chapa metálica rígida sobre o tubo externo e aparafusado nos elementos estruturais do telhado (Figura 8.5). Figura 8.5: Ilustração com coletor fixado através de fita metálica Outra maneira de fixar os coletores solares no telhado com a chapa metálica é posicioná-la na porção inferior do coletor com uma dobra e fixar a ponta remanescente na estrutura do telhado interna, como ilustra a Figura 8.6. Figura 8.6: Ilustração de segunda alternativa para fixação de coletores com chapa metálica Fonte: TR da CEF (adaptado pela equipe da Rede Eletrobras/Procel Solar) 98 O instalador nunca deve aparafusar o coletor diretamente no telhado, pois danificará permanentemente o equipamento. Todos os furos realizados no telhado deverão ser vedados adequadamente. Recomenda-se o uso de manta asfáltica de aplicação a frio que tem se mostrado uma boa solução para a estanqueidade da cobertura. O uso desse material em telhas cerâmicas requer outro cuidado antes da sua instalação. Para evitar o descolamento da manta decorrente da umidade, muitas vezes presente em telhas não esmaltadas, é necessária a aplicação de uma resina acrílica no local onde a manta será colada. Também é muito importante efetuar a limpeza do local antes da aplicação de qualquer material para garantir sua aderência. Para a instalação do reservatório térmico é preciso checar as condições de acesso ao telhado a fim de identificar o melhor caminho por onde tal elemento passará. Em muitas residências o acesso ao telhado por alçapões é restrito e/ou possui dimensões reduzidas, o que impede o deslocamento do RT internamente ao telhado. Nesses casos será preciso ajustar os elementos do telhado para inserir o equipamento externamente. Assim, é fundamental que o instalador ajuste corretamente a estrutura, garantindo suaresistência mecânica, e que essa ação se restrinja apenas a passagem do RT para minimizar seu impacto. Em seguida é importante recolocar as telhas retiradas para a passagem do RT no seu devido local, perfeitamente encaixadas na estrutura do telhado. O instalador deverá ser cuidadoso nesse momento para não prejudicar a estanqueidade da cobertura da residência. O próximo passo da instalação é a interligação entre os coletores e o reservatório térmico. Em instalações de pequeno porte, onde o número de coletores é reduzido, pode-se conectá-los em paralelo (Figura 8.7). Figura 8.7: Coletores solares interligados em paralelo Para a saída de água fria do reservatório térmico que alimentará os coletores solares o instalador deve adotar o tubo da porção inferior desse componente. Ele deverá ligar esse tubo de saída com a entrada de água no coletor solar, localizada também em sua base. Já a saída de água quente do coletor solar, localizada em seu topo, deve ser ligada ao tubo da porção superior do reservatório. Como vimos no Capítulo 5 existem muitos tipos de materiais usados em tubulações de água quente, dentre eles os poliméricos flexíveis como o EDPM. Quando esse tipo de tubulação é utilizado o instalador deve garantir que todas as curvas e conexões sejam rígidas a 99 fim de se evitar o acúmulo de bolhas e/ou um aumento significativo da perda de carga do sistema, o que prejudica substancialmente seu funcionamento. Para o trabalho com tubulações de cobre o instalador deve sempre seguir as orientações de segurança e boas práticas listadas na NBR 15345 Instalação predial de tubos e conexões de cobre e ligas de cobre. Outro ponto importante a ser considerado é a redução do número de curvas que podem ser necessárias para desvio de obstáculos como, por exemplo, a estrutura do telhado. Em seguida devem-se instalar as válvulas e dispositivos de segurança do SAS como o eliminador de ar na tubulação de água quente (Figura 8.8) e o suspiro ou respiro no reservatório térmico (Figura 8.9). O primeiro deve ser posicionado no ponto mais quente do circuito primário, isto é, na saída de água quente do coletor solar. Já o segundo pode ser instalado no topo do reservatório ou na saída de água quente para o consumo e sua altura deve ser superior a da caixa de água fria. Figura 8.8: Eliminador de ar coletores Figura 8.9: Suspiro ou respiro do RT 100 Para o circuito secundário o instalador deverá ligar o reservatório térmico aos pontos de consumo. Para que a instalação tenha qualidade superior recomenda-se que o caminho percorrido pela tubulação seja o menor