Prévia do material em texto
CAPÍTULO 1 INTRODUÇÃO, DEFINIÇÃO E PROPRIEDADES DOS FLUIDOS Este capítulo introduz a experiência das duas placas para que o leitor perceba de forma lógica que, diferentemente de um sólido, um fluido não pode atingir o equilíbrio estático quando é submetido a uma força resultante do efeito tangencial. Entretanto, deve-se ressaltar o fato de que é possível se atingir o equilíbrio numa determinada velocidade, isto é, um equilíbrio dinâmico.Por meio dessa discussão aparecem em seqüência lógica as idéias de Princípio da Aderência, construção de diagrama de velocidades, deslizamento entre as camadas do fluido e o conseqüente aparecimento de tensões de cisalhamento entre elas. A lei de Newton da viscosidade, simplificada para escoamento bidimensional, introduz de forma simples as idéias de gradiente de velocidades e de viscosidade dinâmica, para o cálculo da tensão de cisalhamento. Além da viscosidade dinâmica, são apresentadas as definições de massa específica ou densidade, peso específico e viscosidade cinemática, propriedades dos fluidos usadas ao longo deste livro. Apesar da utilização quase que exclusiva do Sistema Internacional de Unidades, é necessário lembrar a existência de outros sistemas, já que, na prática, o leitor poderá se defrontar com os mesmos, e alguns dos exercícios referem-se à transformação de unidades, de grande utilidade no dia a dia. Solução dos exercícios Exercício 1.1 Objetivo: manuseio das propriedades e transformação de unidades. Lembrar que ao transformar a unidade utiliza-se a regra seguinte: Exemplo Transformar 3 m em cm. cm300cm1003 m 100cmm3m3 =×=××= Solução do exercício. νρ=μ 2 3 33r m s.kgf38,285028,0 m utm85 10 850 g m kgf850 m kgf000.185,0 O2H =×=μ ==γ=ρ =×=γγ=γ Valor da grandeza na unidade nova = Valor da grandeza na unidade velha X Unidade nova x Fator de transformação Unidade velha 222 m s.N3,23 m s. kgf 8,9Nkgf 38,2 m s.kgf38,2 = ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ × ==μ poiseou cm s.dina233 m 10cmm s. N 10dinaN 3,23 m s.N3,23 2 2 42 2 5 2 = ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ × ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ × ==μ Exercício 1.2 Stou s cm106 s m 10cmm 106 s m106 82 105 m utm82 10 820 g m kgf820000.182,0 2 22 42 2 6 CGS SI 2 6 4 S*MK S*MK S*MK 3 3O2Hr −− −− ×= ×× ×=ν ν=×=×=ρ μ=ν ==γ=ρ =×=γγ=γ Exercício 1.3 V = 3 dm3 = 3x10-3 m3 2 4 2 3 2 3 S*MK 2 2 2 42 2 5 3 2 3 CGS 2 2 35 SISI 3 33 m s.kgf108 m s. 8,9N kgfN 1083,7 m s.N1083,7 poiseou cm s.dina1083,7 m 10cmm s. N 10dinaN 1083,7 m s.N1083,7 s m Nkgqueesquecernão m s.N1083,73,78310 m kg3,783 10 7833 g m N7833 103 5,23 V G −−− −−− −− − ×= ⎟⎠ ⎞⎜⎝ ⎛ ××=×=μ ×= ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ × ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ × ×=×=μ ⎟⎟ ⎟⎟ ⎠ ⎞ ⎜⎜ ⎜⎜ ⎝ ⎛ =×=×=νρ=μ ==γ=ρ =×==γ 2 62 2 2 3 2 3 2km min.N km min.N5,130 10m kmm 60s mins.N 1083,7 m s.N1083,7 = ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ × ⎟⎠ ⎞⎜⎝ ⎛ ××=×=μ −− É preciso deixar claro que esta última unidade só foi considerada para que se pratique a transformação. Exercício 1.4 23 3 2 35 2 5 2 4 2 0 m N6,16 102 4103,8 m s.N103,883010 s m10 s m101,0 s cmouSt1,0 v =×××=τ ×=×=νρ=μ =×==ν εμ=τ − − −− −− Exercício 1.5 Sendo constante a velocidade da placa, deve haver um equilíbrio dinâmico na direção do movimento, isto é, a força motora (a que provoca o movimento) deve ser equilibrada por uma força resistente (de mesma direção e sentido contrário). t o F30senG = 2 2 o3o o o m s.N10 112 30sen20102 vA 30senG Av30senG A30senG −− =×× ×××=ε=μ εμ= τ= Exercício 1.6 s m1,22 05,009,008,0 105,0105,0v m s.N08,0 10 000.810 g ;cm5,0 2 910 2 DD DL mgvDL v mgAG 2 0 2 4 ie 0 0 =××π× ×××= =×=νγ=μ=−=−=ε μπ ε=⇒πεμ=⇒τ= − − Exercício 1.7 Para o equilíbrio dinâmico, a força de tração será igual ao peso do esticador somada à força tangencial provocada pelo lubrificante na fieira. m.N1,0 2 2,01 2 DTM m s.N1,0 1,0105,0314,0 1,01005,0 dLv F vA F s m314,02,0 60 30nDv mm05,0 2 5,06,0AvAF N1,09,01GTF:Logo GFT 23 3 tt t t t máx =×== = ×××π× ××=π ε=ε=μ =××π=π= =−=εεμ=τ= =−=−= += − − Exercício 1.8 32 2 2 1221 2 2 2 1 t21 m N800.16 1,01005,0 2108000.20 cm05,0 2 101,10 D v8v8DDDLv2L 4 DL 4 D F2GG =×× ××−=γ =−=ε ε μ−γ=γ⇒εμ+γ=γ⇒πεμ+ πγ=πγ += − − Exercício 1.9 v1 v2 v3 = 0,5m/s G rpm12360 1,02 29,1 R2 v nRn2v s/m29,12525,004,1vvv s/m2525,0 2,0 101,05,0 R R vv s/m04,1 101,03,021,0 101,02,010 LR2 GR v cm1,0101,10RR GRLRR2v MM)a 1 1 1111 21 3 2 32 2 2 2 2 3 12 322 G =××π×=π=π= =+=+Δ= =×== =××π×× ×××=πμ ε=Δ =−=−=ε =πε Δμ = → − τ m.N21,03,0 101,0 04,11,02M LRv2LRR2vRAM)b 2 2e 2 11111e =×××××π×= ε Δπμ=πε Δμ=τ= − Exercício 1.10 ( ) ( ) ( ) cm5,3m035,013,315,33,0208,0 101,010 vvR2 Mh vv hR2 hRR2 v hRR2 v M m s.N08,080010 cm1,0301,30 s m15,3301.0 60 1002nR2v cm1,09,2930RR s m13,3299,0 60 1002nR2v 2 2 ie 2 2 ie 2 2 22 e e 22 i i 2 4 e 3e 12i 1i ==+××π×× ××=+πμ ε= +ε πμ=πεμ+πεμ= =×=νρ=μ =−=ε =××π×=π= =−=−=ε =××π×=π= − − Exercício 1.11 rpm531.40 05,1205,1556,1 12000.120 DD56,1 nD n 56,1 Dn DnnD 56,1 05,12 05,15 D D v vv mm025,0 2 05,151,15 2 DD mm025,0 2 1205,12 2 DD 2 D LD v 2 D LD vv MM)a 23 1 3 21 22 2 3 3 21 34 4,3 12 2,1 3 3 4,3 32 2 2,1 21 extint =+× ×=+=′ =′π ′π−π =⎟⎠ ⎞⎜⎝ ⎛=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛=− =−=−=ε =−=−=ε πεμ=πε −μ = ττ ( ) ( ) m.N14,0 60 531.4001205,0 60 000.120012,0 10025,0 012,002,0108M nDnD LD M nDnD LD 2 D LDv2M)b 3 232 21 2 1 2 21 2 11 1 =⎟⎠ ⎞⎜⎝ ⎛ ×−×× ××××π= ′−ε μπ= ′π−πε πμ=πε Δμ= − − Exercício 1.12 ).motor(movimentodofavoram.N1,04,25,2M m.N5,2 2 5,025,0 101,0 1010M s m10 2 5,040 2 Dv s rd40 1,0 22 d v2 2 DLDvM m.N4,2 2 1,048 2 dFM N48250FGF N225,0 101,0 210F cm1,0 2 502,50 2 DDLDvF 2 3 res i 1 i i 1 res motmot mot 2 3 ie i =−= =×π××π×××= =×=ω=→=×==ω→πεμ= =×== =−=−= =π××π×××= =−=−=ε→πεμ= − − τ − − τ τ Exercício 1.13 ( ) r.rdr2rr.rdr2vvdArdM 2121t πε ω−ωμ=πε −μ=τ= ( ) ( ) ( ) ( ) 4 t 21 4 21 t 4 21 t R 0 321tM 0 t 321 t D M32 164 D2M 2 DR,mas 4 R2M drr 2 dM drr 2 dM πμ ε=ω−ω ×ε ω−ωπμ= =ε ω−ωπμ= ε ω−ωπμ= ε ω−ωπμ= ∫∫ Exercício 1.14 2 m05,0y m05,0y 1 m05,0y 2 0y 0y 1 0y 2 2 cm dina100254 dy dvs25 dy dv cm dina200504 dy dvs50 dy dv 50y500 dy dvy50y250v 50be250aa02,0a01,05,2)1(em)2( )2(a2,0bba2,00bay2 dy dv0 dy dvm1,0ypara )1(b1,0a01,05,2 s m5,2vm1,0ypara0c0v0ypara cbyayv =×=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛μ=τ⇒=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ =×=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛μ=τ⇒=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ +−=⇒+−= =−=⇒−= −=⇒+=⇒+=→=→= +=⇒=→= =⇒=→= ++= = = − = = = − = 004 dy dv0 dy dv m1,0y m1,0y m1,0y =×=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛μ=τ⇒=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ = = = r r+dr Exercício 1.15 N2,348,0AF m N8,08010 dy dv s80v20 dy dv s8042,0200420yv200v20 dy dv vy100yv20v 2 2 0y 0y 1 máx 0y 1 máxmáx m2,0y máx 2 máx =×=τ= =×=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛μ=τ ==⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −=××−×=−=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −= − = = − = − = Exercício 1.16 2 2 0y 0y 1 0y 2 2 m N103 dy dvs33y5,1 dy dv)b 2y3y75,0v75,0 4 3a;3b 0ba4ba40bay2 dy dv0 dy dv2ypara 3b2a42b2a45 s m5v2ypara 2c s m2v0ypara cbyayv)a − = = − = ×=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛μ=τ⇒=+−=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ++−=⇒−=−== =+⇒+=⇒+=→=→= =+⇒++=⇒=→= =⇒=→= ++= Exercício 1.17 2 1 2 2 112 23 2 1 11 m N50 2 100 A F N1002150400AFF)b m N150 10 5103v)a ===τ =×−=τ−= =××=εμ=τ − − Y000.5v:Logo 000.5A10A55v10Ypara 0B0v0Ypara BAYv)c 33 = =⇒×=⇒=→= =⇒=→= += −− 2 2 m N505,0ypara 5,0b25,0a55v5,0ypara 0c0v0ypara cbyayv)d =τ→= ×+×=⇒=→= =⇒=→= ++= N60230AR m N305,74 dy dv 5,7y10 dy dv)e y5,7y5v:olog 5,7be5a:dotanresul 5,12ba 5b5,0a25,0 :sistemaoresolversedeve 5,12b5,0a2 dy dventãobay2 dy dvcomo 5,12 4 50 dy dv dy dv 0y 2 0y 20y 0y 2 5,0y 1 1 5,0y5,0y 22 =×=×τ= =×=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛μ=τ +=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ += == =+ =+ − =+×=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛+= ==μ τ=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛→⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛μ=τ = = = = = == Exercício 1.18 ( ) ( ) %5,17100 27320 27350 000.200 000.1501% 100 T T p p 11001100% RT p ; RT p 2 1 1 2 1 2 1 21 2 2 2 1 1 1 =×⎟⎠ ⎞⎜⎝ ⎛ + +×−=ρΔ ×⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ×−=×⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ρ ρ−=×ρ ρ−ρ=ρΔ =ρ=ρ Exercício 1.19 Ks m479 28871,0 108,9 T pR m kg71,0 8,9 7 gm N762,116,0 m N62,118,9186,1g m kg186,1 288287 108,9 RT p 2 24 33arr 3arar3 4 ar =× ×=ρ= ==γ=ρ⇒=×=γγ=γ =×=ρ=γ⇒=× ×==ρ Exercício 1.20 3arar 3 3 ar ar m N4,491094,4g m kg94,4 311287 10441 TR p =×=ρ=γ =× ×==ρ Exercício 1.21 )abs(kPa046.1 2 103,133 V V pp Adiabático )abs(kPa5,666 2 103,133 V V pp VpVp Isotérmico 28,1k 2 1 12 2 1 12 2211 =⎟⎠ ⎞⎜⎝ ⎛×=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛= =×== = Capítulo 2 ESTÁTICA DOS FLUIDOS A ausência de movimento elimina os efeitos tangenciais e conseqüentemente a presença de tensões de cisalhamento. A presença exclusiva de efeitos normais faz com que o objetivo deste capítulo seja o estudo da pressão. Nesse caso são vistas suas propriedades num fluido em repouso, suas unidades, as escalas para a medida, alguns instrumentos básicos e a equação manométrica, de grande utilidade. Estuda-se o cálculo da resultante das pressões em superfícies submersas, o cálculo do empuxo, que também terá utilidade nos problemas do Capítulo 9, a determinação da estabilidade de flutuantes e o equilíbrio relativo. É importante ressaltar, em todas as aplicações, que o fluido está em repouso, para que o leitor não tente aplicar, indevidamente, alguns conceitos deste capítulo em fluidos em movimento. Para que não haja confusão, quando a pressão é indicada na escala efetiva ou relativa, não se escreve nada após a unidade, quando a escala for a absoluta, escreve-se (abs) após a unidade. Exercício 2.1 ( ) N13510101035,1G Pa1035,1 20 5104,5 A A pp Pa104,5 210 5,21072,21010500 AA ApAp p ApG ApAp Pa1072,22000.136hp ApAApAp 45 55 IV III 34 5 53 HII II2I1 3 V4 IV4III3 5 Hg2 II2HII3I1 =×××= ×=××== ×=− ××−××=− −= = = ×=×=γ= +−= − Exercício 2.2 kN10N000.10 5 25400 D D FF 4 D F 4 D F N400 1,0 2,0200F 1,0F2,0F 2 2 1 2 2 BO2 2 2 1 BO BO BOAO ==⎟⎠ ⎞⎜⎝ ⎛×=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛=⇒π=π =×= ×=× Exercício 2.3 mm3681000 000.136 5000.10h hh Hg OHOHHgHg 22 =××= γ=γ Exercício 2.4 )abs(mmHg3400)abs( cm kgf62,4)abs(MPa453,0)abs( m kgf200.46)abs(atm47,4p mca10atm97,0MPa098,0Pa108,9 cm kgf1 m kgf000.1074,0600.13hp mca2,36 000.1 200.36ph bar55,398,0 cm kgf62,310 m kgf200.36p MPa355,0108,9 m kgf200.3666,2600.13hp mmHg2660 1 5,3760p patm5,3 mmHg760atm1 22abs 4 22HgHgatm O2H O2H 2 4 2 6 2HgHg ===== ===×≅=≅×=γ= ==γ= =×=×= =××=×=γ= =×= → → − − Exercício 2.5 kPa35,13Pa350.13025,0000.101,0000.136p 01,0025,0p 1 HgOH1 2 ==×−×= =×γ−×γ+ Exercício 2.6 kPa1,132Pa100.1321000.13625,0000.108,0000.8pp p8,0125,0p BA BOHgO2HA −=−=×−×−×=− =×γ−×γ+×γ+ Exercício 2.7 kPa6,794,20100p kPa4,20Pa400.2015,0000.13615,0p p100p m HgA Am =−= ==×=×γ= −= Exercício 2.8 kPa55,36103,0500.834p p3,0p)b )abs(kPa13410034ppp kPa100Pa000.10074,0000.136hp kPa34Pa000.348,0500.83,0000.136p 07,03,07,08,0p)a 3 M MOar atmarabsar HgHgatm ar O2HHgO2HOar =××+= =×γ+ =+=+= ≅≅×=γ= ==×−×= =×γ−×γ−×γ+×γ+ − )abs(kPa55,13610055,36ppp atmMabsM =+=+= Exercício 2.9 ( ) ( ) )abs(mca12,17 000.10 000.171ph )abs(Pa200.171200.95000.76ppp Pa200.95000.1367,0p Pa000.76p000.57 4 p p 000.57pp000.30p000.27p 000.27pppap 000.30pp p4p4 A A A A A A ApApAApApAp 2 A A kPa30pp OH absB OH atmBB atm B B B ABAB BCBC AC AB H 2 H 1 1 2 HB2AH1B1B2A 1 2 AC 2 2 efabs ==γ= =+=+= =×= =→=− =−→=−− −=→=γ+ =− =→==× =→−−= = =− Exercício 2.10 )abs(kPa991001ppp kPa1Pa000.12,010500ghp m kg500 2,0 1,0000.1 h hhh0ghp 0ghp atm0abs0 AA0 3 A B BABBAABB0 AA0 =+−=+= −=−=××−=ρ−= =×=ρ=ρ⇒ρ=ρ⇒=ρ+ =ρ+ Exercício 2.11 ( ) ( ) ( ) ( ) 3324 3 o OH OHo OHo cm833.47m107833,41043,0 6 45,0xA 6 DV)c m45,03,05,0 000.8 6,04,0000.10x5,0 x2y D m3,0 2 4,01 2 yyxyyx2 x2yx5,0D)b m4,0 000.10 5,0000.8y y5,0)a 2 2 2 =×=××+×π=+π= =−−+=−−γ +γ= =−=−′=→′=+ +γ=++γ =×= ×γ=×γ −− Exercício 2.12 ( ) ( ) ( ) m105 5,11sen 5,4 1000.8 10 sen D d pL0Lsen D dLp D dLH 4 DH 4 dL Pa10001,010001,0p 0LsenHp 3 o 22 x 2 x 222 4 O2Hx x −×= ⎥⎥⎦ ⎤ ⎢⎢⎣ ⎡ +⎟⎠ ⎞⎜⎝ ⎛ −= ⎥⎥⎦ ⎤ ⎢⎢⎣ ⎡ α+⎟⎠ ⎞⎜⎝ ⎛γ −=⇒= ⎥⎥⎦ ⎤ ⎢⎢⎣ ⎡ α+⎟⎠ ⎞⎜⎝ ⎛γ+ ⎟⎠ ⎞⎜⎝ ⎛=⇒π=π −=−×=−×γ= =α+γ+ Exercício 2.13 ( ) ( ) ( ) ( ) ( ) mca7,3 000.10 000.37p Pa000.37000.17000.20000.17pp)b absmmHg831684147p mmHg147m147,0 000.136 000.20Pa000.20p 000.17p10331p104:)1(nadoSubstituin p000.17p p4,0000.104,0000.5005,0000.102p m05,0 4,71 7,35 2 4,0 D d 2 hh 4 d 2 h 4 Dh phhh2p 1p10331p104 0357,00714,0 4 p31 4 0714,0p dD 4 pF 4 Dp)a 2 12 abs1 1 1 21 21 2221 21 21 21 ar arar ar ar ar 3 ar 3 arar arar 2222 arOHmOHar ar 3 ar 3 22 ar 2 ar 22 ar 2 ar == =+=+= =+= ==== +×=+× =+ =×−×+××× =⎟⎠ ⎞⎜⎝ ⎛=⎟⎠ ⎞⎜⎝ ⎛=Δ→π=πΔ =γ−γ+Δγ+ ×=+×−π=+×π −π=+π −− −− Exercício 2.14 ( ) 1 2 11 22 222 111 arar 21 ar HgO2Har T T Vp VpmRTVp mRTVp)c Pa050.12p0000.1361,0000.10155,0p cm5 1 105,0hA.hA.y)b Pa200.25000.10000.1362,0p 02,02,0p)a =⇒= = =′⇒=×−×+′ =×=Δ⇒Δ=Δ =−= =×γ−×γ+ C44K317 100 95 200.125 050.112373T cm95105,01010V 050.112000.100050.12p )abs(Pa200.125000.100200.25p o 2 3 2 abs2 abs1 ==××= =×−×= =+= =+= Exercício 2.15 3A A A atmAAabs atm OH A OH A 2222 A 212A m kg12,1 293287 576.94 RT p )abs(Pa576.94200.95624ppp Pa200.95000.1367,0p)b mca0624,0 000.10 624ph Pa6240015,02000.8600p m0015,0 40 4 2 3,0 D d 2 hh 4 d 2 h 4 Dh h2000.83,0000.103,0000.8p 0hhh2p)a 2 2 =×==ρ =+−=+= =×= −=−=γ= −=××−−= =⎟⎠ ⎞⎜⎝ ⎛=⎟⎠ ⎞⎜⎝ ⎛=Δ→π=πΔ Δ×−×−×= =γ−γ+Δγ+ Exercício 2.16 3 1 2 2 1 12 1 2 11 22 absgásO2Hgás O2Hgás absgás atm gásO2HHggás m16,2 293 333 100 952 T T p pVV T T Vp Vp )abs(kPa1001090pkPa10Pa000.101000.10z.p)c m5,0 000.10 000.5zz.p)b )abs(kPa95590p kPa90Pa032.90662,0000.136p Pa500016,0000.10025,0000.136p16,0025,0p)a =××==⇒= =+=′⇒==×=′γ=′ ==⇒γ= =+= ==×= =×+×=⇒×γ+×γ= Exercício 2.17 ( ) ( ) 232222123322212211 32 21 3,0p1,05,0p5,0p 4 DpDD 4 p 4 Dp 000.22,0000.10pp 000.10pp ×+−×=×→π+−π=π =×=− =− ( ) ( ) kPa5,43Pa500.43p3480p08,0 180000.10p33,0p25,0 180p33,0p25,0 000.2p09,0p24,0p25,0 11 11 21 221 ==→= −−= −= −+= Exercício 2.18 3222 2 ct c t t pGt o G p 22 c 22p 22 c 11p m kg993.10 183,05,010 950.34 LDg G4 L 4 Dg G gV G)c m183,0 5,0210 5,110005,0L m0005,0 2 5,0501,0 2 DD Dv FLDLvF)b N5,11FFF desce196319755,0395030GsenF cimaparaN196378549817F N7854 4 5,0000.40 4 DpF N9817 4 5,0000.50 4 DpF)a =××π× ×=π=π==ρ =×π×× ×= =−=−=ε πμ ε=⇒πεμ= =−= >=×== =−= =×π×=π= =×π×=π= − Exercício 2.19 ( ) ( ) ( ) ( ) cm8,127m278,1278,01L m278,0ym0278,0x0600.36x10098,1x000.908000800 2 600.552 0200.735,0x15000.10x98,0800 A F2 x10yy2,0x2 0200.7330ysen30sen1y000.10y25,0x55,0000.81,0 A F2 m N200.73 30sen1 8,0000.101,0000.8 2 600.55 30Lsen 8,01,0 A F 030Lsen8,01,0 A F 6 oo 3oo 21 3 o 321 ==+=′ =⇒=⇒=−×−+++× =×+−×+++ =⇒= =×+×+−×++−+×+ =× ×+×+ = ×γ+×γ+ =γ =γ−×γ+×γ+ Exercício 2.20 ( ) ( ) ( ) ( ) ( ) ( ) ( ) kPa50109,39ppp)c )abs(kPa1,60)abs(Pa100.6039908000.100p Pa908.39 103,50 150102013,50000.10100 A FAApGp FApAApAApG cm3,50 4 8 4 DA;cm201 4 16 4 DA)b N15005,008,016,0 001,0 58,0DDvF s m.N8,0 10 000.810 g )a abm absb 4 4 2 t12a b t2bH1aH2a 2 22 2 2 2 22 1 1 21t 2 3 −=−−=−= ==−+= −=× −×−×+=−−+= ++−=−+ =×π=π==×π=π= =×+×π××=+πεμ= =×=μγ=ν − − − l Exercício 2.21 2 3 p p p p p p 2 p p pp2 12 m s.N8,0 10 000.810 g m001,0 2 998,01 2 DD D vL4pLv 4 D p LD 4 D p pistãonomédiapressãopondephp 000.10pp =×=νγ=μ =−=−=ε ε μ=→εμ= τπ=π ==γ+ =− − Exercício 2.22 N33933,0 4 2,1000.10b 4 RF N160.23,02,16,0000.10AhF 22 y x =××π×=πγ= =×××=γ= kPa23,25Pa230.25000.10230.15000.10pp m N230.152000.85,769hpp Pa5,769 998,0001,0 2,02,18,04p 21 2p2 p −=−=−−=−= =×−=γ−= =× ×××= Exercício 2.23 m4,02,06,0b m2,0 6 h h 2 hAh Ihh N920.252,1 2 2,1000.30hhApF m2,14,06,0 000.30 000.804,06,0h 6,0.4,0.h 2 12 4h CG cp 22 p m m =−= == × ==− =××=γ== =−×=−×γ γ= γ=γ+γ N640.8 2,1 4,025920 h bFFbFhF pp =×==→×=× Exercício 2.24 N948.59100.115,42,1F N668.7 2 100.11100.5100.52,16,0F N755.285,46,0 2 100.11100.55,46,0 2 100.5FFF Pa100.116,0000.10100.56,0pp Pa100.56,0500.86,0p f B 21A 212 11 =××= =⎟⎠ ⎞⎜⎝ ⎛ ++××= =××++××=+= =×+=×γ+= =×=×γ= Exercício2.25 N500.225,121500.7AhF m0833,10833,01 m0833,0 5,124AhAh Ihh N102,15,124000.10AhApF F2FF 2o2 1 12 325,1 1 12 3bh 1 CG 11CP 5 1O2H11 22B11 =×××=γ= =+= =××===− ×=×××=γ== +×= × l ll m333,1333,01 m333,0 5,121Ah hh 2 12 325,1 2 12 3bh 22CP =+= =××==− × l N105F 333,1500.222F0833,1102,1 4 B B 5 ×= ×+×=×× F Fp h hcp b h 5m 2 m A B 1l 2l 3 m F1 F2 FB Exercício 2.26 m736,0 634.7 680.42,1 F FyxxFyF N634.73,0 4 8,1000.10b 4 RF m2,18,1 3 2R 3 2y N860.43,0 2 8,1000.10bR 2 RF y x CPCPCPyCPx 22 y c 2 x =×==⇒= =××π×=πγ= =×== =×=••γ= Exercício 2.27 m65,230cos75,02h AhApF o =×+= γ== kN4,991075,365,2000.10F m75,35,25,1A 3 2 =×××= =×= − Exercício 2.28 ( ) ( ) ( ) ( ) 3 oO2H 2 O2H 22 oinfsup 2 2 O2Hinf 2 osup m N000.35 6,0 5,2000.86,05,3000.10 6,0 h6,0h 4 D6,0h6,0 4 D 4 DhFGF 6,0 4 DG 4 D6,0hF 4 DhF =×−+×=γ−+ ′γ=γ π+′γ=×πγ+πγ⇒=+ ×πγ= π+′γ= πγ= Exercício 2.29 xCG CG γ1 γ2 R R O Fx1 F2 Fy1 21 ll = 2 bRRb 2 RF AhF FxFF 2 1 11x 1111x 22CG1y11x γ=γ= γ= =+ ll 6 R Rb 2 RAh Ihh 12 3bR CG 11CP ===− 3 1 22 3 R 2 bR 3 R4 4 bR 3 R 2 bR b 4 RVF 2 bR Rb 2 RAhF 3 R 6 R 2 R 2 12 1 1 2 2 2 1 2 1 2 11y 2 2 22222 21 1 =γ γ→γ=γ+γ ×γ=π× πγ+×γ πγ=γ= γ=γ=γ= ==−= ll Exercício 2.30 ( ) ( ) N3,465 1 579,0300.14583,0000.15 BA brFbrF FBAFMM m579,0079,05,0br m079,0 5,106,1 125,0 Ay Iyy m06,156,05,0y m56,0 000.9 032.5ph N300.145,11532.9ApFPa532.9 2 032.14032.5 2 pp p Pa032.141000.950321pp Pa032.5037,0000.136037,0pp m583,0083,05,0br m083,0 5,11 125,0yy m125,0 12 15,1 12 bI Ay Iyy)b N000.155,11000.10ApFPa000.10 2 000.15000.5 2 pp p Pa000.155,1000.105,1p Pa000.55,0000.105,0p)a esqesqdirdir BBesqdir esq esq CG esqCP esq o ar areq esqesq esqBesqA esq oesqAesqB HgaresqA dir dirCP 4 33 CG CG CP dirdir dirBdirA dir O2HdirB O2HdirA =×−×=−=⇒×+= =+= =×==− =+= ==γ= ≅××==⇒=+=+= =×+=×γ+= =×=×γ== =+= =×=− =×==→=− =××==⇒=+=+= =×=×γ= =×=×γ= l Exercício 2.31 ( ) ( ) N6363,06,0 4 3,0000.103,0D 4 hApF N107,1 4 6,06,0000.10 4 D hApF 2222 MMMMM 3 22 F FFFF =−π××=−πγ== ×=×π××=πγ== Exercício 2.32 N230.76 2 083,1000.1205,0000.45F083,1F5,0F2F m083,0 412 2 y12by 12/b Ay Iyy N000.1205,12000.40ApFPa000.40 2 000.50000.30p Pa000.505000.105p m3 000.10 000.30ph N000.455,11000.30ApF Pa000.304,0000.1025,0000.1364,025,0p BCAB 223 CG CP BCBCBCBC O2HC O2H AB ABABAB O2HHgAB =×+×=⇒×+×=× =×====− =××=×=⇒=+= =×=×γ= ==γ= =××== =×−×=×γ−×γ= l l l Exercício 2.33Exercício 2.34 m1CBMM 2 CBbCB3M 3 3b3 2 3M BCAB BCAB =⇒= γ=→γ= F1 F2 1l 2l ( ) ( ) ( ) ( ) ( ) m27,6z 5,1108,225,6z5,2 5,11 5,2z 08,25,25,2z 5,2106,4 5,2z 08,25,25,2z10 m5,2 N106,4251046pAF 5,2z 08,25,2 55 2 53 2 1 = =+− =⎥⎦ ⎤⎢⎣ ⎡ −+− ××=⎥⎦ ⎤⎢⎣ ⎡ −+− = ×=×××== −+= l l Exercício 2.35 2 1 h xh 3 x6h 3 x 2 xhxb 3 xb 2 x 2 x hxbF 3 x xb 2 xAhF FF 2 1 2 2 1 2 22 1 1111 2211 =→=→=γ γ ×γ=×γ = γ= = γ=γ= = l l ll Exercício 2.36 kN204H880.218015H m.kN1805,1120MkN120 000.1 134000.10V m.kN880.2 000.1 41126000.10M V x =⇒+=× =×=⇒=×××= =××××= Exercício 2.37 O ferro estará totalmente submerso. N2183,0 4 3,0300.10h 4 DVE 22 flfl =××π×=πγ=γ= A madeira ficará imersa na posição em que o peso seja igual ao empuxo. sub 2 fl 22 mad h 4 DE N1593,0 4 3,0500.7h 4 DGE πγ= =××π×=πγ== m218,0 3,0300.10 1594 D E4h 22 fl sub =×π× ×= πγ = Exercício 2.38 N625023,0000.25500VGG conconcil =×+=γ+= F1 F2 1l 2l ( ) m3,02,05,0h m5,0 1 23,0 000.10 62504 D V/G4H H 4 DVGEG 22 con 2 con =−= =×π ⎟⎠ ⎞⎜⎝ ⎛ −× =π −γ= ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ×π+γ=⇒= Exercício 2.39 ( ) m7,29,08,1BAx:Logo m9,0 270 6,0080.13,0350.1 F GE m6,0 3 8,1 3 BA m3,0 3 9,0 3 IH N270080.1350.1GEF:Logo N080.11 2 6,08,1000.2b 2 CBBAVG N350.11 2 9,03,0000.10b 2 IHCHVE 2 BAIH FGE EGF 2F 21 3 2 1 ccc OHsubOH 321 22 =−−=−= −=×−×=−= === === =−=−= =×××=××γ=γ= =×××=××γ=γ= = += =+ l lll l l lll A força deverá ser aplicada à direita do ponto B, fora da plataforma AB. Exercício 2.40 ( )( ) ( )( ) 22dd444 3 odo 3 m1036,3A02,0A3,031055103,002,010 12 6,0 AARhGRA 26 D −×=⇒−+×+=××−××π −+γ+=γ−γ×× π A B C I H E G F 1l 2l 3l Exercício 2.41 Supondo o empuxo do ar desprezível: 3c ccc 3 fl fl ap m N670.26 03,0 800 V GVG m03,0 000.10 300EVVE N300500800EEGG ===γ→γ= ==γ=→γ= =−=→+= Exercício 2.42 mm2,7m102,7 005,0 104,14 d V4hh 4 dV m104,11068,21082,2V m1068,2 200.8 102,2GVVEG m1082,2 800.7 102,2GVVEG 3 2 7 2 2 3766 36 2 2 2222 36 2 1 1111 =×=×π ××=π Δ=Δ⇒Δ×π=Δ ×=×−×=Δ ×=×=γ=⇒γ== ×=×=γ=⇒γ== −− −−− −− −− Exercício 2.43 ( ) ( ) ( ) ( ) m8,0hh000.16000.40h000.6000.32 h5,2000.16h000.6000.32 h5,14hp m N000.324000.8p4AApGAp 2Situação m N000.1622A4A EG1Situação ooo oo ooobase 2basebasecbasebasebasebase 3cbbc =→−+= −+= −−γ+γ= =×=→×γ=→= =γ→γ=γ→×γ=×γ =→ l lll Exercício 2.44 m6 000.61009,2 2105,4x N1009,2 12 210 26 DE N105,4135,110AhF GE 2FxxE3 3 2FxG 4 4 4 3 4 3 44 =−× ××= ×=×π×=× πγ= ×=×××=γ= − ×=⇒•=××+• E G F Exercício 2.45 ( ) ( ) ( ) 3B B BAbase 2b bc b base bbase 3cAbAbc m N000.25 4,02,0000.15000.13 2,06,02,0p m N000.13 1 000.1016,0000.5 A FA6,0 A FGp FGAp 2Situação m N000.15000.5332,0A6,0AEG 1Situação =γ ×γ+×= −×γ+×γ= =+××=+××γ=+= += =×=γ=γ→×γ=×γ→= Exercício 2.46 ( ) ( ) N171.10 6 121085,7132,110 6 DgG 1085,7 293400.41 200.95 TR p m kg132,1 293287 200.95 TR p Pa200.957,0000.1367,0p 3 3 3 2Har 3 2H 2H 2H 3 ar ar ar Hgatm =×π××−×=πρ−ρ= ×=×==ρ =×==ρ =×=×γ= − − Exercício 2.47 79,0x 21,0x 62 16466x:Raízes 01x6x6 0 2 x 2 1 x12 1xFazendo0 22 1 12 0 2 b 2 b b 2 b 2 b0 V I r bhbhbEG 2 2 cc c c 3 c 12 b c c y c sub 2 sub 3 c 4 =′′ =′→× ××−±= >+− >+−→=γ γ→>γ γ+−γ γ >⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ γ γ−− γ γ γ γ−=→>−γ γ= γ γ=→γ=γ→= ll l l l l l l l ll 179,021,00 cc <γ γ<<γ γ< ll Exercício 2.48 estável0m037,00467,0 5,2 103,083.2000.10r cm3,083.2 12 1025 12 bLI0 G I r cm67,433,05cm5yCG cm33,05,0 3 2yCC cm5,0 10 5,2 L Vh hL 2 bh2V m105,2 000.10 5,2GV GVEG 8 4 33 y yf im 2 im im im 34 f im imf ⇒>=−××= =×==→>−γ= =−=⇒=→ =×=→ === == ×==γ= =γ⇒= − − l l l Exercício 2.49 ( ) ( ) ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ γ γ−γ γ<→−< <−−→>+− =γ γ >γ γ+−γ γ→>γ γ+−γ γ→>⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ γ γ−− γπ πγ ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ γ γ−=−=π=γπ= >−γ= γ γ= γπ=πγ = ll l l l l l l l l l l l l l l 12 1 R H x1x2 1 R H 01x2x2 R H0 R H2.x R H2 x 1 :RportudodividindoexFazendo 0H2H2R0 2 H 2 H H4 R 0HH 2 1 HR4 R HH 2 1 2 h 2 H 4 RIHRG 0 G I r Hh HRhR GE 2 2 2 2 2 2 2 2 222 2 2 4 sub 4 y 2 y sub 2 sub 2 CG CC 0,5cm Exercício 2.50 z6 g g51z g a 1zp yz Δγ=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ +Δγ=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ±Δγ=Δ Exercício 2.51 h km2,646,3 s m83,17557,3tav)b s m57,320tg8,9a20tgga g a x z)a x 2 o x o x x =×=×== =×=→=→=Δ Δ Exercício 2.52 oo o x 4130tg 30cos8,9 45,2tg cosg atg =θ⇒+×=α+α=θ Exercício 2.53 ( ) 2x 3 x 3 Hg s m72,1 5,1 257,010 x zga m257,0 000.136 10140175z g a x z)b m29,1 000.136 10175ph)a =×=Δ Δ= =×−=Δ→=Δ Δ =×=γ= Exercício 2.54 )abs(kPa106 10 6,010000.1100ghpp )abs(kPa7,125 10 6,010000.17,119ghpp )abs(kPa7,119100106,0 2 5,10000.1p s rd5,10 60 1002n2pr 2 p 3atmC 3AB 32 2 A atm 2 2 A =××+=ρ+= =××+=ρ+= =+×⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ××= =×π×=π=ω→+Δωρ= − Exercício 2.55 2x x s m78,2 10 6,3 100 t va g atg)a ===→=α 140 175 Pa zΔ ( ) ( ) ( ) ( ) Pa600.314,05,0000.10h5,0p Pa400.614,05,0000.10h5,0p m14,0278,05,0h 5,0 htg)b 5,15278,0 10 78,2tg O2HB O2HA o =−×=Δ−γ= =+×=Δ+γ= =×=Δ→Δ=α =α→==α Exercício 2.56 2 o x xo oo o 4 3 dir dir 4 3 esq esq s m8,530tg10a g a30tg m73,1 30tg 1 30tg hL L h30tg m11011hm11 10 10110ph m10 10 10100ph =×=⇒= ==Δ=⇒Δ= =−=Δ⇒×=γ= =×=γ= Exercício 2.57 s5 4 6,3 72 a vt t va s m4 5,0 2,010a g a tg x x 2x x ===→= =×= =α Exercício 2.58 ( ) kN6,13N600.131010006,31000GmaFmaGF s m6,31 000.10 200.27600.13g1 z ppa g a 1zpp Pa600.131,0000.1361,0p Pa200.272,0000.1362,0p 2 12 y y 12 Hg2 Hg1 −=−=×−−×=−=⇒=+ −=⎟⎠ ⎞⎜⎝ ⎛ +−=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ +Δγ −=⇒⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ +Δγ=− =×=×γ= =×=×γ= Capítulo 3 CINEMÁTICA DOS FLUIDOS Neste capítulo pretende-se, implicitamente, estabelecer a visão euleriana do estudo dos fluidos em movimento. É interessante lembrar que o estudante, acostumado com a visão lagrangeana estabelecida pela Mecânica Geral e pela Física, tem muita dificuldade para focalizar o fluido como um contínuo e observar as suas propriedades em diversospontos no mesmo instante. Insiste-se na idéia do regime permanente, já que a eliminação da variável tempo simplifica o estudo e a solução dos problemas e, de certa forma, resolve a maioria dos problemas práticos. Procura-se fixar as idéias de campos de propriedades e de diagramas de velocidades, típicas do estudo de fluidos. Evita-se propositadamente a denominação “volume de controle”, porém seu conceito está utilizado implicitamente quando se trata de tubo de corrente. O aprofundamento do estudo será feito no Capítulo 10, quando o leitor já tiver uma melhor compreensão do assunto, com as limitações impostas nos primeiros capítulos. Exercício 3.1 ∫= A m vdAA 1v Mostrar claramente a facilidade de se utilizar uma coordenada polar quando se trabalha com seções circulares. Mostrar que a área elementar é calculada por 2πrdr. ( ) máxm 44 4 máx m R 0 422 4 máxR 0 32 4 máx m R 0 2 22 2 máx m 2R 0 máx2m v5,0v 4 R 2 R R v2 v 4 r 2 rR R v2 drrrR R v2 v rdr R rR R v2 v rdr2 R r1v R 1v = ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −= ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −=−= ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −= π⎥⎥⎦ ⎤ ⎢⎢⎣ ⎡ ⎟⎠ ⎞⎜⎝ ⎛− π = ∫ ∫ ∫ Exercício 3.2 ( ) dxdr;xRr;rRx:iávelvardeMudança rdrrR R v2rdr2 R r1v R 1v vdA A 1v R 0 7 1 7 15 máx7 1 R 0 máx2m m −=−=−= −=π⎟⎠ ⎞⎜⎝ ⎛ −π= = ∫∫ ∫ ( )( ) máx 7 15 7 15 7 15 máx R 0 7 15 7 8 7 15 máx m R 0 7 8 7 1 7 15 máx0 R 7 1 7 15 máx m v 60 49R 15 7R 8 7 R v2 15 x7 8 Rx7 R v2 v dxxRx R v2 dxxRx R v2 v =⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −=⎟⎟ ⎟ ⎠ ⎞ ⎜⎜ ⎜ ⎝ ⎛ −= ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −=−−= ∫∫ Exercício 3.3 s/m10 15,010 510 A gQ v s/m20 15,05 510 A gQ A Q v BB m m AA m AA m m B A =×× ×=γ= =×× ×=γ=ρ= Exercício 3.4 s N10110gQQ s kg110000.1QQ s m10 60100 6 t VQ mG 3 m 3 3 =×== =×=ρ= =×== − − Exercício 3.5 s m2 105 10 A Qv s N10110gQgQQQ s kg110000.1QQ s L1 s m1010101AvQ 4 3 2 2 mG 3 m 3 34 11 = × == =×==ρ=γ= =×=ρ= ==××== − − − −− Exercício 3.6 s m1067,2 9,0 104,2QQ s m102 2,1 104,2QQ s kg104,210200102,1AvQ 3 2 2 2 m 2 3 2 2 1 m 1 24 111m −− −− −− ×=×=ρ= ×=×=ρ= ×=×××=ρ= s m267 1010 1067,2 A Q v s N24,0104,210gQQ 4 2 2 2 2 2 mG =× ×== =××== − − − Exercício 3.7 Supondo o regime permanente, já que o enunciado não dá nenhuma indicação de variação com o tempo, pode-se utilizar a Equação da Continuidade correspondente. 3 2211 3 332211 Q QQ QQQ ρ+ρ=ρ ρ=ρ+ρ Sendo os fluidos incompressíveis e o reservatório rígido, pode-se utilizar também a equação para fluido incompressível. s/m10 1030 1030 A Q v m/kg933 30 1080020000.1 QQQ 4 3 3 3 3 3 3 213 = × ×== =×+×=ρ += − − Exercício 3.8 s500 1010 552,0 Q hA Q Vt s m104 55 1010 A Qv 3 tan 4 3 tan =× ××=== ×=× ×== − −− Exercício 3.9 s m14,4 1 25,34 D Q4v s m25,3 500 10 100 5 t V t V Q 22 333 2 2 1 1 = ×π ×= π = =+=+= Exercício 3.10 s m01,0 2 02,0 2 v v D DvDvv 4 Dv 4 Dv 4 Dv 1máx 1 2 3 2 22 2 11 3 2 3 3 2 2 2 2 1 1 === −= π+π=π s m064,0 5 5,2106,01501,0v s m106,013,0 60 49v 60 49v 2 22 2 3máx2 =×−×= =×== Exercício 3.11 Seja: Qe = vazão de entrada QF = vazão filtrada QNF = vazão não filtrada ∫= += ANF NFFe vdAQ QQQ Por semelhança de triângulos: ⎟⎠ ⎞⎜⎝ ⎛ −=→−= R rRvv rR v R v máx máx ( ) ( ) s L8,82,110QQQ s L2,1 s m102,1 3 1014,63,0Q cm14,620tg105,2R 3 Rv 3 R 2 R R v2 3 r 2 Rr R v2 Q drrRr R v2 rdr2 R rRvQ NFeF 3 3 22 NF o 2 máx 33 máx R 0 32 máx NF R 0 2máxR 0 máxNF =−=−= =×=×××π= =×+= π=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −π=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −π= −π=π⎟⎠ ⎞⎜⎝ ⎛ −= −− ∫∫ Aproveitar este exercício para mostrar que a vazão coincide geometricamente com o volume do diagrama de velocidades. No caso do diagrama cônico, o volume do cone é: 3 vR 3 alturaBase máx 2 ×π=× Exercício 3.12 s m8,02,01QQQ s m1111AvQ s m2,0 5 1 t V Q)b s m1 3 y3dyy3bdyy3 11 1v vdA A 1v)a 3 Bcalha 3 mcalha 3 B B B 31 0 21 0 2 m m =−=−=⇒=××== === ===×= = ∫∫ ∫ s m86,1332,11 49 60v 49 60v104,3 10 3,032,11Re s m32,11 3,0 8,04 D Q4vvDRe)c mmáx 6 6 22 =×=⇒×=×= =×π ×=π=→ν= − Exercício 3.13 ( ) ( ) ( ) m099,0 10810 624,04 Re Q4 D D D Q4 Re D Q4 v Dv Re s/m624,0 09,1 68,0QQ s/kg68,073,441,5QQQ s m021,5 942,0 73,4QQs/kg73,4 4 8,010942,0 4 D vQ s/m10 8,0 10108 D Re v Dv Re s/kg41,55,4201,1QQ m kg201,1 27317287 10100 RT p m kg942,0 27397287 10100 RT p m kg09,1 27347287 10100 RT p s m5,4 3600 1 h m16200Q 55 1 1 1 1 2 1 1 12 1 1 1 11 1 3 1 1m 1 2m0m1m 3 2 2m 2 22 2 222m 55 2 2 2 22 2 000m 3 3 0 0 0 3 3 2 2 2 3 3 1 1 1 33 0 =×××π ×=νπ= νπ=→π=→ν= ==ρ= =−=−= ==ρ=→= ×π××=πρ= =××=ν=→ν= =×=ρ= =+× ×==ρ =+× ×==ρ =+× ×==ρ =×= − − Exercício 3.14 h 0 32h 0 2 m 2 3 0y 0y 1 0y 1 cm2y 2 3 52 5 2 3 y 2 y30 h 1bdy)yy30( bh 1vdA A 1v)c m N189,030103,6 dy dvs30 dy dv)b s262230 dy dvy230 dy dv)a m s.N103,6 10 900107 gs m107 s cmouSt7,0cSt70 ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −=−== =××=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛μ=τ→=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ =×−=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛⇒−= ×=××=νγ=μ⇒×== ∫∫ − = = − = − = −−− s kg75,025,005,0107,66 10 900AvQ)d s cm7,66 3 5515 3 hh15 3 hh15 h 1v 2 mm 223 2 m =××××=ρ= =−×=−=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −= − Exercício 3.15 2 2 4 2 cm5,1r 3 0G 1der0 der der2431 3 22 m3 3 2m2 322 4m4 322 1m1 máx m 4 4m 4 m 4 1m 1 m m N7,66 015,0 101,0 m s.N1,0000.110v)g s/m12,5 5,2 5,118v)f s/N199109,1910000.1gQQ s L9,199,188,38QQQ)e forapara s L8,3838,71,159,18Q QQQQQ s L1,15s/m0151,0 4 08,03 4 D vQ s L3s/m003,002,003,05AvQ)d s L8,7s/m0078,0025,04RvQ s L9,18s/m0189,0035,09,4RvQ)c s/m5 2 10 2 v v)b 2000 10 025,024DvRe s m4 2 8v 3430 10 035,029,4DvRe s m9,46 60 49v)a 3 3 2 4 1 2 2 4 4 1 1 =×=τ =×=νρ=μεμ=τ =⎥⎥⎦ ⎤ ⎢⎢⎣ ⎡ ⎟⎠ ⎞⎜⎝ ⎛−= =×××=ρ= =−=−= =−++= +=++ ==×π×= π = ==××== ==×π×=π= ==×π×=π= === =××=ν= == =××=ν= =×= − = − − − Exercício 3.16 s m66,233,12v2v QQ)d s m33,1 3 2,05 2 2,0200)yv100yv20( bh 1v)c N8,024,0AF m N4,04010 dy dv)b s402,02200220 dy dv yv200v20 dy dv yv100yv20v)a mmáx 21 32 2,0 0 2,0 0 2 máxmáxm 22 0y 0y 1 m2,0y máxmáx 2 máxmáx =×== = =⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ×−=−= =×=τ=⇒=×=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛μ=τ −=××−×=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −= −= ∫ − = = − = Exercício 3.17 s/m730 2,05,0 13,02002,1 A QAv v AvQAvQQQ 22 m111 2 222m111mmm 3 3231 =× +××=ρ +ρ= ρ=+ρ→=+ Exercício 3.18 2 43 2 311m 1 1m 1 1 2 11m1 33 3m 3m 2m1m3m 2 2m 2 2máx 2m 2 22m22m 111m m s.N1077,66,010128,1 s m10128,1 000.2 564,022000.2 R2v 000.2Re)c m564,0 2 2 v Q RRvQ)b s m15 5,04,0 3 A Q v s kg38,12,1QQQ s kg88,14,032,1Q m4,0R; s m3 3 9 3 v vRvQ s kg2,126,0QQ)a −− − ×=××=νρ=μ ×=××=ν⇒=ν⇒≤ =×π=π=⇒π= =×=ρ= =+=+= =×π××= ====→πρ= =×=ρ= Exercício 3.19 s/L57,1s/m1057,1102,05,2DvQ s/m5,2 2 5 2 v v s/m5 22,01052 4 2,0000.5052010 DL2 4 pD520 v 4 pD520 DLv2 520 DLv2 4 Dp 520DL 2/ v 4 Dp 333 m máx m 3 2 3 2 máx 2 máxmáx 2 máx 2 =×=××π×=επ= === = ×××× ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ×− =μ ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −ε = −=ε μ→=ε μ+ π=πεμ+ π −− − − Exercício 3.20 ( ) 2 22 x yx yy z y y y xy 2x x xx xx z x y x xx s m6)4;3(a s m2,12212)4;3(v s m12434;3v 2v;y3v)c 0 t v z v v y v v x v va s m632a y v va t v z v v y v v x v va)b permanente)a = =+= =×= == =∂ ∂+⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ∂ ∂+∂ ∂+∂ ∂= =×= ∂ ∂=⇒∂ ∂+⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ∂ ∂+∂ ∂+∂ ∂= Exercício 3.21 yx9x3.xy3 y v va t v z v v y v v x v va 0 t v z v v y v v x v va)b .Permanente)a 2y yy yy z y y y xy xx z x y x xx ==∂ ∂= ∂ ∂+⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ∂ ∂+∂ ∂+∂ ∂= =∂ ∂+⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ∂ ∂+∂ ∂+∂ ∂= 72229aa 12223vv)c 2 y y =××== =××== Exercício 3.22 ( ) 2 22 2y 2x 22 y x y x yx s m6,211812)3;2(a s m1836)3;2(a s m1226)3;2(a s m5,86)6()3;2(v s m623)3;2(v s m632)3;2(v)c y63y2a x62x3 y v va)b =+=⇒−=×−= −=×−= =+−=⇒=×= =×−= −=×−= −=−=∂ ∂= Exercício 3.23 ( ) ( ) ( ) 4,5432a 4 t v a 3 t v a 2 t v a 2,161296v 12214v 9213v 6212v 222 z z y y x x 222 z y x =++= =∂ ∂= =∂ ∂= =∂ ∂= =++= =+×= =+×= =+×= Exercício3.24 2x xx z x y x xx 222 y 2 x s m32258221712107a t8x217y2107 t v z v v y v v x v va s m10817107v s m175312v s m107541223v =×+××+××= +×+×=∂ ∂+⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ∂ ∂+∂ ∂+∂ ∂= =+=⇒=×+×= =×+××+= 2 22 2 2 y 2 y yy z y y y xy s m368178322a s m1783122171107a 3xy217y107a t v z v v y v v x v va =+=⇒=+×××+×= +×+= ∂ ∂+⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ∂ ∂+∂ ∂+∂ ∂= Capítulo 4 EQUAÇÃO DA ENERGIA PARA REGIME PERMANENTE Neste capítulo o livro diferencia-se bastante de todos os outros sobre o assunto. Como já foi feito em relação à equação da continuidade no Capítulo 3, restringe-se a equação a aplicações em regime permanente. Novamente, a ausência de variações com o tempo permite simplificar a compreensão dos fenômenos e a solução de problemas importantes, sem restringir muito as aplicações, já que a maioria dos problemas práticos aproxima-se dessa hipótese. No Capítulo 10, a equação é generalizada para permitir a solução de problemas mais complexos. Inicialmente, apresentam-se as energias mecânicas associadas a um fluido, excluindo-se efeitos térmicos. O leitor deve perceber que, sendo as energias entidades da mesma espécie, podem-se, por meio delas, associar entidades heterogêneas como velocidades, cotas e pressões. Graças às seis hipóteses estabelecidas inicialmente é possível deduzir a equação de Bernoulli para um tubo de corrente, que relaciona de forma elementar essas entidades em duas seções do escoamento. O desenvolvimento da equação de Bernoulli conduz a energias por unidade de peso, denominadas cargas, e por coincidência, as cargas podem ser medidas em unidade de comprimento, o que permite interpretações interessantes em certas aplicações. Nos itens seguintes as hipóteses de Bernoulli são retiradas aos poucos, o que permite resolver problemas sem restrições práticas, com exceção da hipótese de regime permanente. Após a retirada de todas as hipóteses simplificadoras chega-se à equação mais geral, que nada mais é do que a primeira lei da Termodinâmica para volume de controle, em regime permanente. A grande vantagem desse tratamento é a separação dos efeitos térmicos dos efeitos mecânicos, o que possibilita uma concentração maior nos tipos de problemas que podem ser resolvidos. Assim, o professor de Termodinâmica pode dedicar sua atenção a problemas em que os efeitos térmicos são predominantes e o de Mecânica dos Fluidos pode se dedicar àqueles em que os efeitos são desprezíveis. Apesar de se perder inicialmente na generalidade, ganha-se na compreensão e na facilidade de absorver os conceitos e visualizar os fenômenos físicos. Observa-se no fim do capítulo a interpretação da perda de carga. Exercício 4.1 Ressaltar as hipóteses de Bernoulli: 1) R.P. Reservatório de grandes dimensões. 