possível, o que trará economia de material e menores perdas térmicas pelo circuito. Novamente é preciso atentar para a redução de curvas da tubulação. Em seguida é necessário prosseguir com o isolamento das tubulações em sua totalidade. Para aquelas expostas às intempéries também será necessário proteger o isolamento com chapa ou fita aluminizada. Em residências que não possuem tubulação própria para água quente será necessário instalar o misturador externo na ducha ou chuveiro. Para garantir a durabilidade desse dispositivo e impedir a ocorrência de vazamentos é recomendável que a haste seja fixada na parede, conforme mostra a Figura 8.10. Figura 8.10: Detalhe fixação da haste na parede Como vimos no Capítulo 3 para o aquecimento auxiliar do SAS pode-se utilizar o aquecimento elétrico/gás de passagem ou acumulação, ambos demandam do instalador certo cuidado durante a instalação. No caso do chuveiro elétrico e aquecedor instantâneo a gás o instalador deve observar as normas de segurança da ABNT que tocam todos os assuntos relacionados com a sua instalação. O chuveiro, por exemplo, deve ser adequadamente aterrado para impedir a ocorrência de choques ou outros acidentes durante seu uso. O aquecedor instantâneo a gás deve ser instalado em local ventilado e protegido. O instalador deverá dar especial atenção ao sistema de aquecimento auxiliar de acumulação, geralmente composto de uma resistência elétrica inserida no corpo do reservatório térmico. Nesse momento a instalação estará praticamente completa, mas uma importante tarefa deve ser desempenhada pelo instalador que é o teste de todo o sistema. Para tal o primeiro passo é checar todas as válvulas de acionamento e fechar todos os pontos de drenagem. Posteriormente o instalador deve ligar a água fria e preencher todo o sistema para 101 a eliminação de bolhas e detecção de eventuais vazamentos. No caso da ocorrência deste último sua correção deverá ser providenciada. A identificação de válvulas e controles é uma tarefa simples, mas de grande importância para se alcançar um SAS de qualidade. Essa atividade pode ser realizada após o teste de funcionamento do sistema ou imediatamente antes dele, ficando a critério do próprio instalador. Observe na Figura 8.11 o organograma referente a essa etapa da instalação: 102 Figura 8.11: Organograma para instalação do SAS. Fonte: Profª Elizabeth M. D. Pereira/GIZ 103 8.5 Quinto passo: comissionamento do SAS Após verificar e corrigir os eventuais problemas do primeiro teste do sistema o instalador deverá realizar o último teste para checar novamente as condições de operação e o posicionamento das válvulas. Para sistemas de aquecimento auxiliar de acionamento automático será necessário programar o termostato ou sensor presente no boiler na temperatura desejada para seu funcionamento de acordo com o Manual do Fabricante. Para sistemas de acionamento manual o controle deverá ser claramente identificado e instalado em local visível e de fácil acesso. O usuário deverá ser informado de sua localização e recomendações de uso. Finalmente o instalador deverá entregar o Manual do Usuário para o proprietário da residência e apresentar todo o sistema destacando as recomendações de limpeza e manutenção dos coletores solares, funcionamento dos misturadores nos pontos de consumo de água quente, boas práticas para uso do aquecimento auxiliar entre outros. Para essa última etapa o organograma apresentado na Figura 8.12 ilustra e classifica as atividades do instalador: 104 Figura 8.12: Organograma para comissionamento do SAS. Fonte: Profª Elizabeth M. D. Pereira/GIZ 105 8.6 Check-List para o Instalador Um check-list com base nos organogramas apresentados neste capítulo foi elaborado com o objetivo de guiar as ações e atividades do instalador desde a preparação dos materiais e equipamentos de segurança até o comissionamento do sistema. Esse material pode ser observado a seguir: 106 107 108 Capítulo 8 9 SISTEMAS DE AQUECIMENTO SOLAR PARA MCMV Inserção do SAS em residências unifamiliares Inserção do SAS em residências multifamiliares Exigências Termo de Referência da CEF Recomendações para o instalador e boas práticas PALAVRAS-CHAVE: MCMV, Termo de Referência da Caixa Econômica Federal 109 9. Sistemas de Aquecimento Solar de Pequeno Porte: Programa Minha Casa Minha Vida O programa Minha Casa Minha Vida (MCMV) do governo federal busca reduzir o déficit habitacional do país, estimado em 5,572 milhões de domicílios (Fundação João Pinheiro, 2008). Na primeira fase o programa teve como meta a construção de 1 milhão de habitações para famílias com renda de até 5 salários mínimos entre 2009 e 2010. Já a fase seguinte estima a construção de 2 milhões de moradias entre 2011 e 2014. Ainda na primeira etapa do MCMV foram implantados aquecedores solares em 40 mil residências. O uso do aquecimento solar foi tão bem sucedido que em Julho de 2011 o governo tornou obrigatória sua inserção nas residências unifamiliares das regiões Sul,Sudeste e Centro-Oeste. Essa iniciativa leva a construção de moradias mais sustentáveis e com menor consumo energético, o que proporciona economia a seus usuários. Para garantir a qualidade dos sistemas foi elaborado o Termo de Referência da Caixa Econômica Federal que estabelece as características básicas dos equipamentos, sua forma correta de instalação e procedimentos que devem ser adotados pelas construtoras e/ou responsáveis pelos empreendimentos para sua instalação. Recomenda-se a leitura completa desse documento para elaborar projetos de SAS para o programa MCMV. O Termo de Referência da CEF estabelece que os sistemas de aquecimento solar devem operar exclusivamente por circulação natural ou termossifão em residências uni e multifamiliares, com volume de 200 litros de água quente por moradia. Apesar de ser muito similar aos sistemas já apresentados nesse manual existem alguns detalhes sobre os SAS do programa MCMV que serão apresentados separadamente nesse capítulo. 9.1 Componentes do Sistema de Aquecimento Solar Segundo o Termo de Referência da CEF os componentes do SAS são: coletor solar, reservatório térmico, caixa redutora de pressão e interligação entre os equipamentos e suportes. Para cada componente há uma especificação distinta. No caso dos coletores solares há uma distinção (Tabela 9.1) para produtos empregados nas regiões Sul, Sudeste e Centro-Oeste comparados aos das regiões Norte e Nordeste: Tabela 9.1: Características de Coletores Solares segundo o Termo de Referência da Caixa Econômica Federal (TR CEF) 110 Os coletores devem ainda ser resistentes à temperatura de estagnação e pressão de trabalho; possuir vidro com espessura nominal maior ou igual a 3,0 mm; caixa em alumínio, aço inoxidável ou material resistente à corrosão e às intempéries. Caso o equipamento escolhido não atinja a produção média mensal de energia estabelecida é permitido realizar arranjo com número maior de coletores. Importante: para escolher o produto de acordo com as exigências do TR CEF o projetista deve consultar a tabela de eficiência do INMETRO mais recente através do link: http://www.inmetro.gov.br/consumidor/tabelas.asp No Brasil apesar da maioria das localidades possuírem temperaturas amenas durante o ano todo, alguns lugares podem apresentar invernos mais rigorosos com a ocorrência de geadas. Nesses casos os coletores solares devem possuir um dispositivo anticongelamento. A NBR 15.220-3 estabelece o Zoneamento Bioclimático do Brasil, dividindo o país em oito zonas de características climáticas diferentes, conforme mostrado na Figura 9.1. Figura 9.1: Zoneamento Bioclimático Brasileiro (Fonte: ABNT NBR 15.220-3) A CAIXA exige a adoção de dispositivos anticongelamento em coletores instalados em locais situados nas zonas bioclimáticas 1 e 2, e em locais da zona bioclimática 3 cuja temperatura no inverno chegue a atingir 2°C ou menos. Não há restrição quanto à geometria dos coletores solares, que podem ser verticais ou horizontais (Figura 9.2 e 9.3). Contudo nas habitações de interesse social unifamiliares a cobertura é caracterizada pela área reduzida e divisão em duas águas com declividade aproximada de 30%, o que muitas vezes não é suficiente para que um coletor vertical opere corretamente por termossifão. Assim o uso de coletores horizontais é uma boa solução e se torna mais comum nesse tipo de sistema. http://www.inmetro.gov.br/consumidor/tabelas.asp 111 Figura 9.2: SAS com coletor solar vertical Fonte: Luciana Carvalho/GIZ Figura 9.3: SAS com coletor solar horizontal Fonte: Luciana Carvalho/GIZ Importante: os coletores horizontais devem possuir tubos na ascendente, com a entrada de água fria posicionada na sua porção inferior e a saída de água quente na porção superior oposta. Nas figuras 9.4 