2) S.M. Visual. Não há bombas nem turbinas no trecho (1)-(2). 3) S.P. Dado do enunciado: fluido ideal. 4) F.I. Líquido. 5) P.U.S. Jato livre. Não vale o princípio da aderência. 6) S.T.C. Visual. O leitor deve ser hábil na escolha dos pontos (1) e (2). Como regra, o ponto (1) deve ser escolhido numa seção onde v, p e z sejam conhecidos, e o ponto (2), onde estiver a incógnita, ou vice-versa. v2 (1) (2) PHR h gh2v g2 v h PHRnoponto0z efetivaescalanap0p incógnitaaév PHRdopartiraacothz efetivaescalanap0p ioreservatórnofluidodonível0v z p g2 v z p g2 v 2 2 2 2 atm2 2 1 atm1 1 2 2 2 2 1 1 2 1 =→= →= →= → →= →= →= +γ+=+γ+ Observa-se que o PHR é arbitrário. Ao ser mudado alteram-se z1 e z2, mas a solução da equação permanece a mesma. Exercício 4.2 ( ) ( ) ( ) ( ) ( ) 2122 11 2 1 xxbaa4 g a2bag2 g a2bag2 g y2vx baa4ay4 g y2ga2 g y2ga2 g y2vxAlcance bag2v ga2v =⇒+=×+=+== +==×=== += = Exercício 4.3 m3,6 10 1075 20 9,4zz p g2 v zzz p g2 v z kPa7510025ppp z p g2 v z p g2 v )b s/m9,42,120gz2v g2 v z z p g2 v z p g2 v )a 4 32 AS S 2 S ASS s 2 S A atmSS S S 2 S A A 2 A AB 2 B A B B 2 B A A 2 A absef =×−−−=− γ−−=−→+γ+= −=−=−= +γ+=+γ+ =×==→= +γ+=+γ+ Exercício 4.4 ( ) ( ) s m8,7 20 6,3 45 g2 v hHhH g2 v Hhp Hp z p g2 v z p g2 v 2 2 1 2 1 2 1 2 2 2 2 1 1 2 1 = ⎟⎠ ⎞⎜⎝ ⎛ ==⇒γ +γ=γ γ+ +γ= γ= +γ+=+γ+ Exercício 4.5 4vv2,0 g2 vv 2,0 p comoez p g2 v z p g2 v 2 0 2 1 2 0 2 1 0 1 1 2 1 0 0 2 0 =−→=− =γ+γ+=+γ+ s N211,210gQQ s kg1,20026,0 10 000.8Q g QQ s L6,2 s m0026,0 4 08,052,0Q 4 D vQ s/m52,0v4vv16:anteriornadoSubstituin v4v40v80v 4 D v 4 D v mG m 322 0 0 0 2 0 2 0 01 2 1 2 0 2 1 1 2 0 0 =×== =×=γ=ρ= ==×π×=→π= =→=− =→×=×→π=πExercício 4.6 ( ) ( ) s L40 s m104AvQ s m4 10 10308,320 p 8,3g2v kPa3010106 000.1 2,020p 2,0ppp2,02,0p 8,3 p g2 v p g2 vp g2 v 3 2 14 3 1 1 44 1 O2Hm212mO2H1 1 2 1 0 2 01 2 1 =×==⇒=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ×−×=⎟⎟⎠ ⎞⎜⎜⎝ ⎛ γ−= =−×+= γ−γ+=⇒=×γ−×γ+ =γ+ γ+=γ+ − Exercício 4.7 cm3 16,3 07,72 v v DD 4 D v 4 D v s m16,35,020v m5,0 10 1020 20 07,7p g2 v g2 v z p g2 v z p g2 v )b s N2,22 4 02,007,710 4 D vQ s m07,75,2102gh2vh g2 v :PitotdetuboNo)a 1 2 21 2 2 2 2 1 1 1 4 32 1 2 2 2 1 2 2 2 2 1 1 2 1 2 4 2 2 2G 2 2 2 =×==→π=π =×= =×−=γ−=→+γ+=+γ+ =×π××=πγ= =××==→= Exercício 4.8 ( ) ( ) ( ) ( ) ( ) cm7,5m107,5 43,12 1014,34 v Q4D 4 D vQ s m43,1246,138v 6,13816,1355,020vv 155,0g2vvzz155,0 pp pzz55,055,0p zz pp g2 v g2 v z p g2 v z p g2 v )c 0 101036,1 10187101052pzphpzhhp kPa181017101052zzppz p g2 v z p g2 v )b s N3141014,310QQ s m1014,3 4 1,04 4 D vQ s m410 10 10521620z p Hg2vz p g2 v H)a 2 2 2 2 2 2 2 2 2 2 1 2 2 Hg2 1 2 212 Hg21 212Hg1 21 12 2 1 2 2 2 2 2 2 1 1 2 1 45 343 Hg 31 131Hg11 34 31133 3 2 3 1 1 2 1 24 G 3 2 22 1 1 4 3 1 1 111 1 2 1 1 =×=×π ××=π=⇒ π= =+= =−××=− ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −γ γ××=−⇒−+⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −γ γ=γ − =−γ−×γ−×γ+ −+γ −=− +γ+=+γ+ =−× ×+×−×=γ−γ −Δγ−=⇒=Δγ−γ−γ+ −=×−+=−γ+=⇒+γ+=+γ+ =××=γ=⇒×=×π×=π= =⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −×−×=⎟⎟⎠ ⎞⎜⎜⎝ ⎛ −γ−=⇒+γ+= −− − −− Exercício 4.9 s kg14,8 4 072,02 10 000.10 4 D v g Q s m2v84,59vv16 anteriornadosubstituinv4v 4 D v 4 D v 84,59 10 920.2920vv p g2vvz p g2 v z p g2 v Pa920.2922,0000.136hp 22 1 1m 1 2 1 2 1 12 2 1 1 2 2 2 4 2 1 2 2 22 1 2 21 1 2 1 2 2 2 2 Hg2 =×π××=πγ= =⇒=− →=→π=π =−×−=− γ−=−→+γ+=+γ+ −=×−=γ−= Exercício 4.10 0565,0 109,5 1033,3 Q Q s kg109,5 4 025,01201 4 D vQ s kg1033,3 4 00115,045,4720 4 D vQ s m45,401,0 7200 720020z p g2v 0z p g2 v z p g2 v z p g2 v :gasolinaNa pPa7200 2 1201 2 v g2 v p p g2 vp g2 v :arNo 2 3 am gm 2 22 a aama 3 22 g gggm g2 g g2 g2 g2 g g2 2 g2 g2 g g2 2 g2 g1 g g1 2 g1 g2 22 a2 a 2 a2 aa2 a a2 2 a2 a a1 2 a1 =× ×= ×=×π××=πρ= ×=×π××=πρ= =⎟⎠ ⎞⎜⎝ ⎛ +−−=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ +γ−= =+γ+⇒+γ+=+γ+ =−=×−=ρ−=γ−=⇒γ+=γ+ − − − − Exercício 4.11 kW375,0 000.1 1 8,0 301,010QHN s m01,0101010AvQ m342 20 10HH g2 vHz Hzp g2 vHzp g2 v)a 4 B B B 3 4 66 2 B6,1p 2 6 B1 6,1p2 2 2 2 B1 1 2 1 =××=η γ= =××== =−+=→+=+ ++γ+=++γ+ − ( ) ( ) ( ) N1,3810101081,1102010F Pa1081,1pm81,1 20 5,1210 10 10p s m5,12 108 01,0 A Qv g2 vvpp z p g2 v z p g2 v Pa10110p HpH p Hz p g2 v z p g2 v AApApFFAApAp)b 4444 4 G 22 4 4 G 4 G G 2 G 2 44G G G 2 G 4 4 2 4 44 4 6,4p46,4p 4 6,4p6 6 2 6 4 4 2 4 HpGp4HpGp4 =×××−−××= ×−=→−=−+=γ =×== −+γ=γ→+γ+=+γ+ =×= γ=→=γ→++γ+=+γ+ −−=→+−= −− − Exercício 4.12 ( ) ( ) ( ) kW4,410 7,0 2002,17,12QHN m200 7,12 7341806ppH Pa18062,1427,122,142pm2,142100 20 5,730p H g2 vvp Hz p g2 v z p g2 v Pa7348,577,128,57pm8,57100 20 5,730p s m5,7 4,04,0 2,1 A Qv s m2,12,02,030AvQ H g2 vvp Hz p g2 v z p g2 v 3 v v v 01 v 1 22 1 A,1p 2 1 2 A1 A,1pA A 2 A 1 1 2 1 0 22 0 0 0 3 AA 0,Ap 2 0 2 A0 0,Ap0 0 2 0 A A 2 A =×××=η γ= =−−=γ −= =×=×γ=⇒=+−=γ +−=γ⇒++γ+=+γ+ −=−×=−×γ=⇒−=−−=γ =×==⇒=××== −−=γ⇒++γ+=+γ+ − Exercício 4.13 ( ) ( ) Pa108,810102,18,0hpp phhp:amanométricEquação ppg2vv zp g2 vzp g2 v)a 445 F54 5F4 542 4 2 5 5 5 2 5 4 4 2 4 ×=−×=γ−γ=− =γ−γ+ γ −=− +γ+=+γ+ 176 10 108,820vv 4 4 2 4 2 5 =××=− s m047,0101007,4AvQ s m7,4 8 176v176vv9 v3vAvA3vAvAv 3 4 44 4 2 4 2 4 4555545544 =××== ==→=− =→=→= − ( ) kPa49Pa109,47,368,410p HzH p Hz p H Hz p g2 v Hz p g2 v )c m8,4 047,010 75,0103 Q N H QH N)b 44 6 6,1p6B 6 6,1p6 6 B 6,1p6 6 2 6 B1 1 2 1 4 3 BB B B B B −=×−=−−×= −−=γ→++γ= ++γ+=++γ+ =× ××=γ η=→η γ= Exercício 4.14 ( ) ( ) ( ) ( ) ( ) kW3102,150196,010QHN)d m2,212,156HzzHHHHH m2,15 10 000.765 20 9,610H s m9,6 6 510 D D vv pp g2 vv H)c Pa000.761036,1101105hppphhp)b s L6,19 s m0196,0 4 05,010 4 D vQ s m10251220v z p Hg2vz p g2 v H)a 34 B B303,0p3,0p3B0 4 22 B 2 2 1 2 2 21 12 2 1 2 2 B 544 Hg212Hg1 322 2 22 2 2 222 2 2 2 2 =×××=γ= =+=+−=⇒+=+ =−−+−= =⎟⎠ ⎞⎜⎝ ⎛×=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛= γ −+−= −=×−×+×=γ−γ+=⇒=γ−γ+ ==×π×=π=⇒=−−= ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −γ−=⇒+γ+= − Exercício 4.15 νπ=ν×π=→π=ν= =× ×==→= − 1 1 2 1 12 1 1 11 1 3 canalcanal D Q4D D Q4Re D Q4v;DvRe)b s m5,0 4,02,0 1040 bL QvbLvQ)a ( ) ( ) s m75,0 667,0 5,0 667,0 v v667,0v 2 h10 3 h25 h v v dyy10y25 h v Ldyyv10yv25 bL 1v yv10yv25v:Logo v10bev25a:sistemaosolvendoRe b2,0a20bay2 dy dv0 dy dv;m2,0ypara 2,0b2,0avvv;m2,0ypara 0c0v;0ypara)d m7,16 8000 103,0 20 4,2078,0H s m4,20 05,0 10404 D Q4v s m78,0 255,0 10404 D Q4v p g2 vv H Hz p g2 v z p g2 v )c m255,0 200010 10404 Re Q4D m máxmáx 23 máx m h 0 2máxh 0 máx 2 máxm máx 2 máx máxmáx 2 máxmáx 622 2,1p 2 3 2 2 2 2 3 2 1 1 1 2 2 2 1 2,1p 2,1p2 2 2 2 1 1 2 1 4 3 1 1 ===⇒×=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ +−= +−=+−= +−= =−= +×=→+=→== ×+×=⇒== =⇒== =×+−= =×π ××=π= =×π ××=π= γ+ −= ++γ+=+γ+ =××π ××=πν= ∫∫ − − − − Exercício 4.16 ( ) ( ) 224 3 1 1 1,0p 1 011,0p1 1 2 1 0 3 34 22 23 2 3 2 33 2 3 32 2 3 2 2 3,2p 232 3 2 23,2p3 3 2 3 2 2 2 2 cm45,1m1045,1 9,4 1071,0 v QA s m9,48,03520H p zg2vHz p g2 v z)b s L71,0 s m1071,01011,7AvQ s m1,7354,020v s m354,0v50vv400v20 A A vv 50235,320vv H pp g2vvHz p g2 v z p g2 v )a =×=×== =−−=⎟⎟⎠ ⎞⎜⎜⎝ ⎛ −γ−=⇒++γ+= =×=××== =×=⇒=⇒=−⇒== =+−×=− ⎟⎟⎠ ⎞⎜⎜⎝ ⎛ +γ−γ=−⇒++γ+=+γ+ −− −− W4,932,11071,010QHN m32,1 20 9,41,7 g2 vv H)c 34 B 222 1 2 2 B =×××=γ= =−=−= − Exercício 4.17 ( ) m545 20 2030 10 104,0H p g2 v H p H HHHH)c mca4525 10 102,0pH pp z p g2 v Hz p g2 v )b kW4 1000 18,025102010pQHN m25H m25305 10104,01510 10 1025,0H Hz p HHz p HHHHH )0(a)5(deEscoamentoHH m455 10 102,0 20 20z p g2 v H s m20 1010 1020 A Qv m3510 10 1025,00z p g2 v H)a 2 4 6 p 2 2 2 M 5 p p2M5 4 6 2 M 12 1 1 2 1 M2 2 2 2 34 TTT T 4 6 4 6 M p0 0 MM5 5 p0MM5 01 4 62 1 1 2 1 1 4 3 1 1 4 6 0 0 2 0 0 2,5 22,5 2,52 1 1 1 0,512 0,512 =−−+×= γ−−+γ= +=+ =−−×=γ→−γ=γ +γ+=++γ+ =×××××=ηγ= = −=−−×−++×= ++γ=+++γ +=++ →> =+×+=+γ+= = × ×== =+×+=+γ+= − − − Exercício 4.18 m2,23 10 10200 20 8p g2 v H s m2 108 1016v; s m8 102 1016v)a 4 32 2 2 2 2 3 3 33 3 2 =×+=γ+= =× ×==× ×= − − − − ( ) ( ) ( ) MPa362,010512,4010zHHp HHz p )d kW95,1102,12101610QHN )turbina(m2,1213,23 10 101,0HH p H HHHH)c m173,232,40HHH)b ).1(para)4(deSentidoHHm2,40 10 10400 20 2p g2 v H 64 43,4p34 3,4p34 4 334 TT 4 6 1,2p2 1 M 1,2p1M2 232,3p 234 32 3 2 3 3 =×−+=−+γ= +=+γ =××××=γ= −=+−×=+−γ= +=+ =−=−= ⇒>→=×+=γ+= − −− Exercício 4.19 1,2p1 1 2 1 2 2 2 2 1,2p12 2 4 2 4 4 4 2 4 4 2 3 3 3 2 3 3 Hz p g2 v z p g2 v HHH)b )1(para)6(deSentido 13 g2 v 49 g2 v z p g2 v H 11 g2 v z p g2 v H)a ++γ+=+γ+ += +=++=+γ+= +=+γ+= kW192,0 1000 18,0410610QHN m4Hm4117ppH)c s m10610106vAQ s m6vm8,1728,17 g2 v 34 TTT T 32 1M 3 34 2 2 2 =×××××=ηγ= =→−=−=γ−γ= ×=××== =→=−+= − −− 4,6p64 4 2 4 2M 4,6p4 4 2 4 2M6 6 2 6 4,6p42M6 Hzz p g2 v H Hz p g2 v Hz p g2 v HHHH)d +−+γ+= ++γ+=++γ+ +=+ kW59,0 1000 18,910610QHN )bomba(m8,9239 20 6H 34 B2 2 2M =××××=γ= =+−+= − Exercício 4.20 m7,20HH p HHH)c MPa207,0Pa107,20pm7,2047,26 10 10502 20 47,4p m7,26 1062,510 105,1 Q NHQHN H p Hz p g2 v HHHH)b s m1062,5 4 04,047,4 4 D vQ s m47,422 10 105020v kPa5010050ppp Hz p g2vHz p g2 v 0 HHH)a 0,3p0,3p 3 0,3p03 4 34 32 3 34 3 BB 3,2p 3 B1 1 2 1 3,2p3B1 3 3 22 1 14 3 1 atmabs1ef1 1,0p1 1 11,0p1 1 2 1 1,0p10 =⇒=γ += =×=⇒=−+×−+=γ =×× ×=γ=⇒γ= +γ=++γ+ +=+ ×=×π×=π=⇒=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ++×−×−= −=−=−= ⎟⎟⎠ ⎞⎜⎜⎝ ⎛ ++γ−=⇒++γ+= += − − Exercício 4.21 ( ) TB 32 2 3 2 2 2,1p 2,1p3 3 2 3 TB2 2 2 2 2,1p3TB2 3 4 3 TT T TTT T B TTTB 4 6 21 B HHpp g2 vvH Hzp g2 vHHzp g2 v HHHHH)b s m04,0 75,02010 106 H NQQHN m20 75,02 30 2 HHQH2QH m30 10 1003,0ppH)a −+γ −+−= ++γ+=−++γ+ +=−+ =×× ×=ηγ=→ηγ= =×=η=→ηγ=γ =×−=γ −= ( ) 4,1p4 4 2 4 1 1 2 1 4 622 2,1p 4 2 24 3 3 Hz p g2 v z p g2 v )c m45,02030 10 101,00 20 45H s m5 1080 04,0 A Qv; s m4 10100 04,0 A Qv ++γ+=+γ+ =−+×−+−= =×===×== −− m55,9 10 101,0 20 54p g2 vv H Hz p g2 v z p g2 v )d MPa295,0Pa1095,245,010103,0Hpp H pp 4 622 3 2 2 2 3 2,3p 2,3p2 2 2 2 3 3 2 3 546 4,1p14 4,1p 14 =×+−=γ+ −= ++γ+=+γ+ =×=×−×=γ−= −γ=γ Exercício 4.22 kW4,31036,11103010QHN m36,11H15H20H56,0HHHH m20 103010 106 Q N HQHN H56,0H8,07,0HHH QH QHNN 334 T TTTpT2B1B 34 3 2B 2B2B2B T1BTBTT1B B 1B TTBT =××××=γ= =⇒=−+⇒=−+ =×× ×=γ=⇒γ= =⇒××=ηη=⇒η γ=ηγ⇒= −− − Exercício 4.23 ( ) ( ) 2 24 316 24 312181216 8 R 6 R3 4 R3 2 R R 16 drrrR3rR3rR R 16 rdrrR R 16rdr2 2 v R r1v R 1 dA v v A 1 8888 8 R 0 752346 8 R 0 322 8 3 R 0 máx 2 máx 2 3 A m =α ×=−+−×=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −+−=α −+−=α −=π ⎪⎪⎭ ⎪⎪⎬ ⎫ ⎪⎪⎩ ⎪⎪⎨ ⎧ ⎥⎥⎦ ⎤ ⎢⎢⎣ ⎡ ⎟⎠ ⎞⎜⎝ ⎛− π=α ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛=α ∫ ∫∫ ∫ Exercício 4.24 ( ) 06,1 R 17 7R 10 7 R 672,3x 17 7Rx 10 7 R 672,3 dx)xRx( R 672,3dxxRx R 672,3 dxdr;xRr;rRx:iávelvardeMudança rdr) R rR( R 672,3rdr2 v 60 49 R r1v R 1 dA v v A 1 7 17 7 17 7 17 R 0 7 17 7 10 7 17 7 10 R 0 7 3 7 17 R 0 7 3 7 17 7 3 R 02 3 R 0 máx 7 1 máx 2 3 m =α ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −=α −=−=α −=−=−= −=π ⎥⎥ ⎥⎥ ⎥⎥ ⎦ ⎤ ⎢⎢ ⎢⎢ ⎢⎢ ⎣ ⎡ ⎟⎠ ⎞⎜⎝ ⎛ − π=α ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛=α ∫∫ ∫∫ ∫ Exercício 4.25 m5,0 20 311,1 g2 v)e W104985,1 2 103100011,1 2 AvC)d 11,1 58 2 58,4 3 596,0 4 5064,0 135 1 22 m 5 33 m 234 =×=α ×=×××=ρα= =α ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ×+×+×+×=α ( )dy8y8,4y96,0y064,0 135 1dy2 3 2y4,0 52 1 2y4,0v:olog 4,0C2C544v5ypara 2C2v0ypara CyCv dA v v A 1)c s m30523bhvQ)b s m3 2 24v)a 5 0 235 0 3 11 2 21 3 A m 3 m m ∫∫ ∫ +++=⎟⎠ ⎞⎜⎝ ⎛ + ×=α += =⇒+=⇒=→= =⇒=→= += ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛=α =××== =+= Exercício 4.26 ( ) 73,1 7 55 6 305 5 700.25 4 000.27 103 1 7 hh 6 30h 5 700.2h 4 000.27 103 1 dy)yy30y700.2y000.27( 103h 1bdy) 67 yy30( bh 1)e h kg135.27600.325,005,067,0900bhvQ)d s m67,0 3 5515v 3 hh15 3 h 2 h30 h 1bdy)yy30( bh 1v)c m N9,130063,0 m s.N063,0 10 107000.9 g s m107 s m107,0St7,0cSt70; m N000.9 dy dv30 dy dv)b s26 dy dvy230 dy dv)a 6 543 5 6 543 5 654h 0 3 5 3h 0 2 mm 2 m 232h 0 2 m 20y 2 5 2 5 2 4 3 0y0y 1 cm2y =⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −×+×−××=α ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −+−×=α −+−××= −=α =××××=ρ= =−×= −=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −=−= =×=τ =××=γν=μ ×=×===ν=γ ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛μ=τ⇒=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ =⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛⇒−= ∫∫ ∫ = − −− == − = Exercício 4.27 s L20 s m02,0101002AvQ s m28,4 10 10409 1 20v Hzp g2 vzp g2 v HHH NHQNHQHQ 3 4 t20 4 3 2 2,0p2 2 2 2 20 0 2 0 0 2,0p20 diss661100 ==××== =⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −×−= ++γ+α=+γ+α += +γ=+γ+γ − s L351520QQQ 106 =+=+= m7H m9H 1 0 = = kW31,1 1000 18,01640NN W1640N 10006,010103510N71015109102010 m6,0 20 5,31H s m5,3 10100 1035 A Q v g2 v H TT 343434 2 6 4 3 t 6 6 2 6 66 =××=η= −= +××××=+×××+××× =×= =× ×==→α= −−− − − Exercício 4.28 m4,11234,27HHHH m4,27HH10510310510 21010103,0105103,231051030101010 m3,0 20 5,2 g2 v H m3,2525 20 5,2H v s m5,2 05,0 1054 D Q4vz g2 v H m3010 10 102,0z p H s L5 2 10 2 Q QQ HQHQHQHQHQHQ 7,6p5,4p7,4p6,5p 7,4p7,4p 3434 34343434 22 7 7 2 3 72 3 2 3 33 2 3 3 4 6 0 0 0 0 73 7,4p73,2p31,0p0773300 =−−=−−= =⇒×××+×××+ +×××+×××+×××=××× === =+= ==×π ××=π=→+= =+×=+γ= ==== γ+γ+γ+γ+γ=γ −− −−−− − Exercício4.29 ( ) ( ) kW75,3 8,0 3NN kW68,05,7NN m10H;0H;0H HQHHQHHQHQHQNNHQ T T 2 BB1 760 p7pp6pp077662100 7,36,54,33,21,0 ==η= =×=η= === γ++γ++γ+γ+γ=−+γ 3 60 6 4 0 4 34 6 4 0 434 1010QQ 1050Q108Q106 21010108Q106Q101010101037506000 − −− ×+= =××+×× ×××+××+××+×××=− Resolvendo o sistema de equações: m2,117 8,0102,310 103 Q N HHQN m4,45 102,1310 8,0105,7 Q N H HQ N s L2,13Q s L2,3Q 34 3 T6 T TTT6T 34 3 0 BB B B B0 B 0 6 = ××× ×=ηγ=→ηγ= = ×× ××=γ η=→η γ= = = − − Exercício 4.30 ( ) s L56 s m056,0028,02Q2Q s m028,0 210 8,0700 H N Q HQ N)b bombam2H25,0125,2 2 H 7 4 2 Q 1 2 Q 1Q4 2 Q 5 2 Q H 2 Q 7Q m4zH m5zH m72 10 1050z p H 2 Q QQQ2QQQ HQHQHQHQHQHQHQ)a 3 30 3 4 B BB 3 B B3 B M M 00 0 00 M 0 0 33 22 4 3 0 0 0 0 322320 3,1p32,1p21,0p03322M300 ==×== =× ×=γ η=⇒η γ= =⇒++++=+ ×γ+×γ+×γ+×γ+×γ=×γ+×γ == == =+×=+γ= ==⇒=+= γ+γ+γ+γ+γ=γ+γ Exercício 4.31 g2 v5,1H; g2 v5H ; g2 v 3 1H; g2 v5H; g2 v7H;8H;0H H2HH3H2HH3H3 HQ2HQHQ3HQ2HQHQ3HQ3 Q3QQQQ;Q2Q HQHQHQHQHQHQHQ 2 2 2,sp 2 1 1,sp 2 e e,0p 2 2 2 2 1 1B0 2,sp1,spe,0p21B0 2,sp11,sp1e,0p12111B101 1021012 2,sp21,sp1e,0p02211B000 == =+=+=== ++++=+ γ+γ+γ+γ+γ=γ+γ =→+== γ+γ+γ+γ+γ=γ+γ g2 v3 g2 v5 g2 v g2 v210 g2 v783 2 2 2 1 2 e 2 2 2 1 ++++++=× kW15 1000 1 48,0 80897,010HQN s m0897,0 4 138,06 4 D vQ s m6v s m2v140v35v9v20v6140 v2vv3v g2 v g2 v 5 g2 v 67 4 B Be B 322 e ee e1 2 1 2 1 2 1 2 1 121e 2 e 2 2 2 1 =×××=η γ= =×π×=π= =⇒=→=→++= == ++= Exercício 4.32 ( ) kW36,210101061015104106,11101010N HQHQHQN)c m10 p H;m15 p H m6,114,820 pp H)b kPa84pm4,8 p 8,15101048,11106 p 51010 m8,15 10 1015,0 20 4p g2 v H m8,11 10 101,0 20 6p g2 v H c5 p g2 v H HQHQHQ s m6 1010 106 A Q v; s m4 1010 104 A Q v; s m10 1010 1010 A Q v s L6410QQQ)a 3343434 diss 6,5p64,3p42,1p1diss 5 6,5p 3 4,3p 21 2,1p 2 23323 4 62 3 2 3 3 4 62 5 2 5 5 2 2 2 2 335522 4 3 6 54 3 4 34 3 1 2 416 =××××+×××+×××= γ+γ+γ= =γ==γ= =−=γ−γ= =⇒=γ⇒×××+××=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ γ+×× =×+=γ+= =×+=γ+= +=γ+= γ+γ=γ =× ×===× ×===× ×== =−=−= −−−− −−− − − − − − − Exercício 4.33 1212 12 2 1 2 2 M 2M1 ppevvpp g2 vvH HHH)a <<→γ −+−= =+ m6,13z 104404,3026,13z44204424,3096,13 m9 10 1080 20 53,4p g2 v H HQHQHQHQHQHQHQ s m53,4 1030 0136,0 A Q v s m0136,00304,0046,0QQQ)d s m046,0 2010 8,01011 H N Q HQ N)c s m0304,087,3 4 1,0v 4 DQ QQ)b m3,2615 20 87,31515 g2 v15 H s m87,3v12 g2 v16 3 g2 v 15 g2 v15 30:)1(nadoSubstituin 15 g2 v15pp g2 vv16pp g2 vv H v4vevv )1(H g2 v Hz HHHH turbina0H 4 32 6 2 6 6 9,8p95,4p47,6p699BB4466 4 6 6 3 CB6 3 4 3 B BB B B BB B 32 2 2 A AC 22 2 T 2 2 2 2 2 2 2 2 221 2 2 2 221 2 2 2 1 T 2123 3,0p 2 3 T0 3,0p3T0 M = ×+×+×+=×+×+× =×+=γ+= γ+γ+γ+γ=γ+γ+γ =×== =−=−= =× ××=γ η=→η γ= =××π=π= = =+×=+= =⇒= +=−− +=γ −+−=γ −+−= == +=− +=− ⇒< − Exercício 4.34 m1,8 20 7,12 g2 v H s m4,25v s m7,12 05,0 10254 D Q4 v NHQNHQ2NHQNHQHQ 22 1 1 32 3 2 1 1 1 diss3311diss332211 === =⇒=×π ××=π= +γ=+γ⇒+γ=+γ+γ − kW6,16 75,0 49,12NN W490.124401,810251022,32105010N m2,32 20 4,25H B B 3434 2 3 ==η= =+××××−×××= == −− Exercício 4.35 kg kJ5,7 kg J7500qg massa calor m750 20 25125 g2 vv q p g2 v q p g2 v s m125255v5v 5 2,0 1 p ppp v v AvAv 222 1 2 2 2 2 2 2 1 1 2 1 12 2 1 2 1 2 2 1 1 2 1 1 2 222111 === =−=−= γ+=+γ+ =×== ===ρ ρ→ρ=ρ ρ ρ=→ρ=ρ Exercício 4.36 kW75,0 s J7501750Q s kg111QQgqQQ kg J750 2 1040gq s m40 05,0 1,0 1,0 2,010 A A p p v A A vvAvAv s m10 1,0 1 A Q v g2 vv q 11mm 22 2 1 2 1 1 2 1 2 1 12222111 1 1 1 2 1 2 2 ==×= =×=ρ=→= =−= =××==ρ ρ=⇒ρ=ρ === −= & & Exercício 4.37 g p g2 vHqTc g p g2 v 2 2 2 2 M1v 1 1 2 1 ρ+=+++ρ+ ( ) s kg1634 42,5 10001098,02 vv NQ~2 Q s m2,5 4.0 52,04 A A vv TTeppSe g2 v gQ N gQ Q~ g2 v gQ NHgHQN gQ Q~qqgQQ~ pp TT 222 1 2 2 m 2 1 12 212121 2 2 mm 2 1 m MMm m m 2 2 1 1 21 =− ×+−×=− ⎟⎠ ⎞⎜⎝ ⎛ + = =×== ρ=ρ⇒== =++ =→= =→= ρ=ρ⇒= & & && Exercício 4.38 ( ) kW5610 600.3 500.45,187.45gqQQ kg J5,187.45800.58810760.2090.2 2 60275gq kg J800.588 3600 4500 10736 Q NgHgHQN gHhh 2 vv gqh 2 v gqgHh 2 v 3 m 3 22 3 m mmm M12 2 1 2 2 2 2 2 M1 2 1 −=××−== −=+×−+−= =×==⇒= +−+−=⇒+=+−+ −& Exercício 4.39 diss332211 NHQHQNHQ +γ+γ=+γ s m6 25,0 5,1 A Qv s m5 5,0 5,2 A Qv s m5,115,2QQQ s m12,05AvQ 3 3 3 1 1 1 3 213 3 222 === === =−=−= =×== 949,0 7,14273 273 N N kW273W1073,2107,1425,215,2108,315,11025,31110N m8,31 10 103,0 20 6p g2 v H m25,31 10 103,0 20 5p g2 v H m25,21 10 102,0 20 5p g2 v H B B 53442 4 62 3 2 3 3 4 62 2 2 2 2 4 62 1 2 1 1 =+==η =×=×+××−××+××= =×+=γ+= =×+=γ+= =×+=γ+= Capítulo 5 Equação da Quantidade de Movimento para Regime Permanente Neste capítulo admite-se ainda a hipótese de regime permanente para simplificar o raciocínio. O tratamento do regime variado, como já foi dito, será feito no Capítulo 10. O objetivo deste capítulo é mostrar como calcular a força resultante que um fluido aplica em superfícies com as quais está em contato. Essa resultante deve-se ao efeito normal, criado pelas pressões, e ao tangencial, provocado pelas tensões de cisalhamento. Pelo equacionamento utilizado, é possível verificar que a integral das forças normais e tangenciais reduz-se a uma solução bastante simplificada. Na solução dos problemas despreza-se o efeito do peso do fluido, que poderia ser obtido pelo produto do volume pelo seu peso específico. Esse cálculo poderia causar embaraços, no caso de volumes de figuras complexas; entretanto, será sempre um problema geométrico, que não tem nenhuma relação com os objetivos do capítulo. Exercício 5.1 ( )[ ]12m222111s vvQnApnApF rrrrr −++−= Na escala efetiva p1 = 0, p2 = 0 e é dado do enunciado que v1 = 0. N3,132 4 35,030 8,9 7,12 4 D v g F AvF:xSegundovQF 2 2 2 22 2s 2 2 2s2ms x x =×π××−=πγ= ρ−=→−= rr kW99,1 1000 1464,37,12QHN s m4,3 4 38,030 4 D vQ m46 8,92 30 g2v H HHHH B 322 2 2 22 2 B p2B1 2,1 =×××=γ= =×π×=π= =×== +=+ Exercício 5.2 ( ) ( ) ( )[ ] ( ) ( )[ ] 2,1p2 2 1 2 21 2,1p2 2 21 2 1 4 3 2 24 3 1 1 o 1m o 11zS o 1m o 11zS 2 o 1m o 11xS o 12m22 o 11xS Hz g2 vvpHz g2 vp g2 v s m5,7 108 106 A Qv; s m3 1020 106 A Qv 60senvQ60senApF 60senvQ60senApF v60cosvQ60cosApF 60cosvvQ1Ap60cosApF ++−=γ⇒++=γ+ =× ×===× ×== += −−−= −+= −+++−−= − − − − ( ) N12660sen3106000.160sen1020106,63F N285,760cos3106000.160cos1020106,63F kPa6,63pm36,631 20 35,7p o3o43 zS o3o43 xS 1 22 1 =××××+××××= ≅−×××+××××= =⇒=++−=γ −− −− Exercício 5.3 ( )[ ]12m222111s vvQnApnApF rrrrr −++−= ( ) ( ) ( )[ ] ( ) ( ) 2 2 222s 222222s 232 3 2 233322 322222s 23223322s AvApF v2vAvApF v4v 20 80v A A vvAvAv cosvvAvApF vcosvAvcosAp1ApF 3,2x 3,2x 3,2x 3,2x ρ−= −ρ+= =→==→= θ−ρ+= −θρ+θ+−−= m5,7 000.10 1050 20 07,7h p g2 v hHH s m07,7 8 400vv84000 1080v1000108010500 32 2 2 2 21 2 2 2 42 2 43 =×+=→γ+=→= ==→−= ×××−×××= −− Exercício 5.4 ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] N6001020102010200F N5601020102010180F kPa180pm1811 10 10200Hz pp Hz pp s kg201020000.1QQ s m10 1020 1020 A Qvvv vQApF v0Q0Ap1ApF vQApF 0vQ1Ap0ApF 43 zS 43 xS 24 3 2,1p2 12 2,1p2 21 3 m 4 3 21 1m11zS 1m2211zS 2m22xS 2m2211xS =×+×××= −=×−×××−= =⇒=−−×=−−γ=γ⇒++γ=γ =××=ρ= =× ×==== += −++−−= −−= −++−= − − − − − N820600560FFF 222zS 2 xSS =+=+= Exercício 5.5 REDUÇÃO ( ) ( ) Pa500.16123 2 1000000.84p vv 2 p g2 vv pp s m1234vv4v 15 30v D D vv 4 D v 4 D v p g2 vp g2 v HH 22 2 2 2 2 11 2 2 2 1 12 212 2 1 2 2 1 12 2 2 2 2 1 1 2 2 21 2 1 21 =−+= −ρ+=−γ+= =×=→= ⎟⎠ ⎞⎜⎝ ⎛=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛=→π=π γ+=γ+→= ( )[ ]12m222111s vvQnApnApF rrrrr −++−= ( ) ( ) ( )[ ] ( ) ( ) N740.3123212 4 15,0500.16 4 3,0000.84F s kg212 4 3,03000.1 4 D vQ vvQApApF vvQ1Ap1ApF 22 s 22 1 1m 21m2211s 12m2211s Rx Rx Rx =−×+×π×−×π×= =×π××=πρ= −+−= −+++−−= TURBINA 3 3 m TT T23 3 T 2 3T2 m N000.1010000.1g s m212,0 000.1 212QQ Q NHQHN Hpp p H p HHH =×=ρ=γ ==ρ= γ=→γ= γ−=→γ=−γ =− ( ) ( ) N242 4 15,0800.2500.16AppF Pa800.237,1000.10500.16p m37,1 212,0000.10 109,2H 2 32s 3 3 T Tx =×π×−=−= =×−= =× ×= Exercício 5.6 ( )[ ] ( ) ( )[ ] N792.810314,0000.10314,01018vQApF vQ1ApF)b kW7,80107,25314,010N m7,251 20 5,210 10 10218H s m5,2 4,0 314,04 D Q4v; s m10 2,0 314,04 D Q4v z g2 vvpp H g2 vp Hz 2 vp QHN)a 4 1m11xS 1m11xS 34 22 4 4 T 22 2 222 1 1 1 2 2 2 121 T 2 22 T1 2 11 T =××+××=+= −+−−= =×××= =+−+×−−= =×π ×=π==×π ×=π= +−+γ −=⇒+γ=−++γ γ= − Exercício 5.7 ( )[ ]12m222111s vvQnApnApF rrrrr −++−= ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] N120430F vQvQApvQ1ApF)2 N180630F vQvQApvQ1ApF)1 s m4 1075 03,0 A Qv s m6 1050 03,0 A Qv s m03,0Q s kg30101003000.1AvQ s m3 10 90vv10000.1090.1 10100v000.11010010100090.1 AvApF vQ1ApF 2y 2y 1y 1y x x s 2m2m222m22s s 1m1m111m11s 42 2 41 1 3 4 00m 0 2 0 42 0 43 0 2 000s 1m00s −=×−= −=−−=++−= =×= =+=−+−−= = × == = × == = =×××=ρ= ==→+= ××−×××−=− ρ−−= +++−= − − − −− Exercício 5.8 ( ) ( ) ( )[ ]o1o2mo22o11xS 30cosv60cosvQ60cosAp30cosApF +−+−+−= ( ) ( ) ( ) N3401,2495,231F N1,24930sen560sen101010000.130sen1020105,137F N5,23130cos560cos101010000.130cos1020105,137F kPa5,137pm75,1310 20 510H g2 vvp H g2 vp g2 v s m10 1010 1010 A Qv; s m5 1020 1010 A Qv )]30senv60senv(Q30senApF )]30senv60senv(Q)60sen(Ap)30sen(Ap[F 30cosv60cosvQ30cosApF 22 S oo3o43 yS oo3o43 xS 1 22 2,1p 2 1 2 21 2,1p 2 21 2 1 4 3 2 24 3 1 1 o 1 o 2m o 11yS o 1 o 2m o 22 o 11yS o 1 o 2m o 11xS =+= =×+×××+××××= −=×−×××+××××−= =⇒=+−=+−=γ +=γ+ =× ×===× ×== ++= −−+−+−−= −+−= −− −− − − − − Exercício 5.9 ( )[ ]12m222111s vvQnApnApF rrrrr −++−= ( ) ( )[ ] ( ) ( ) N58958911782053,39 4 1,010150F s kg3,39Q s m0393,0 4 1,05 4 D vQ s m20 5 105 D D vv vvQApF vvQ1ApF 2 3 s m 322 1 1 22 2 1 12 21m11s 12m11s x x x =−=−+×π××= =→=×π×=π= =⎟⎠ ⎞⎜⎝ ⎛×=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛= −+= −+−−= N785 4 05,020000.1AvFF 2 3 2 2 2sx = ×π××=ρ== Exercício 5.10 2 h hAghAgh2FF AghAhF Agh2Fgh2vAvF 2 121dirxS 22dir 1xS1j 2 jxS =⇒ρ=××ρ⇒= ρ=γ= ××ρ=⇒=→ρ= Exercício 5.11 ( )[ ]12m222111s vvQnApnApF rrrrr −++−= ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( )[ ] N3645sen55,220F senvQsenvQsenApF 0senvQsenAp0ApF N9,1445cos155,220F s