e 9.5 são mostrados dois coletores horizontais, um com os tubos na ascendente (correto) e outro com tubos horizontais (incorreto): Figura 9.4: Coletor horizontal correto Figura 9.5: Coletor horizontal incorreto 112 Os reservatórios térmicos deverão ser da seguinte maneira: possuir volume de 200 litros, preferencialmente distribuídos em um único equipamento horizontal; não possuir resistência elétrica como aquecimento auxiliar; ser resistente à temperatura de estagnação e à pressão de trabalho; ser em aço inoxidável apropriado ou termoplástico; ser resistente às intempéries e condições de operação em exposição externa; ser etiquetado pelo Programa Brasileiro de Etiquetagem (PBE-INMETRO). A figura 9.6 ilustra esse componente: Figura 9.6: Reservatório térmico Fonte: Luciana Carvalho/GIZ Outro elemento que faz parte do SAS, segundo o TR CEF, é a caixa redutora de pressão (Figura 9.7) que é utilizada para abastecer o reservatório com água fria. Esse equipamento deve apresentar as seguintes características: possuir registro bóia com vazão de operação mínima de 6,0 litros por minuto, com resistência à pressão conforme norma ABNT NBR 5.626; volume útil mínimo de 10 litros; tamponamento à prova de poeira; ser de aço inoxidável ou termoplástico. Figura 9.7: Caixa redutora de pressão Fonte: Luciana Carvalho/GIZ 9.2 Inserção do SAS em residências unifamiliares Os SAS destinados às moradias do programa MCMV já possuem volume e área coletora pré-definida no TR da CEF, portanto não há necessidade do projetista avaliar seu dimensionamento. Apesar disso, é muito importante que se observe as condições de inserção do equipamento nas residências, pois aqui não há opção de aumentar a área coletora para atingir uma eficiência maior. 113 Vimos que a eficiência de um SAS está diretamente ligada à forma com que ele é instalado, já que a orientação e inclinação da placa influenciam no valor da irradiação que incide sobre ela. Assim a instalação do sistema no telhado deve atender às recomendações de desvio máximo de ±30° do Norte Verdadeiro, ou Geográfico, e inclinação igual ou +10° a latitude do local. Em conjuntos habitacionais é comum que as residências possuam implantações distintas para melhor aproveitamento do terreno, isso faz com que a orientação dos telhados também seja diferente, como mostra a Figura 9.8. Dessa forma o projetista deverá avaliar qual a melhor porção da cobertura para que o SAS seja implantado, bem como se há a necessidade de uso de suportes para corrigir a orientação dos coletores solares. Figura 9.8: Exemplo de implantação de um conjunto habitacional Exemplo 9.1: O conjunto habitacional Girassol (Figura 9.9) será construído através do programa Minha Casa Minha Vida e aquecedores solares serão instalados em todas as casas. Avalie as condições dos telhados das residências para receber os coletores solares e defina a melhor maneira para instalar esses equipamentos. 114 Figura 9.9: Conjunto habitacional Girassol Solução: Para as casas cujo desvio do telhado em relação ao Norte Verdadeiro é igual a 157° os coletores podem ser instalados diretamente sobre essa água. Enquanto nas casas com desvio do telhado de 112° será necessário o uso de um suporte para garantir a correta orientação do coletor solar, conforme mostra a Figura 9.10: Figura 9.10: Conjunto habitacional Girassol Caso não seja possível corrigir a orientação dos coletores o TR da CEF estabelece que a Produção Mensal de Energia Nominal deva ser aumentada da seguinte maneira: 115 Tabela 9.2. Correção da produção média mensal de energia proposta pelo TR da CEF Para a instalação dos coletores no telhado o TR da CEF determina que os suportes e dispositivos de fixação atendam as seguintes características: ser de material metálico não ferroso ou em aço SAC300 ou similar, pintado com material adequado a sua proteção e conservação; para a fixação de coletores deve ser previsto, no mínimo, fita metálicagalvanizada ou outro tipo de tratamento resistente à corrosão; todo o conjunto deve ser resistente à carga de vento mínima de 40kg/m² e não apresentar arranjos que indiquem falta de equilíbrio ou insegurança. Importante: os suportes devem garantir que os coletores solares não sejam inclinados de modo que seus tubos internos não ficariam na vertical prejudicando a operação do sistema. Observe as figuras 9.11 e 9.12 que ilustram os modos