m55,2 1,0 10204 D Q4vv s kg201020000.1QQ cos1vQcosvvQcosApApF vcosvQcosAp1ApF o s 2m2m22s 2m2211s o s 2 3 2 j 21 3 m m21m2111s 12m2211s y y y x x x −=××−= θ−=θ−θ−= −θ+θ+−= =−××= = ×π ××= π == =××=ρ= θ−=θ−+θ−= −θ+θ+−−= − − Exercício 5.12 ( ) kW3,25107,02,27133,010QHN s m133,0 4 15,052,7Q m2,27 20 5,730H s m5,7 15,0000.1 000.14 D F4 v 4 DvF g2 v zH g2 v Hz 34 TTT 32 2 T 22 xS 2 2 2 2xS 2 2 1T 2 2 T1 =××××=ηγ= =×π×= =−= =×π× ×=ρπ=⇒ πρ= −=⇒=− − Exercício 5.13 N5201020106,2F Pa106,22,11021036,1p 022,1p ApF 45 pistão 545 p HgOHp pppistão 2 =×××= ×=×−××= =×γ−×γ+ = ( )[ ]12m222111s vvQnApnApF rrrrr −++−= ( ) ( ) ( ) ( ) ( ) pistãoo j 2 xs o j oo 21mxs 12ms F60cos1 A QF 60cos1 A QQ60cos1Qv60cosvvQF vvQF =−ρ= −ρ=−ρ=−= −−= rrr ( ) ( ) sm233,060cos1000.1 1052052060cos1 AFQ 3 o 4 o jpistão =−× ××=−ρ= − Exercício 5.14 ( ) ( ) ( ) ( ) ( )( ) ( )( ) s L10 s m01,0101010AvQ s m10 60cos110 60cos13010 60cos1A 60cos1A vv 60cos1Av60cos1Av 60cos1AvF 60cos1AvF 3 4 djdj o o o dj o ej ejdj o djd 2 j o eje 2 j o djd 2 jdxS o eje 2 jexS ==××== =+ −×=+ −= +ρ=−ρ +ρ= −ρ= − Exercício 5.15 Adotando o eixo x na direção do jato do bocal: s m2 1050000.1 30sen40 A 30senGv 30senGF A F v AvvQF 4 o j j o s j s j j 2 jjms x x x = ×× ×=ρ= =→ρ= ρ== − Exercício 5.16 ( ) ( ) ( ) ( ) s m86,5 08,0000.1 8,1724vFF D F4 v 4 D vF H g2 v Hz N8,17260cos1 4 1,063,6000.160cos1 4 D vF s m63,68,2520Hzg2vH g2 v z)a 221xS2xS 2 2 2xS 2 2 22 22xS 2,0p 2 2 B0 o 2 2o 2 12 11xS 1,0p011,0p 2 1 0 =×π× ×=⇒= ρπ=⇒ πρ= +=+ =−××π××=−πρ= =−×=−=⇒+= N376173250299FGFF N173 4 08,086,5000.14 D vF N29960sen 4 1,063,6000.160sen 4 D vF)b kW26,010 7,0 62,00294,010QHN s m0294,0 4 08,086,5 4 D vQ m62,059,3 20 86,5zH g2 v H 2yS1ySsolo 2 2 2 22 22yS o 2 o 2 12 11yS 3 4 B B B 322 2 2 2 02,0p 2 2 B =−+=−+= =×π××=πρ= −=××π××−=πρ= =×××=η γ= =×π×=π= =−+=−+= − Exercício 5.17 ( )[ ]12m222111s vvQnApnApF rrrrr −++−= ( ) ( ) ( ) ( ) s m21120vuvvvu s m20 60cos110000.1 20 60cos1A F u N2030sen2010 10 11,030senGAv30senGAT T60cos1Au60cos1uQF jj o4o j s o2 4 oo fio fio o j 2o ms x apx =+=+=→−= = −× = −ρ = =+××=+εμ=+τ= =−ρ=−= − − − Exercício 5.18 s L9,19 s m0199,0102094,9AvQ s m94,9194,8vuv s m94,8 1020000.1 1 105,0 110330sen200 A Av30Gsen u Av30GsenAuF 3 4 jj sj 4 3 2o j so so j 2 xS ==××== =+=+= =×× ××××+×=ρ εμ+= εμ+=ρ= − − − − Exercício 5.19 ( )( ) s m7,705,1 60 4502nR2Rv vcos1vvvAN s ssjjj =×π×=π=ω= θ−−ρ= ( )( ) kW115.41 000.1 17,70170cos17,701001001,0000.1N o =××−−×××= Exercício 5.20 N890.387307320072F s m730 2,05,0 73 A Q v s kg73172QQQ s kg723,02002,1AvQ vQvQF xS 22 2m 2 3m1m2m 1111m 22m11mxS −=×−×= =×=ρ= =+=+= =××=ρ= −= Exercício 5.21 ( )[ ]12m222111s vvQnApnApF rrrrr −++−= ( ) m2,3 20 8 g2 vh s m8 1096,1 107,15 A Qv m1096,1 6,125 107,15000.1 F QA N6,1251081057,1F Pa1057,1785,0102hp ApFF A QvQF 22 3 3 2 2 23 23 s 2 2 34 s 44 1p ppps 2 2 2ms x x x x ===→= × ×== ×=××=ρ= =×××= ×=××=γ= == ρ−=−= − − −− − Exercício 5.22 Pa2160 2 602,1 2 v p g2 vp N35,0108,0602,1AvF 22 si 0 2 s0 422 sxS =×=ρ=⇒=γ −=×××−=ρ−= − Exercício 5.23 s m155,53 10 1013020Hz p g2v H g2 v z p HHH 4 3 2,0p0 0 2 2,0p 2 2 0 0 2,0p20 =−+××=⎟⎟⎠ ⎞⎜⎜⎝ ⎛ −+γ= +=+γ→+= ( )[ ]12m222111s vvQnApnApF rrrrr −++−= m115,0 4,13000.1 17674 v F4 D 4 D vAvF s m4,135,51 10 1013020Hz p g2v N1767 4 1,015000.1 4 D vF FAvvQF 22 2 s 2 2 22 22 2 2s 4 3 p0 0 2 2 2 2 22 2s s2 2 22ms x x 2,0 x xx = ××π ×=′πρ =′ ′π′ρ=′′ρ= =⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −+××=⎟⎟⎠ ⎞⎜⎜⎝ ⎛ −′+γ=′ =×π××=πρ= −=ρ−=−=′ Capítulo 6 ANÁLISE DIMENSIONAL – SEMELHANÇA Neste capítulo o leitor deverá compreender a utilidade da análise dimensional para a construção de leis da Física. O agrupamento de grandezas em números adimensionais facilita a análise empírica das funções que representam os fenômenos da natureza. O capítulo é dedicado à interpretação dos principais adimensionais utilizados na Mecânica dos Fluidos e à teoria dos modelos ou semelhança, de grande utilidade em análise experimental. Exercício 6.1 Base FLT [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] 1 12 2 1121 m 1 G 13 2 2 3 24 21 2 3 2 FLTN FLW FLM TL TFL TFLTTFLQ FTQ TLQ FL FLp FL TFL FF TFLm LTa LV LA − − − −−− − − − − − − − − = = = =ν =μ =×= = = =τ = =γ =ρ = = = = = Exercício 6.2 ( ) ( )vazãodeecoeficient nD QQDn ynoldsRedenúmeronDRe nDnD Dn D,n,:Base 32 321 2 2 1 321 1 φ==π⇒ρ=π ν=⇒ ν=ρ μ=π⇒μρ=π ρ βββ ααα Base MLT [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] 3212 22 222 12 1122 1 m 312 G 13 21 2122 2232 3 2 2 3 2 TMLLTMLTN TMLW TMLLMLTM TL TMLTLMLT MTQ MLTTMLTQ TLQ TML TMLLMLTp TMLLMLT ML MLTF Mm LTa LV LA −−− − −− − −−−− − −−− − −− −−−− −−−− − − − =×= = =×= =ν =×=μ = =×= = =τ =×= =×=γ =ρ = = = = = ( )omanométricecoeficient Dn gH Dn H HDn 22 B 22 B 3B 321 3 Ψ==ρ γ=π⇒γρ=π δδδ Exercício 6.3 ( ) ( ) 0f0h,g,,pf )h,g,(fp =π→=ρ ρ= [ ] [ ] [ ] [ ] Lh TLg TFL FLp 12 24 2 = = =ρ = − − − Como só existe um adimensional, ele será uma constante. ghCpC gh p ρ=⇒=ρ=π Exercício 6.4 ( ) g CTgTTg 2 1; 2 1012 0 TLTTLLTg 0g,,Tf 2 1 2 1 212 21 12221222121 l ll l l =⇒==π =α−=α⇒=+α− =α+α =π→=π→=π = − +α−α+αα−αααα Exercício 6.5 ( ) ( ) ( ) 0f0p,,D,Qf p,,DfQ =π→=ρ ρ= Como só existe um adimensional, ele será uma constante. [ ] [ ] [ ] [ ] 2 24 13 FLp TFL LD TLQ − − − = =ρ = = m = n – r = 4 – 3 = 1 D,p,:Base 134rnm ρ =−=−= ( ) ( ) 012 0324 0 TLF TLLFLTFLQDp 1 321 21 12324 13224 132121 321321 =−α =+α+α−α− =α+α =π =ρ=π −α+α+α−α−α+α −αα−α−ααα 2 1 2 2 1 22 1 2 1 pD QQDp ρ=ρ=π −− ρ= pCDQ 2 Exercício 6.6 ( ) ( ) ( ) ( ) 25212 2 2 1 2 1 12 1 21 1121211212121 hCg2tghghQ 2tgh2 h2htg2A2htg2bh2 b 2 tg 2 bhAvAQ ghvvhg 2 1; 2 1 012 01 TLLTLTLvhg 0h,g,vf =α×π= α=× α =⇒α=⇒=α→=→= π=⇒=π −=α−=α ⎭⎬ ⎫ =−α− =+α+α =π→=π→=π = −− −α−+α+α−αα−ααα Exercício 6.7 ( ) ( ) ( ) 0f0H,Q,,Nf H,Q,fN BB BB =π→=γ γ= Como só existe um adimensional, ele será uma constante. [ ] [ ] [ ] [ ] LH TLQ FL FLTN B 13 3 1 B = = =γ = − − − 2 1 2 2 1 1 3 2 =α −=α −=α BH,Q,:Base 134rnm γ =−=−= ( ) ( ) 01 0133 01 TLF FLTLTLFLNHQ 2 321 1 1213231311 1321313 B 3 B 21 =−α− =+α+α+α− =+α =π =γ=π −α−+α+α+α−+α −αα−α−ααα BB QHCN γ= Exercício 6.8 ( ) ( ) ( ) ( )Mach c v v ccLv 1 0 0 012 014 0 Froude Lg vFr v LgLgv 2 1 0 022 014 0 Euler Lv FEu Lv FFLv 2 2 1 02 04 01 ynoldsRevLRe vL Lv 1 1 1 012 024 01 LTLTLTLFcLv LTLTLTLFgLv FLTLTLFFLv TFLLTLTLFLv L,v,:Base c,g,F,,L,v,:Grandezas 010 4 2 3 1 21 321 1 2 2 20 3 2 3 1 21 321 1 2222 221 2 2 3 1 21 321 1 111 1 2 3 1 21 321 1 132212141 1 321 4 232212141 1 321 3 32212141 1 321 2 232212141 1 321 1 =Μ⇒=ρ=π⇒ −=λ =λ =λ ⎪⎭ ⎪⎬ ⎫ =−λ−λ =+λ+λ+λ− =λ =⇒=ρ=π⇒ −=δ =δ =δ ⎪⎭ ⎪⎬ ⎫ =−δ−δ =+δ+δ+δ− =δ ρ=⇒ρ=ρ=π⇒−=β −=β −=β ⎪⎭ ⎪⎬ ⎫ =β−β =β+β+β− =+β μ ρ=⇒ρ μ=μρ=π⇒ −=α −=α −=α ⎪⎭ ⎪⎬ ⎫ =+α−α =−α+α+α− =+α =π⇒ρ=π =π⇒ρ=π =π⇒ρ=π =π⇒μρ=π ρ μρ − − −−− −−− −λλ−λλλ−λλλλ −δδ−δδδ−δδδδ ββ−βββ−ββββ −αα−ααα−αααα Exercício 6.9 ( ) ( ) ( )4321 ,,,f0c,,,D,,v,Ff c,,,D,,vfF ππππ→=μρω μρω= 1 1 1 2 3 1 −=α −=α −=α B 1 B 11 NHQ −−−γ=π⇒ [ ] [ ] [ ] [ ] [ ] [ ] [ ] 1 2 24 1 1 LTc TFL TFL LD T LTv FF − − − − − = =μ =ρ = =ω = = ( ) ( ) 213211321 321 321 321 321 241124 1 4 3 2 1 TLFFLLTTFL cDv Dv DvFDv α−αα+α+α−+ααα−α− λλλ δδδ βββ ααα ==π ρ=π μρ=π ωρ=π ρ=π 02 04 01 21 321 1 =α−α =α+α+α− =+α É necessário observar que nos outros sistemas de equações a parte das incógnitas será a mesma, apenas mudando o símbolo e os coeficientes independentes das incógnitas dependerão da contribuição dos expoentes das variáveis independentes de cada adimensional. 012 04 0 21 321 1 =−β−β =β+β+β− =β 012 024 01 21 321 1 =+δ−δ =−δ+δ+δ− =+δ D,v,:Base 437rnm ρ =−=−= Vale lembrar que se existir esta base, deverá ser preferida, pois, pode conduzir a alguns adimensionais conhecidos. deve-se lembrar que no lugar de D, pode ser qualquer grandeza de equação dimensional L. F L T 2 Dv FEu2 Dv FFDv1 2 223 22 221 11 −=α ρ =⇒−=α ρ =ρ=π−=α −−− F L T 1 1 0 2 3 1 −=β ⇒=β =β v D v DDv 2 110 2 ω=π ω=ωρ=π − F L T 1 1 1 2 3 1 −=δ ⇒−=δ −=δ μ ρ= ρ μ=μρ=π −−− vDRe vD Dv 1113 F L T 1 0 0 2 3 1 −=λ ⇒=λ =λ c vM v ccDv 0104 = =ρ=π − 012 014 0 21 321 1 =−λ−λ =+λ+λ+λ− =λ ( ) 0MRe,, v D,Euf0c,,,D,,v,Ff =⎟⎠ ⎞⎜⎝ ⎛ ω→=μρω Exercício 6.10 ( ) ( ) ( ) α=π μ ρ=⇒μρ=π ρ=⇒ρ=π ρ αμρ= βββ ααα 3 321 2 22 321 1 ynoldsRevLReLv Euler Lv FEuFLv L,v,:Base ,v,,,LfF Exercício 6.11 ( ) ( ) 0Eu,Frf0g,,,L,v,Ff =→=μρ 000.1 1 10 1 16,3 11k)2( h km1585016,3v16,3v v v 16,3 11 10 1kkk)1( )protótipodoardoespropriedad masmesascomolaboratóridoaroondo(sup1k;1k; 10 1k )2(kkkkEuEu Lv FEu )1(kkkFrFr Lg vFr 22 F mp p m gLv gL 2 L 2 vFpm22 gL 2 vpm 2 =⎟⎠ ⎞⎜⎝ ⎛×⎟⎠ ⎞⎜⎝ ⎛×= =×== ==×== === =→=→ ρ = =→=→= ρ ρ Exercício 6.12 μ Δ μ Δ ρμ ρΔ =⇒=⇒⎪⎭ ⎪⎬ ⎫ = = μ ρ= ρ Δ=ρ= ρ k kk k k k k k kkkk kkk vD Re v p Dv F Eu :ensionaisdimA D,v,:Base Dp v D vp Dv 2 vp 222 s m9,42,3 4,6 8,9v 4,6 8,9v v v 8,9 4,6 104,6 108,9 11k mp p m 4 4v =×==⇒== × × ×= − − Exercício 6.13 ( ) 000.1 1 10 1 16,3 11k)3( rpm37912016,3n n n 16,3 10 1 16,3 1 k k k)1( s m37,2 16,3 5,7v v v 16,3 11 10 1kkk)2( )protótipodoáguaàigualelomoddoáguaaondo(sup1k;1k; 10 1k )3(kkkkEuEu Dv FEu )2(kkkFrFr Dg vFr )1(kkk v Dn v Dn 0Eu,Fr, v nDf0F,g,n,D,v,f 22 F m p m D v n m p m gDv gD 2 D 2 vFpm22 gD 2 vpm 2 Dnv p pp m mm =⎟⎠ ⎞⎜⎝ ⎛×⎟⎠ ⎞⎜⎝ ⎛×= =×=→==== ==→==×== === =→=→ ρ = =→=→= =→= =⎟⎠ ⎞⎜⎝ ⎛→=ρ ρ ρ Exercício 6.14 cm30215b m325,1 comPlaca L2L L L 5,0 2,0 1,0 k k k 2,0 30 6k;1,0 10 10k; 2,1 000.1k kkkvLvLRe kkkk Lv FEu L,v,:Base mp p m v L v5 6 Lv2 2 L 2 vF221 =×= =×= =⇒==== ===== =⇒ν=μ ρ==π =⇒ρ==π ρ ν − − νρ ν ρ l N8,1 33,8 15 33,8 F F F F 33,85,02,0 2,1 000.1k mp p m22 F ===⇒==××= Exercício 6.15 omanométricecoeficient Dn gH vazãodeecoeficient nD Q 22 B 3 =Ψ =φ m79 316,0 25H H H 316,0 1 333,1422,0 k kk k)2( rpm844.2 422,0 200.1n n n 422,0 333,1 1 k k k)1( 1k;333,1 15 20 D D k;1k )2(kkk )1(kkk p p m B B B B B22 g 2 D 2 n H p p m 33 D Q n g p m DQ 2 D 2 nHpm 3 DnQpm ==→==×== ==→==== ===== =→Ψ=Ψ =→φ=φ Exercício 6.16 s m106,9 247.1 05,04,2 247.1 Dv 247.1 Dv 247.1Re 8,125,8 8,127,10 000.1500.1 000.1Re :elinearmentdoInterpolan 7,10 4,2800 102,49 v p Eu 2 5pp p p pp p p 2 3 2 pp p p −×=×==ν⇒=ν =⇒− −=− − =× ×=ρ Δ= Exercício 6.17 ( ) s m5,735,2v v v5,2 4,01 1 kk k k)2( 4,0 50 20 D Dk;1k;1k )2(kkkkReRe )1(kkkkEuEu 0vDRe; Dv FEuf0,D,v,,Ff 1 2 1 D v 2 1 D Dvpm 2 D 2 vFpm 22 =×=→==×== ===== =→= =→= =⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ μ ρ=ρ=→=μρ ρ μ μρ ρμ ρ Para bombas: Traçado o gráfico de F1 = f(v1), obtém-se, com v1 = 7,5 m/s, F1=260 N. N260FF:Logo F F 14,05,21k)1( 12 2 1 F == ==××= Exercício 6.18 ( )C90aágua1053,3353,0353,0 2 1707,0k 707,01 2 1kkk kkkvLRe kkk Lg vFr ensionaisdimA L,v:base,L,g,v o7 m p m gLv Lv gL 2 v 2 − ν ν ×=ν⇒=ν ν⇒=×= =×== =→ν= =→= →ν Exercício 6.19 f(N, g, ρ, v, L) = 0 Aplicando o Teorema π e usando como base ρ, v, L, obtém-se: 23221 Lv Ne v Lg ρ =π=π Pela figura: 23221 Lv N v Lg ρ =→π=π kW5,2 000.1 12000.1105,0vgLN 33 =××××=ρ= Exercício 6.20 s m106 8 108,4 88 1 4 1 2 1k 2 11 4 1kkk kkk Lg vFr kkkvLRe 2 6 5 p m p m gLv gL 2 v 2 Lv −− ν ν ×=×=ν=ν→ν ν==×= =×== =→= =→ν= Exercício 6.21 Q08,5 15,0 60 500.3 Q nD Q 33 = × ==φ Ψ= ×⎟⎠ ⎞⎜⎝ ⎛ ×Ψ=×Ψ= φ=××φ=φ= =×===== = ×⎟⎠ ⎞⎜⎝ ⎛ ==Ψ 8125,7 8,9 3,0 60 750.1 g Dn H 7875,03,0 60 750.1DnQ m3,015,02D2Derpm750.1 2 500.3 2 n n:protótipooPara H128,0 15,0 60 500.3 H8,9 Dn gH 2 2 2 p 2 p pB 33 ppp mp m p B 2 2 B 22 B Com essas expressões é possível construir a tabela a seguir e, portanto, as curvas da bomba. Q(m3/s) 0 5x10-3 10x10-3 15x10-3 20x10-3 HB(m) 25 24 23 20 14 φ 0 0,0254 0,0508 0,0762 0,1016 ψ 3,20 3,07 2,94 2,56 1,79 Qp(m3/s) 0 20x10-3 40x10-3 60x10-3 80x10-3 HBp 25 24 23 20 14 Exercício 6.22 N700.3 27 10 27 F F F F 27373,11k s m2,5 73,1 9 73,1 v v v v 73,113k kkk Lg vFr kkkk Lv FEu 5 1 2 2 122 F 1 2 2 1 v gL 2 v 2 2 L 2 vF22 ===⇒==××= ===⇒==×= =⇒= =⇒ρ= ρ Exercício 6.23 Se a perda de carga de (5) a (7) é a mesma nas duas situações, como é função de v2, deve-se entender que a vazão nas duas situações deve ser a mesma, logo, kQ = 1. ( ) ( ) m164318HzH m184338HzH kkk k 1kkkkkkk k 1kkkk 7,1p72B 7,1p71B 4 3 BHn 3 4 n 3 2 n 2 nBHg 2 D 2 nBHg 3 n D 3 DnQ =+++=′+= =+++=+= =→==→= =→= rpm158.3 092,1 450.3 092,1 n n n n 092,1 16 18k 1 2 2 1 4 3 n === ==⎟⎠ ⎞⎜⎝ ⎛= Exercício 6.24 ( ) 768,0 5,101 78 N N kW7810100108,91500.8QHN)b s L8,914,327Q27Q Q Q 2731kkk s L5,3Qm1,11 9 100 9 H H H H 9 1 31 k kk k)a B B 33 B 21 2 133 DnQ 2 1B 2B 2B 1B 22 g 2 D 2 n BH ===η =××××=γ= =×==⇒==×== =⇒===⇒==×== −− Exercício 6.25 A curva representa Eu = f(Re). Quando o efeito da viscosidade torna-se desprezível, o Eu não varia mais com Re e, portanto, Eu = constante. Essa situação acontece para 4105Re ×≅ , onde .3Eu ≅ Logo: N75,005,01013F3 Dv F3Eu s m10 05,0 10105 D 105v105vD 22 22 544 4 =×××=→= ρ →= =××=ν×=→×=ν − Exercício 6.26 ( ) mm9,5m109,510100 2,1 102 102,0 p102 QD 102 pD Q pDD Q pD D Q ensionaisdimA D,,:Base D,,,pfQ 3 32 3 2 2 22 2 2 1 2 2 2 1 =×=×× ×=Δ ρ ×= ×=Δ ρ=Δ ρν ν=π π ρν Δ=π ν=π νρ ρνΔ= − − − − − Exercício 6.27 a) 1024 1 16 1 4 11kkkk 4 1 16 1kkkk 1k; 16 1k;1k)e s N500.151010106vLQ 106105,2 1010 510 v L 5,0 10 105 v Lg)c v L1 L vLv v LggLv vL Q QLv)b 2 2 LvGQ vgL 2 v gL 2442 1G 4 1 7 3 242 3 222 2 3 323 321 3 22 321 2 2 G 1G 321 1 =⎟⎠ ⎞⎜⎝ ⎛××== ==→= === =××××=γπ= ×=π⇒×=× ×=μ γ=π′ =×==π μ γ=π=π′→γ μ=π→μγ=π =π→γ=π γ=π→γ=π γ γ − − − δδδ βββ ααα Exercício 6.28 ( ) ( ) kW500.7101075,010NNW75,0 6,3 6,375,0FvN N N 10 1 100 1 10 11kkkk)c h km6,3 10 36 10 v v v v 10 1 100 1kkk kkkk kkk)b L A ; v Lg; Lv NL,v,:Base A,L,g,v,fN)a 377 mpm p m 7 23 2 L 3 vN p m p m gLv 2 L 3 vN gL 2 v 2 fr 322231 fr =××=×=⇒=×== ==⎟⎠ ⎞⎜⎝ ⎛×⎟⎠ ⎞⎜⎝ ⎛×== ===⇒==== = = =π=πρ=π⇒ρ ρ= − ρ ρ [ ] [ ] [ ] 3 2 1 G FL LTg FTQ − − − =γ = = [ ] [ ] [ ] TFL LL LTv 2 1 − − =μ = = Capítulo 7 ESCOAMENTO PERMANENTE DE FLUIDO INCOMPRESSÍVEL EM CONDUTOS FORÇADOS No Capítulo 4 apresentou-se a equação da energia com essas hipóteses, resultando: : 2,1p2M1 HHHH +=+ Essa equação permite determinar ao longo do escoamento alguma das variáveis que contém, isto é: HM, v, p ou z. Entretanto, esta tarefa somente será viável se for conhecida a perda de carga 2,1pH ao longo do escoamento. Este capítulo dedica-se, fundamentalmente, ao estudo desse termo para condutos forçados, estabelecendo as bases do cálculo de instalações hidráulicas. A definição das linhas da energia e piezométrica estabelece uma maneira interessante de visualização do andamento da energia e da pressão ao longo do escoamento, que pode facilitar a solução de problemas voltados à solução de instalações. Exercício 7.1 1,0 1,0 f1 1 2 11 0 0 2 00 p10 hz p g2 v z p g2 v HHH ++γ+ α=+γ+ α += Como se trata de um gás, a diferença de cotas pode ser desprezada desde que esta não seja muito grande. Considerando a mina como um reservatório de grandes dimensões, v0 ≅ 0 e, na escala efetiva p1 = 0, obtêm-se: H 1 H 1 p22 H 2 110 D Lf pg2 v D Lfg2 v g2 v D Lf g2 vp +α γ= +α =→+α=γ γ Como f = f(Re) e Re = f(v), o problema deverá ser resolvido por tentativas. .diantepor assimefeRvfseadotaffse,resolvidoestáffSe fRevfseAdota ′′→′→′→′−→′≠=′ ′→→→− Uma forma de obter rapidamente o resultado, consiste em adotar o f correspondente à parte horizontal da curva de k DH calculado para o problema. Observa-se que se o Re for relativamente grande, o f estará nessa parte da curva, o que evitará novas tentativas. m6,0 6,04 6,06,04A4D Pa000.22,0000.10hp H OHOH0 22 =× ××=σ= =×=γ= Logo: f3,8331 150.3 6,0 500f1 7,12 000.220 v +=+ × = 023,0fseadotaRouseMoodydo600 10 6,0 k D :Como 3 H =−−→== − 5 5 H 105,7 10 6,04,12vDReseverificae s m4,12 023,03,8331 150.3v ×=×=ν=−=×+= − Ao observar o Moody-Rouse nota-se que o Re é suficientemente alto para que se possa adotar o f correspondente à parte horizontal da curva de DH/k (escoamento hidraulicamente rugoso). Nesse caso, confirma-se o f e, conseqüentemente, o valor da velocidade. Assim: s m5,46,06,04,12vAQ 3 =××== Exercício 7.2 m3 20 24,41 03,0 202,01 g2 v D L D L f1h g2 vk g2 v D L f g2 vhzHHH m105,1 000.2 03,0 000.2 D k000.2 k D :RouseMoody 02,0f 1027,1 10 03,024,4vDRe m3,137,1125hm7,11 20 24,45 03,0 1202,0H s m24,4 03,0 1034 D Q4v g2 vk D LfH m25 10310 1075,0 Q NHQHN HHhzz HHHH 22 H 2,1 H 2,1 0 2 1s 2 H 2,1 2 002,0p20 5HH 5 6 2 7,0p 2 3 2 2 s H 7,0p 34 3 BB 7,0pB01 7,0p7B0 =×⎟⎠ ⎞⎜⎝ ⎛ +×+=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ++= ++==⇒+= ×===⇒=− ⎪⎭ ⎪⎬ ⎫ = ×=×=ν= =−=Δ⇒=×⎟⎠ ⎞⎜⎝ ⎛ +×= =×π ××=π= ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ += =×× ×=γ=⇒γ= −=Δ=− +=+ −− − − ∑ Exercício 7.3 a) Obviamente a máquina é uma bomba, pois .pp entradasaída > γ −=→=+ esBsBe ppHHHH ( ) m2,25 000.10 1052,2H Pa1052,2101036,12ppp22p 5 B 545 essO2HHge =×= ×=−××=−→=×γ−×γ+ ( ) 04,0 2238 2,191,020 Lv hgD2 f g2 v D Lfh m2,1962,25hHh m6 20 25,35,132102h s m2 1,0 10164 D Q4v g2 vkhehhH HHHHHH)b 22 fH 2 H f spf 2 s 2 3 2 2 sssfp pBp8B0 8,0 8,0 8,08,0 = × ××==→= =−=−= =+×++×= = ×π ××= π = =+= =→+=+ ∑ ∑ ∑∑∑ − Exercício 7.4 kPa5,15Pa1055,1pm55,1 20 45,15,1 06,0 2054,015,05,2 p g2 vk D L f1zz p g2 vk g2 v D L fz p g2 v zHHH)b s L1,4 s m101,4 4 06,045,1 4 DvQ fdevaloroconfirmaqueo107,8 10 06,045,1vDRe:oVerificaçã s m45,1 5,15 06,0 4054,0 220v 054,0f:seadotaRouseMoodydo40 15,0 6 k DCom k D Lf gH2 v g2 vk D LfH m2HH5,05,2HHH)a 4 A 2 A 2A 1 s A,1 A0 A A 1 2 s 2 A,1 A A 2 A 0A,0pA0 3 3 22 4 6 s 8,0p 2 s8,0p 8,0p8,0p8,0p80 =×=⇒=×⎟⎠ ⎞⎜⎝ ⎛ +×+−−=γ ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ++−−=γ +++γ+=⇒+= =×=×π×=π= ×=×=ν= = +× ×= =−−→== + =⇒⎟⎠ ⎞⎜⎝ ⎛ += =⇒+=⇒+= ∑ ∑ ∑∑ − − Exercício 7.5 4,0 4,0 p4 4 B p4B0 Hz p H HHHH)a ++γ= +=+ m6,174 10 102424z p HH m24 101010 1038,0 Q N H QH N 4 3 4 4 Bp 34 3 BB B B B B 4,0 =−×−=−γ−= = ×× ××=γ η=→η γ= − ( ) 01,0 1,510 6,205,0102 vL gDh2 f g2 v D L fh m6,2156,17h m15 20 1,55,11 g2 vkkkh s m1,5 05,0 10104 D Q4v g2 vkh hHhhh2,1H)b 22 3,1 f23,1 f f 22 ssss 2 3 2 2 ss spf 3 1 s3,1fp 3,1 3,1 3,1 321 4,04,0 = × ×××==→= =−= =×=++= = ×π ××= π = = −=→+= ∑ ∑∑ ∑∑ − c) Como os dois tubos têm o mesmo diâmetro e material e o fluido é o mesmo, tem-se o mesmo f. m9,29 20 1,53 05,0 10001,0H g2 vk D L fhhH 2 p 29 5 s 9,59 5 sfp 10,4 9,510,4 =⎟⎠ ⎞⎜⎝ ⎛ +×= ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ +=+= ∑∑ kW1,5 1000 19,05,56101010QHN m5,569,2984 10 1024H HHz p HHHH)d 34 TTT 4 3 T pT4 4 p10T4 10,4 10,4 =×××××=ηγ= =−+×= =−+γ +=− − A vazão é considerada a mesma, pois para p4 = cte, é necessário que o nível se mantenha constante. ( ) m5,72551210 01,0 05,0k f DL g2 vk g2 v D L fh)e seq 2 s 2eq feq =×+×+== == ∑∑ Exercício 7.6 15,9 6,0 1 1,11 1,61 H H Q Q HQ HQ NN m61160HHHHH m1,119,012HHHHH BTT B B T TTT B BB TB Bj,fpjBf Td,apdTa =×=ηη=⇒ηγ=η γ⇒= =+=⇒+=+ =−=⇒+=− Exercício 7.7 Como no resto do circuito a perda de carga é desprezível: s m01,0 13510 101875,0 H N Q QH N m135HH 3 4 3 B BB B B B pB A,C = × ××=γ η=→η γ= == A velocidademédia no trecho CA será: ( ) ( ) s m44,3 1091,2 01,0v m1091,2015,0281,0 4 d28D 44 d28 4 DA A Qv 3 232222 22 = × = ×=×−π=−π=π−π= = − − Imaginando um tubo equivalente de C até A: ( ) m108,2 25 101,7 25 D k25 k D RouseMoodyDo 1044,2 10 101,744,3vDRe 0675,0 44,324 135101,720f vL hgD2 f g2 v D Lfh m101,7 015,0281,0 1091,24 d28D A4A4D 3 3 HH 5 7 3 H 3 2 A,C fH 2 H f 3 3 H −− − − − −− ×=×==→=− ×=××=ν= =× ×××=→=→= ×=×+π ××=π+π=σ= Exercício 7.8 5,0p50 HHH += m1,11 20 83,23,12 15,0 90024,01Hz s m83,2 15,0 10504 D Q4v s L47 s m107,4 4 15,07,2 4 DvQ foconfirmand108,3 1005,1 15,07,2vDRe:oVerificaçã s m7,2 3,12 15,0 90024,01 1020v 024,0fseadotaRouseMoodydo579 109,25 15,0 k D k D Lf1 gz2 v g2 vk D Lf1z g2 vk g2 v D Lf g2 v z 2 0 2 3 2 3 2 22 5 6 3 s 0 2 s0 2 s 22 5 0 =⎟⎠ ⎞⎜⎝ ⎛ +×+==′ =×π ××=π ′=′ =×=×π×=π= ×=× ×=ν= = ++ ×= =−−→=×= ++ =⇒⎟⎠ ⎞⎜⎝ ⎛ ++=⇒++= − − − − ∑∑∑ Exercício 7.9 2,1 fH f 2 H f 4 3 2 1 f f2 2 2 22 1 1 2 11 p21 fL hgD2 v .vcasono,iávelvaroutraobterse pararessãoexpautilizarsepodeconhecidoéhsee g2 v D Lfh,mas m23 10 1050z p h hz p g2 v z p g2 v HHH 2,1 2,12,1 2,1 2,1 2,1 = −= =−×=−γ= ++γ+ α=+γ+ α += Observa-se que não se tem f , de modo que não é possível calcular v, bem como Re e, conseqüentemente, não se pode obter f do Moody-Rouse. Este exemplo é do tipo: temos hf, queremos Q. Nesse caso pode-se calcular fRe . 2,1 fHH 2 2,1 fHH L hgD2D vL hgD2vD fRe 2,12,1 ν=ν= Observa-se que fRe pode ser calculado sem que v seja conhecido, desde que se conheça fh , que é o caso do exercício. ( )RouseMoodydoobtidofundidoferrodok386 1059,2 1,0 k D 1016,8 6 21,020 10 1,0fRe m6 30sen 3 30sen z L 4 H 4 6 oo 2 2,1 −= × = ×=××= === − − Com esses dois valores obtém-se do Moody-Rouse que f = 0,026 s L40 s m04,0 4 1,006,5 4 DvQ s m06,5 6026,0 21,020v 322 ==×π×=π= =× ××= Exercício 7.10 s m27,1 4 162,1 4 DvQ s m62,1 000.8019,0 20120v 019,0fRouseMoodydo000.1 10 1 k D 102,2 000.8 12020 10 1 fL Dgh2DfRe fL gDh2 v g2 v D Lfhm20hhzz 322 3 5 6 f f 2 fff21 =×π×=π=⇒=× ××= =−⇒== ×=××=ν= =⇒=→=⇒=− − − Exercício 7.11 1,0 2,0 f1 1 2 11 V0 0 2 00 p1V0 hz p g2 v Hz p g2 v HHHH ++γ+ α=++γ+ α +=+ Desprezam-se as perdas singulares e admite-se o reservatório de grandes dimensões. 3000 10 3 k D 102 105,1 310vDRe g2 v D Lfh s m10 3 714 D Q4vv Pa20002,0000.10hp 3 H 6 5 H 2 H f 221 OHOH0 1,0 22 == ×= × ×=ν= = = ×π ×= π == =×=γ= − − 016,0f =→ kW4,50 000.175,0 417113 000.1 1QHN V V V =× ××=η γ= Exercício 7.12 kW1,1810 75,0 6,351082,310QHN s m1082,3 4 1,087,4 4 D vQ m6,3515 20 87,45,0 1,0 150026,0 20 66,8H 026,0f 386 1059,2 1,0 k D 109,4 10 1,087,4DvRe g2 v k D Lf g2 v HzHHHH s m87,4 10 5,766,8 D D vv s m66,8 152 1015v y2 gxv v xg 2 1y gt 2 1y vtx 3 24 B B B 3 2 22 2 2 22 B 4 5 6 2 2 2 1s 2 s B0s,0psB0 22 s s2s 2 2 2 =××××=η γ= ×=×π×=π= =−×⎟⎠ ⎞⎜⎝ ⎛ +×+= =⇒ ⎪⎪⎭ ⎪⎪⎬ ⎫ =×= ×=×=ν= ⎟⎠ ⎞⎜⎝ ⎛ ++=+⇒+=+ =⎟⎠ ⎞⎜⎝ ⎛×=⎟⎠ ⎞⎜⎝ ⎛=⇒=×= =⇒=⇒ ⎪⎭ ⎪⎬ ⎫ = = −− − − − Exercício 7.13 7,3p3,2p7,3p3,2p1,0p7,0p 7,0p7,0p7B 7,0p7 7 2 77 B0 0 2 00 7,0p7B0 HHHHHH H8HzH Hz p g2 v Hz p g2 v HHHH +=++= +=+= ++γ+ α=++γ+ α +=+ m41 13 20033,150 20 10H p hz g2 v H m33,1 20 10 3 50016,0h 2 V 0 1,0f1 2 11 V 2 2,1f =−++= γ−++ α= =××= 0195,0f 600.1 105 08,0 k d 1091,1 10 08,039,2dvRe 019,0f 000.2 105 1,0 k D 1053,1 10 1,053,1DvRe s m39,2 08,0 10124 d Q4v s m53,1 1,0 10124 D Q4v g2 v kkkk d L f g2 v D L fH g2 v k g2 v k g2 v k g2 v k g2 v d L f g2 v D L fH 6,3 5 5 6 6,3 6,3 3,2 3 5 3 3,2 3,2 2 3 27,3 2 3 23,2 2 7,3 6s5s4s3s 7,3 3,2 2 3,23,2 3,27,0p 2 7,3 6s 2 7,3 5s 2 7,3 4s 2 7,3 3s 2 7,37,3 7,3 2 3,23,2 3,27,0p =→ ⎪⎪⎭ ⎪⎪⎬ ⎫ =×= ×=×=ν= =→ ⎪⎪⎭ ⎪⎪⎬ ⎫ =×= ×=×=ν= =×π ××=π= =×π ××=π= ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ +++++= +++++= − − − − − − CV2CV9,1 82,075 73,91012000.1 75 QH N m73,973,18H m73,1 20 39,215,05,01,0 08,0 150195,0 20 53,1 1,0 4019,0H 3 B B B B 22 p 7,0 ⇒=× ×××=η γ= =+= =⎟⎠ ⎞⎜⎝ ⎛ +++++××= − Exercício 7.14 kW1,110 7,0 3,12108000.8QHN)b m3,12 20 188,1 1,0 70064,010H 064,0 000.1 64 Re 64f000.1 10 1,01vDRe s m1 1,0 1084 D Q4v g2 vk D LfzHHHHH)a 3 3 B B B 2 B 4 2 3 2 2 s0BC,ApCBA =××××=η γ= =×⎟⎠ ⎞⎜⎝ ⎛ +×+= ===→=×=ν= =×π ××=π= ⎟⎠ ⎞⎜⎝ ⎛ ++=⇒+=+ −− − − ∑ Exercício 7.15 E,0pE0 HHH += m5,75,12 10 1050p m5,12 10610 000.175,01 Q N H H pp m4,4 20 06,35,06,4 g2 vk pp m6,4 20 06,3 05,0 5002,014 g2 v D L f pp m14 20 06,35,0 20 06,32 10 10127 g2 vk g2 vh pp kPa127 000.1 1107,12p m7,122 20 06,35,05,0 05,0 50202,0 10 1050 20 06,3p s m06,3 05,0 1064 D Q4vv g2 vkk D L f p g2 v h p 4 3 F 34 BB B B EF 22 D,C CD 22 C,BBC 22 4 32 Bs 2 0B 4 0 2 4 32 0 2 3 2E 2 D,CsBs E,BE 2 EE0 =+×−=γ =×× ××=γ η= +γ=γ =−=−γ=γ =××−=−γ=γ =×−−+×=−−+γ=γ =××= =−⎟⎠ ⎞⎜⎝ ⎛ ++××+×−+=γ =×π ×× π== ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ +++γ+ α=+γ − − Para obter a linha da energia , basta somar m45,0 g2 v2 = em cada γ p . Exercício 7.16 026,0f 1059,2 