correto e incorreto do uso dos suportes: Figura 9.11: Inserção correta do SAS com suportes 116 Figura 9.12: Inserção incorreta do SAS com suportes Vimos anteriormente que há diversas opções de sistemas de aquecimento auxiliar que servirão de apoio ao SAS. No entanto, o TR da CEF determina que o apoio para o SAS instalado nas habitações será o chuveiro elétrico. Nesse caso o construtor deverá fornecer o aparelho com potência nominal entre 4400W e 4500W, observando a tensão elétrica no local da instalação. O aparelho também deve permitir a seleção de no mínimo 3 temperaturas diferentes. Também serão aceitos aquecedores a gás de passagem com regulagem de temperatura. Importante: o construtor deverá sempre seguir as normas da ABNT para garantir a correta instalação do chuveiro elétrico, principalmente com relação ao seu aterramento. Em casos em que o coletor é instalado diretamente sobre a cobertura, ou seja, sem o uso de suportes, recomenda-se o uso de um perfil metálico fixado na estrutura do telhado como mostra a Figura 9.13. 117 Figura 9.13: Recomendação para fixar coletores solares em telhados. Fonte: TR da CEF (adaptado pela equipe da Rede Eletrobras/Procel Solar) Importante: o TR da CEF estabelece que não serão aceitas amarrações de coletores com fios metálicos e/ou arames. Portanto, coletores fixados conforme a Figura 9.14 deverão sofrer correções para que a instalação esteja de acordo com o solicitado. Figura 9.14: Coletor amarrado com fio de cobre (incorreto). Fonte: Renan Cepeda/GIZ Para a instalação do reservatório térmico deve-se garantir que eles não sejam apoiados diretamente sobre as telhas. Desse modo torna-se necessário o uso de um perfil metálico, que deve ser de material resistente à corrosão e servirá de apoio para o equipamento. Recomenda-se que o perfil seja aparafusado na estrutura do telhado (Figura 9.15 e 9.16). 118 Figura 9.15: Reservatório térmico apoiado em perfil metálico fixado na estrutura do telhado Figura 9.16: Reservatório térmico apoiado sobre suportes metálicos. Fonte: Renan Cepeda/GIZ O instalador deverá realizar a vedação de quaisquer furos nas telhas da cobertura, decorrentes da fixação dos equipamentos, com manta asfáltica aluminizada ou poliuretano (Figura 9.17). Não serão aceitas vedações com silicone (Figura 9.18). Figura 9.17: Detalhe vedação com manta asfáltica aluminizada (correto). Fonte: TR da CEF (Adaptado pela equipe Rede Eletrobras/Procel Solar) 119 Figura 9.18: Vedação com silicone (incorreto). Fonte: Renan Cepeda/GIZ O isolamento térmico das tubulações de água quente é exigido tanto para materiais metálicos quanto para poliméricos e recomenda-se o uso de calha em polietileno expandido com espessura mínima de 5 mm ou similar (Figura 9.19). Figura 9.19: Detalhe de isolamento térmico sendo instalado na tubulação. Fonte: Renan Cepeda/GIZ Para receber o SAS a habitação deverá possuir tomada de água fria a, pelo menos, 0,5m da entrada do reservatório térmico e a rede de distribuição de água quente localizada a 0,5m de sua saída para o consumo. Além disso, a instalação sanitária deverá ser dotada de um misturador de água fria e outro de água quente, sendo que este último deve estar embutido na alvenaria. 120 Importante: não serão aceitas instalações de misturadores externos, muito utilizados em adaptações de residências que não possuem tubulação própria para água quente. O TR da CEF também exige que a conexão dos misturadores seja realizada em “Y” e não em “T”. Também deverá ser prevista a instalação de um registro gaveta entre a saída do reservatório térmico e o registro de pressão de água quente do chuveiro. Não há restrições quanto ao tipo de sistema que deverá ser instalado nas residências, podendo ser separado (com reservatório térmico interno a casa, ilustrado na Figura 9.20) ou em conjunto (com todos os equipamentos instalados sobre o telhado, como mostra a Figura 9.21). Figura 9.20: Reservatório térmico instalado sob o telhado Figura 9.21: SAS integrado e instalado em conjunto sobre o telhado 121 Apesar disso, durante a escolha do tipo do sistema é fundamental garantir as distâncias necessárias para o bom funcionamento do SAS por termossifão, conforme estudado no Capítulo 2. Para a instalação do SAS é necessário que as habitações já possuam abastecimento de água fornecido pela rede pública. Caso a ligação ainda não tenha sido realizada o construtor deverá providenciar caixas d’água do tipo torre com ligação provisória para todo o conjunto, em que o volume destinado para cada residência deverá ser de 200 litros. A pressão da rede na entrada de água fria no empreendimento deverá obedecer ao limite de 4 kg/cm². 9.4 Inserção do SAS em residências multifamiliares Para a instalação do SAS em habitações de interesse social (HIS) multifamiliares verticais o projetista deverá observar algumas diferenças com relação aos sistemas destinados às residências unifamiliares. Aqui detalhes como local de inserção dos equipamentos, distância entre eles, uso preferencial de shafts para distribuição hidráulica, entre outros, são de fundamental importância para garantir a qualidade da operação do sistema. Em HIS multifamiliares o TR da CEF também estabelece que a operação do SAS seja por termossifão ou circulação natural. Basicamente temos o caso de um edifício multifamiliar abastecido por sistemas individuais de aquecimento solar. Assim, esse tipo de instalação caracteriza-se por ser de pequeno porte, ainda que a população beneficiada seja maior do que apenas uma família. Por se tratar de sistemas tão parecidos daremos enfoque apenas em situações que os diferenciam. Detalhes de instalação de equipamentos, zelo pela construção e segurança são os mesmos para ambos os casos. A implantação de um conjunto de edifícios multifamiliares em um loteamento segue a mesma lógica dos unifamiliares, com a inserção das unidades habitacionais no terreno de forma tal que maximize seu aproveitamento, reduza custos de infraestrutura e etc. Assim, o projetista deverá ficar atento à inserção dos SAS nas coberturas dos prédios de modo que seja escolhida a melhor orientação e inclinação para os coletores solares. Em casos em que o projeto do conjunto está em sua fase preliminar é possível identificar e optar pela implantação que mais favoreça o sistema de aquecimento solar. Na Figura 9.22 é possível observar o desenho de um conjunto habitacional onde foi possível garantir que todos os coletores solares fossem orientados para o Norte Verdadeiro (ângulo azimutal de 180° ou desvio de 0°) nos três edifícios. 122 Figura 9.22: Exemplo de conjunto habitacional com coletores orientados para o Norte Verdadeiro. Fonte: Luciana Carvalho/GIZ Para que o SAS seja instalado de forma correta nas coberturas, com baixa incidência de sombreamento, boa acessibilidade e segurança é importante considerar algumas variáveis durante o projeto do edifício, tais como: as dimensões e geometria dos equipamentos; a inclinação dos coletores; o número total de sistemas; o afastamento entre baterias e o acesso para manutenção. O afastamento entre as baterias permite não só que o acesso aos sistemas para sua manutenção seja bom, mas também evita que haja sombreamento excessivo entre os próprios equipamentos. Parasaber qual a distância mínima ideal entre as baterias utiliza-se, de modo simplificado, o seguinte cálculo: d= h x k Onde k é um fator determinado de acordo com a Latitude do local (Tabela 9.3) e h é a altura do sistema segundo Figura 9.23. TABELA 9.3 – FATOR k Latitude (°) 5 0 -5 -10 -15 -20 -25 -30 -35 k 0,541 0,433 0,541 0,659 0,793 0,946 1,126 1,347 1,625 123 Figura 9.23: Distância mínima entre SAS Fonte: FINEP. Projeto SolBrasil – Rede Brasil de Capacitação em Energia Solar. Manual do Professor. Adaptado por: Luciana Carvalho/GIZ Após avaliar criteriosamente as variáveis citadas nos parágrafos anteriores o projetista poderá pré-dimensionar a cobertura do edifício de modo que favoreça a instalação do SAS. A Figura 9.24 mostra um exemplo de cobertura planejada para a correta inserção do sistema: Figura 9.24: Exemplo de cobertura projetada para a inserção do SAS. Fonte: Luciana Carvalho/GIZ O uso de suportes para corrigir eventuais desvios críticos de orientação ou inclinação de coletores também é permitido para SAS de HIS multifamiliares e as características dos suportes são as mesmas apresentadas para HIS unifamiliares. Como o número de sistemas inseridos na cobertura aqui é maior (será um por unidade habitacional) o cálculo estrutural do telhado deverá prever tal carga adicional. Cada sistema deverá possuir identificação associada ao apartamento a que pertence para que a manutenção ou eventuais correções no sistema seja realizada de modo adequado. L h d L x cos β h= L x sen β β 124 Uma boa opção é nomear os sistemas assim como seus respectivos apartamentos, por exemplo: o S202 é o SAS que abastece o apartamento 202 (Figura 9.25). Figura 9.25: Exemplo de SAS identificado. Fonte: Luciana Carvalho/GIZ Recomenda-se que a distribuição hidráulica seja feita através de shafts ou compartimentos que centralizam a rede tanto de água quente quanto fria. Esse tipo de solução é muito interessante por facilitar a manutenção do sistema e padronizar a distribuição de água para os pontos de consumo. Para o uso desses compartimentos o projetista deverá prever espaço suficiente para as tubulações (água quente e fria), sendo que toda a rede de distribuição de água quente deverá possuir isolamento térmico. Será necessário também realizar um estudo das pressões encontradas em cada apartamento para equalizá-las, caso ocorram discrepâncias entre elas. Para cada ponto de consumo é necessário instalar comandos misturadores de água fria e quente para conforto e segurança do usuário, assim como estabelece o TR da CEF também para HIS unifamiliares. A Figura 9.26 mostra o conjunto habitacional Mangueiras, localizado na cidade do Rio de Janeiro, que recebeu sistemas de aquecimento solar. Figura 9.26: SAS instalado no conjunto Mangueiras – Rio de Janeiro, RJ. Fonte: Renan Cepeda/GIZ 125 9.5 Recomendações para o instalador e boas práticas Para garantir uma boa instalação do SAS é fundamental que um bom projeto seja desenvolvido. Alguns pontos importantes que o projetista deve considerar são listados a seguir: 1 – Sempre contemplar a segurança, manutenção e zelo do equipamento; 2 – Permitir que o SAS possa receber manutenção adequada, garantindo que seu responsável tenha acesso seguro a ele; 3 – Considerar o estudo da água disponível no local de implantação para melhor escolher os componentes do SAS; 4 – Avaliar se o SAS provocará interferência no sistema de proteção de descargas atmosféricas/elétricas para edifícios que possuírem esse tipo de proteção. Em caso afirmativo deve-se prever uma solução. 5 – A ART de execução da instalação deve sempre estar disponível no canteiro de obras. A instalação de um SAS não é tarefa muito complicada, mas o projetista deve fazer algumas recomendações para o instalador que irão garantir sua segurança, a integridade da edificação e o bom desempenho do sistema. Em locais onde o acesso ao telhado é difícil ou pode comprometer a segurança do instalador o uso do EPI (Equipamento de Proteção Individual) é fundamental. Na Figura 9.27 uma equipe de instaladores trabalha na cobertura de um edifício multifamiliar em que o acesso é de alto risco, por isso todos estão utilizando o EPI. Figura 9.27: Equipe de instaladores com EPI. Fonte: Renan Cepeda/GIZ 126 No momento da instalação é importante que o responsável garanta a integridade da casa. Assim cuidados com os componentes do telhado, paredes e demais instalações devem ser tomados, já que quaisquer danos causados pela falta de zelo deverão ser reparados. Os SAS instalados nas HIS do MCMV operam por circulação natural e para que funcionem corretamente recomenda-se que a entrada de água fria se dê na porção inferior do coletor e a saída de água quente na porção superior oposta (do mesmo modo que os testes do PBE Coletores são realizados), como mostra a Figura 9.28. Figura 9.28: Ligação entre componentes: coletor solar – reservatório térmico. Fonte: Luciana Carvalho/GIZ A fim de garantir a eficiência do sistema sua tubulação de água quente deverá sempre ser instalada na ascendente e o instalador deve garantir que a saída de água quente esteja em seu ponto mais alto, devendo receber inclinação positiva para a eliminação de bolhas. Como já mencionado no Capítulo 5, em sistemas que operam por termossifão a elevada perda de carga compromete muito sua eficiência e deve ser evitada. Assim recomenda-se que alguns cuidados sejam adotados pelo instalador principalmente nas interligações entre o coletor e o reservatório. Em casos em que o reservatório está localizado internamente o instalador deve evitar que a tubulação de alimentação e retorno do coletor tenha curvas em demasia, muitas vezes utilizadas para desvio da estrutura do telhado, por desconhecimento ou hábitos do instalador. O instalador deverá seguir as recomendações das normas e textos normativos da ABNT que tratam da instalação de tubos metálicos e poliméricos. A NBR 15345 trata de instalações de tubos de cobre e aço carbono e apresenta uma série de informações sobre equipamentos utilizados, como medir e cortar os tubos, limpeza e preparação do tubo para a solda e demais procedimentos para a soldagem. As Figuras 9.29 e 9.30 mostram um instalador preparando e soldando um tubo de cobre: MAIS QUENTE MAIS FRIO 127 Figura 9.29: Aplicação do fluxo com pincel. Fonte: Renan Cepeda/GIZ Figura 9.30: Soldagem de tubos. Fonte: Renan Cepeda/GIZ Após a instalação do SAS o construtor também deverá disponibilizar ao usuário um manual de fácil leitura, ilustrado, que deve conter as seguintes informações: 1. Todas as informações do fabricante; 2. Especificações técnicas dos produtos; 3. Informações sobre o que é um SAS; 4. Dados sobre os benefícios ao usuário; 5. Instruções de uso do equipamento; 6. Funcionamento do sistema auxiliar; 7. Informações sobre a capacidade do reservatório térmico; 8. Dicas de economia e duração do banho; 9. Informações sobre a manutenção do SAS; 10. Garantia do produto (no mínimo 5 anos); 11. Disponibilizar contato do serviço de atendimento ao consumidor; 12. Disponibilizar contato de assistência técnica. Ficará a cargo do Fornecedor do SAS o acompanhamento da instalação dos sistemas em todo o conjunto e a emissão do “Termo de Conclusão” exigido pela CAIXA (modelo disponível no TR da CEF). O serviço de assistência técnica também será de responsabilidade do Fornecedor por um período mínimo de 12 meses a partir da data da instalação. Tal assistência deverá ser realizada em até 72 horas após acionamento do Fornecedor pelo usuário. O projeto e instalação do SAS devem ser realizados por profissional capacitado acompanhado da ART da obra emitida pelo sistema CONFEA/CREA. As normas da ABNT, leis municipais, estaduais e federais devem sempreser seguidas e observadas pelos responsáveis, bem como a versão mais recente do Termo de Referência da CEF. 128 Referências Bibliográficas 129 REFERÊNCIAS BIBLIOGRÁFICAS ABNT 5410:2004 – Instalações de baixa tensão ABNT NBR 12269 (2006) – Instalação de sistemas de aquecimento solar de água em circuito direto. ABNT NBR 5626 – Instalação predial de água fria ABNT NBR 7198 – Projeto e execução de instalações prediais de água quente ABNT NBR 13103:2006 – Adequação de ambientes residenciais para instalação de aparelhos que utilizam gás combustível ABNT NBR 15569 – Sistema de aquecimento solar de água em circuito direto – Projeto e Instalação ABNT NBR 15747-1 – Sistemas solares térmicos e seus componentes – Coletores solares Parte 1: Requisitos Gerais ABNT NBR 10185 – Reservatórios térmicos para líquidos destinados a sistemas de energia solar – Determinação de desempenho térmico ABNT NBR 5626 – Instalação predial de água fria ABNT NBR 7198 – Projeto e execução de instalações prediais de água quente ABRAVA RN 4 – 2003 – Proteção contra o congelamento de coletores solares ABNT NBR 5419 – Proteção contra descargas atmosféricas ABNT NBR 15.220-3 – Desempenho térmico de edificações. Parte 3: Zoneamento bioclimático brasileiro e diretrizes construtivas para habitações unifamiliares de interesse social. ABNT NBR 15345 - Instalação predial de tubos e conexões de cobre e ligas de cobre. BAPTISTA, M. B.; COELHO, M. M. L. P. Fundamentos de Engenharia Hidráulica. Belo Horizonte: Editora UFMG 2003. CAIXA ECOCÕMICA FEDERAL - TR Sistemas de Aquecimento Solar de Água MCMV 2. Disponível em: http://downloads.caixa.gov.br/_arquivos/desenvolvimento_urbano/gestao_ambiental/tr_sas_ mcmv2.pdf http://downloads.caixa.gov.br/_arquivos/desenvolvimento_urbano/gestao_ambiental/tr_sas_mcmv2.pdf http://downloads.caixa.gov.br/_arquivos/desenvolvimento_urbano/gestao_ambiental/tr_sas_mcmv2.pdf 130 ILHS, M. S. O., GONÇALVES, O. M., KAVASSAKI, Y. Sistemas Prediais de Água Quente. TT/PCC/09 Escola Politécnica da USP, Departamento de Engenharia Civil. INMETRO. RAC 6 – Requisito de Avaliação da Conformidade para Sistemas e equipamentos para aquecimento solar de água do PBE/Inmetro. INMETRO. Portaria n° 17, de 16 de Janeiro de 2012. Requisitos Técnicos da Qualidade para o Nível de Eficiência Energética de Edifícios Comerciais, de Serviços e Públicos (RTQ-C), 2012. NABCEP - North American Board of Certified Energy Practitioners. Solar Heating Installer Certification. Disponível em http://www.nabcep.org/certification/solar-thermal-installer- certification.