1,0 k D 1055,2 10 1,055,2vDRe s m27,1 2 55,2 2 vv s m55,2 1,0 10204 D Q4v g2 v D L 4 ffh0h g24 v D Lf g2 v D Lfh g24 v D Lfh g2 v D Lfz g2 v D Lfz 4 5 6 2 3 2 2 ss 22 s 2 s 2 2 =→ ⎪⎪⎭ ⎪⎪⎬ ⎫ ×= ×=×=ν= ===′⇒=×π ××=π= ⎟⎠ ⎞⎜⎝ ⎛ ′−=⇒=−×′−⇒+×′=+ ′′=Δ =Δ − − − m6,62 20 55,2 1,0 000.1 4 027,0026,0h 027,0f1027,1DveR 2 s 5 =××⎟⎠ ⎞⎜⎝ ⎛ −= =′⇒×=ν ′=′ Exercício 7.17 330 1052,1 05,0 k D s m10 10 1010g 4 2 6 4 3 = × = =×=γ μ=ρ μ=ν − −− Para esse valor de k D o escoamento torna-se hidraulicamente rugoso para 5104Re ×≅ e nesse caso f = 0,026. kPa500Pa105 20 8 05,0 30026,010 g2 v D Lfp s m8 05,0 10410 D RevvDRe 5 2 4 2 56 =×=×××=γ=Δ =××=ν=→ν= − Exercício 7.18s m26,3 0625,0 10104 D Q4v g2 v k D L fH m47,0 20 27,1 1,0 300195,0H 0195,0f 174.2 106,4 1,0 k D 1027,1 10 1,027,1DvRe s m27,1 1,0 10104 D Q4v g2 v D L fH HHz p H 3 2 cRe cRe 2 cRe cRe s cRe cRetot cRecRep 2 Sucp Suc 5 Suc 5 6 SucSuc Suc 2 3 2 Suc Suc 2 Suc Suc Suctot SucSucp cRepSucp9 9 B =×π ××=π= ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ += =××= =→ ⎪⎪⎭ ⎪⎪⎬ ⎫ =×= ×=×=ν= =×π ××=π= = +++γ= − − − − ∑ kW1,710 7,0 50101010QHN m501713 10 102,0H m1756,1647,0H m56,16 20 26,311 0625,0 6302,0H 02,0f 1359 106,4 0625,0 k D 102 10 0625,026,3DvRe 3 34 B B B 4 6 B 9,0p 2 cRep cRe 5 cRe 5 6 cRecRe cRe =××××=η γ= =++×= ≅+= =⎟⎠ ⎞⎜⎝ ⎛ +×= =→ ⎪⎪⎭ ⎪⎪⎬ ⎫ =×= ×=×=ν= −− − − Exercício 7.19 m45,0 20 3 04,0 202,0 g2 v D L fh)c m6021880LLLL m80 302,0 1804,020L s m3 04,0 108,34 D Q4v m183856HHH fv gDH2 L g2 v D L fH)b 02,0 18 04,09 L Dk f g2 vk g2 v D L f)a 22eq s eqeqtot4,1 2tot 2 3 2 41p 2 p tot 2 tot p eq s 2 s 2eq 3 3 3 4,1 4,1 4,1 2 2 2 2 =××== =−−=−−= = × ××= = ×π ××= π = =−=−= =→= =×== = − Exercício 7.20 kPa84,912,9436,2ppp s m27,1 1,0 10104 D Q4v g2 vk g2 v D Lf p g2 vz0 HHH atmabseefe 2 3 2 2 s 2 e 2 3,0p30 −=−=−= =×π ××=π= ++γ++= += − ∑ m6,7z 20 27,116 20 27,1 1,0 6z02,0 10 840.91 20 27,1z0 02,0f 174.2 106,4 1,0 k D 1027,1 10 1,027,1vDRe 22 4 2 5 5 6 =⇒×+×⎟⎠ ⎞⎜⎝ ⎛ +×+−+= = ⎪⎪⎭ ⎪⎪⎬ ⎫ =×= ×=×=ν= − − Exercício 7.21 Pelo andamento da linha da energia o escoamento é de (B) para (A). A,B A,B pAMB pAMB HzHz HHHH)a +=+ +=+ Pela diferença da linha da energia para a linha piezométrica: s m22,020v2,0 g2 v2 =×=→= 386 1059,2 1,0 k D 102 10 1,02vDRe 4 5 6 = × = ×=×=ν= − − )turbina(m8,82,515HzzH m2,5 20 2 1,0 100026,0 g2 v D LfH A,B A,B pBAM 22 p −=+−=+−= =××== kW04,1 000.1 175,08,8107,1510QHN s L7,15 s m107,15 4 1,02 4 DvQ)b 34 TTT 3 3 22 =×××××=ηγ= =×=×π×=π= − − m135 20 2 1,0 25026,0115 p g2 v D Lf1z p g2 v D Lf p g2 v z HHH)c 2 C 2 B C 2 C 2 C B pCB C,B =⎟⎠ ⎞⎜⎝ ⎛ ×+−=γ ⎟⎠ ⎞⎜⎝ ⎛ +−=γ +γ+= += Exercício 7.22 g2 v D 1f L h 45tg)a 2 fo == f = 0,026 kW26,110 59,0 8,33102,210QHN m8,338,2913H m8,2912128,05H m1245LtgH Hm121 10 103,111h pp phhp pp H m8,0 20 47,4 025,0 8,0025,0 g2 v D LfH m5HHHHHH H g2 v zHHHHH)b s m102,2 4 025,047,4 4 DvQ s m47,4 025,0 1025,020 f 45gDtg2v 3 34 B B B B 5,0p o 5,4p 4,3p4 5 O2H Hg43 4HgO2H3 43 4,3p 22 3,2p 105,0p1,0p10 5,0p 2 5 5B5,0p5B0 3 3 22 o =××××=η γ= =++= =+++= == ==⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −××=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −γ γ=γ −⇒=γ−γ+ γ −= =××== =−=⇒+= ++=⇒+=+ ×=×π=π= =××== −− − Exercício 7.23 s m109,7 4 01,01,0 4 DvQ s m1,0 1032 0032,001,010 32 tggD v tg gD v32tg g2 v vD 64 vD 64 Re 64farminla tg gD2 fvtgL g2 v D Lf tgLh L h tg 3 6 22 6 22 2 2 22 f f − − ×=×π×=π= = × ××=ν α= α=ν→α=ν ν==→ α=→α= α=→=α Exercício 7.24 gD v32 g2D v vD 64 g2D fv L h tg 2 22 f ν=× ν=×==α 280.1 125,0 120 v gh2 k g2 vkh m1 1002,0 125,010010322h gD vL322 g2 v D L Dv 642 g2 v D Lf2h m2hh s m125,0v s m25,0 1032 100 202,010 32 tggDv 22 s s 2 ss 2 5 s 2 22 s fs 5 2 2 =×=′=⇒ ′= =× ×××−= ′ν−=′′ ν−=′′−= =+ =′⇒=× ×× =ν α= − − Exercício 7.25 m8,1296,32,0H m98,1 1,0 5001,0 g2 v D Lfh m6,38,12 g2 vkh energiadalinhadam2,0h hhhH)b s L1,47 s m0471,0 4 1,06 4 DvQ s m68,120vm8,1 g2 v)a 1,0 22 1 211,0 p 2 f 2 ss s fssp 322 2 =++= =××== =×== →= ++= ==×π×=π= =×=→= kW5,1 000.1 19,06,30471,010QHN m6,36,36,128,16,14hH g2 vpH hH g2 v H p )d m6,148,128,1 p x H g2 vp )c 4 TTT sp 2 0 T sp 2 1 T 0 0 p 2 10 21,0 21,0 1,0 =××××=ηγ= =+−−=+−−γ= −+=−γ =+=γ= +=γ Exercício 7.26 Sentido de (5) para(0) m8,40 000.8 103244 20 4pH g2 v h H g2 v h p HHH m44 20 4 1,0 220025,0 g2 v d L fH 025,0 4200 401,020f g2 v d L fh s m4 1,0 104,314 d Q4v m402,0200h L h tg)a 32 5 3,5p 2 2 3,5p 2 25 3,5p35 22 tot 3,43,5p 23,4 2 tot 3,43,4f 2 3 2 3,4f 3,4 3,4f =×−+=γ−+= +=+γ⇒+= =××== =× ××=⇒= =×π ××=π= =×=⇒=β − b) A máquina é uma bomba, pois precisa elevar a pressão. ( ) kW1010 7,0 28104,31000.8QHN m28 20 48,820H HzH g2 v HHHH m8,88,08hhH m8,0 20 116 g2 v kh m8 20 1 2,0 000.1032,0 g2 v D Lfh 032,0 000.2 64 Re 64f arminla000.2 10 2,01DvRe s m1 20 104 D dvv)c 3 3 B B B 2 B 0,2p0M 2 3 0,2p0M3 1,2f1,2f0,2p 22 1,2 1s1s 22 1,2 1,21,2f 1,2 4 1,2 1,2 22 1,2 =××××=η γ= =−+= +=+⇒+=+ =+=+= =×== =××== === =×=ν= =⎟⎠ ⎞⎜⎝ ⎛×=⎟⎠ ⎞⎜⎝ ⎛= −− − Exercício 7.27 m04,0004,010tgLh zH g2 vpH g2 vzp HHH 4,1f 14,1p 2 1 4,1p 2 4 1 1 4,1p41 =×=α= −+=γ→+=+γ += m75 004,0 1,02,0 tg hh LtgLhhh m2000 004,0 8Lm8tgLh m8 0157,010 8,01057,1H s m0157,0 4 1,02 4 DvQ s m22,020v2,0 g2 v Q N H QH N hHHHHHH Pa1046,1pm46,1234,02,0 p m34,01,02,004,0H m1,02,05,0 g2 vkh m2,02,01 g2 vkh 3s2s eqeqeqf3s2s 6,5f 4 3 B 322 2 BB B B B B 6,5f6,5pB6,5p6B4 4 1 1 4,1p 2 3s3s 2 2s2s =+=α +=→α==+ ==→=α= =× ××= =×π×=π= =×=→= γ η=→η γ= ==→+=+ ×−=→−=−+=γ =++= =×== =×== Exercício 7.28 ( ) ( ) 75,0k8,0 20 47,4k 20 47,4049,08,0 g2 v k g2 v 049,0 g2 v k g2 vpp 8,0 pp g2 v k p g2 vp g2 v s m47,4120v18,02,0 g2 v 2,0 pp :caPiezométriLinha 8,0 pp g2 v )1(na)2( )2(8,0 pp oup108,0p:Manômetro p101028,0pp8,0pp8,08,0p )1( pp g2 v :Pitot v222,0vv5,4 10 45v A A vvAvAv s 2 s 22 1 s 2 1 2 1 s 2 22112 2 1 s 2 2 21 2 1 1 2 112 12 2 1 20 2 4 0 2 44 02m02m0 01 2 1 1222 1 2 212211 =⇒=+×⇒=+ +=γ−γ++γ−γ⇒+γ+=γ+ =×=⇒=+=⇒=γ−γ +γ−γ= +γ=γ+×= +−×=⇒+γ−γ=⇒=×γ−×γ+ γ=γ+ =⇒===⇒= Capítulo 8 NOÇÕES DE INSTRUMENTAÇÃO PARA A MEDIDA DAS PROPRIEDADES DOS FLUIDOS Neste capítulo estabelecem-se apenas princípios para a medida de propriedades dos fluidos e dos escoamentos, baseados em seus conceitos, não sendo abordados instrumentos sofisticados de última geração.O objetivo é melhorar a compreensão das definições e das equações apresentadas nos capítulos anteriores. Exercício 8.1 823,0 10 8235 m kg840 8,9 8235 g m N8235 10170 4,1 V EVE N4,16,46EGGE GEG 4OH fl fl 3 fl fl 36flfl ap ap 2 r ==γ γ=γ ==γ=ρ = × ==γ→γ= =−=→−= =− − Exercício 8.2 ( ) ( ) mm13347360hmm347m347,0h10181,8h1096,1 10 15,0 h1096,1G m10181,8 6 025,0 6 D V h1096,1h 4 105,0h 4 D V EG emersub 6 sub 5 4 sub 5 36 33 e esf sub 5 sub 22 sub 2 c subcil =−=⇒==⇒×+×= +×γ= ×=×π=π= ×=×××π=π= = −− − − −− Exercício 8.3 22 2 2 2 m s.N1,13 101,025,00476,0 51005,02 s m0476,0101,0 60 9Dnvcm05,0 2 101,10 vLD M2 2 vLD 2 DDLv 2 DAM = ×××π ×××=μ =××π=π==−=ε π ε=μ ε πμ=πεμ=τ= − Exercício 8.4 ( ) ( ) ( ) ( ) 2 522 oe 2 oe 2 m s.N93,2 05,018 600.81014,1105,0 v18 D L18 tD =× −×××=μ γ−γ=γ−γ=μ − Exercício 8.5 )2(9kk2025 45 k 45.k20,0 )1(7,43kk9025 95 k 95.k46,0 t k tk 21 2 1 21 2 1 2 1 =−→−= =−→−= −=ν Fazendo-se (1) – (2) obtém-se: 00496,0k7,34k7000 11 =→= Da (1): 064,1k7,43k00496,09025 22 =→=−× t 04,1t00496,0 −=ν Exercício 8.6 s L2,23 s m0232,0105061,86,09,0AvCCQ kPa9,121029,1pm29,15 20 61,8p s m61,8 9,0 75,7 C v v s m75,7320vp g2 v g2 v z p 3 4 otcv 4 1 2 1 v r t r 2 r 2 t 1 1 ==××××== −=×−=⇒−=−=γ === =×=⇒γ= =+γ − Exercício 8.7 g2 v zp HH :eriorsupservatórioRe 2 1t 0 0 10 =+γ = semt St s cmem 2 =ν 81,0 1,042,13 0853,04C s m42,13920gz2v Dv Q4 C 4 D vCQ Q s m0853,01422,06,0QCQ s m1422,0 4 09,036,22 4 D vQ s m36,2215 10 101,020z p g2v 22D 22t 2 2o2t 2r 2D 2 2o 2t2D2r 2r 3 1t1D1r 322 1o 1t1t 4 6 0 0 1t =×π× ×= =×== π=→ π= ==×== =×π=π= =⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ +×=⎟⎟⎠ ⎞⎜⎜⎝ ⎛ +γ= Exercício 8.8 ( ) ( ) s L40 s m104AvQ s m438,320 pp g2v Pa000.30101062,0000.20p p2,02,0p 8,3 p g2 vp 3 2 1 10 1 44 1 2m1 0 2 11 =×== =−×=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ γ−γ= =−×+= =×γ−×γ+ =γ=+γ − Exercício 8.9 97,0 6,0 582,0 C C C;582,0 111,0 64,0 vA QC s m1105,620gh2v vACQ s m64,0 20 8,12 t VQ m8,128,044V m8,0 000.10 000.81hhhAhA VV GE c D v to D t toD 3 3 O2H mad subbasemadsubbaseO2H cubomadsubO2H ====×== =×== = === =××= =×=γ γ=→γ=γ γ=γ = Exercício 8.10 ( ) ( ) Pa638201042,497,0 9375,010510p 9375,0 15 5,71 D D 1 m1042,4 4 075,0 4 D A g2AC D D 1Q p pp g2 D D 1 AC Q 232 234 44 1 2 23 22 2 2 2 2 2 D 4 1 22 21 4 1 2 2D = ××× ×××=Δ =⎟⎠ ⎞⎜⎝ ⎛−=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛− ×=×π=π= × ⎥⎥⎦ ⎤ ⎢⎢⎣ ⎡ ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛−γ =Δ⇒⎟⎟⎠ ⎞⎜⎜⎝ ⎛ γ − ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛− = − − − Exercício 8.11 66,0 96,0 634,0 C C C 634,0 0442,0 1028 Q Q C s m0442,0 4 075,010AvQ 96,0 10 6,9 v v C s m10520gh2v s m6,9 2,12 107,4 y2 gxv v D c 3 t r D 32 ott t r v t r === =×== =×π×== === =×== =××== − Exercício 8.12 ( )kconfirma106,5 10 15,074,3DvRe s m74,3 15,0 10664 D Q4v s m106615,320 4 1,006,1Q m15,31 10 106,1325,0 pp p25,025,0p 06,1kseadota14.8figurada67,0 15 10 D D Com pp g2kAQ 5 6 11 1 2 3 2 1 1 3 3 2 4 4 21 2Hg1 1 2 21 2 ×=×=ν= =×π ××=π= ×=×××π×= =⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −××=γ −⇒=×γ−×γ+ =−== ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ γ −= − − − Exercício 8.13 s m069,025,03084,1LH84,1Q 3 2 3 2 3 =××== Exercício 8.14 467,0 06,0 028,0 Q QC s m06,001,06AvQ s m68,120gh2v s m028,0 605 4,8 t VQm4,81,222V m1,2 210 1063 b M3h 2 bhh 3 2hb 2 hh 3 2ApM t D 3 ottt 3 3 3 4 4 3 3 === =×==⇒=×== =×==⇒=××= =× ××=γ=⇒ γ=×γ=×= Exercício 8.15 966,0 1210 10112 h p gh2 pg2 v v C pg2v g2 vp gh2v 4 3 t r v r 2 r t = × ×=γ= γ== γ=→=γ = Exercício 8.16 ( ) 2 2 8 v v d d 4 d v 4 d v s m83202 gp2 vv gp2 vv g2 vp g2 v s m232,320 pp g2v pp g2 v 2 1 1 2 2 1 1 2 2 2 222 21 22 2 2 1 2 12 2 2 20 2 02 2 2 ===⇒π=π =×+=γ+=⇒γ+=⇒=γ+ =−×=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ γ −=⇒γ=γ+ Exercício 8.17 ( ) s m27,17,0 20 4 04,01 1058,120p g2AC Qg2v g2 vp g2ACQ g2 vp g2ACQ 2 42 2 23 2 o 2 D 2 1 2 112 o 2 D 2 2 1 oD 1 = ⎥⎥ ⎥⎥ ⎥ ⎦ ⎤ ⎢⎢ ⎢⎢ ⎢ ⎣ ⎡ − ××π× π ×=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ γ−= ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ +γ= ⎟⎟ ⎟ ⎠ ⎞ ⎜⎜ ⎜ ⎝ ⎛ +γ= − Exercício 8.18 ( ) ( ) 4,0 8,075,7 2 D D 75,7 2 4 D 75,7 4 D2 Q QC 4 D 75,7 4 D 320 4 Dphg2Q 4 D2 4 DvQ s m22,020v2,0 g2 v)c m5,32,15,02,05HHHH)b kPa100Pa101051025p kPa24Pa104,22,11022,1p)a 2 2 0 2 0 2 0t D 2 0 2 0 2 0 0t 22 2 0,sp0s0,sp 44 s 44 0 =×=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛=π× π× == π×=π××=π×⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ γ+= π×=π= =×=⇒= =+−+=⇒−= =×=××=×γ= =×=××=×γ= Capítulo 9 FLUIDODINÂMICA Neste capítulo são apresentados os conceitos que levam ao cálculo das forças de arrasto e sustentação, que agem num corpo em movimento relativo com um fluido. Essas forças, que dependem da distribuição das pressões e das tensões de cisalhamento, sobre a superfície do corpo, são de difícil determinação através de modelos matemáticos, salvo em alguns casos particulares. A sua obtenção depende, portanto, da determinação experimental dos coeficientes de arrasto e sustentação, que, por serem adimensionais, valem para qualquer protótipo de um dado modelo testado em laboratório. O leitor deve se familiarizar com os conceitos apresentados, para que possa raciocinar sobre fenômenos referentes a este assunto, mesmo que, para a obtenção de resultados mais confiáveis tenha que recorrer posteriormente a alguma análise experimental. Exercício 9.1 ( ) ( ) N88,0 42 061,0044,01290240 2 4 DvC F mm61m061,0 044,0 1,0107,2 v ReD s cm4,4 s m044,0 12902403 129020401,0107,2104 C3 Reg4v vC3 v Reg4 v Reg4 v ReDvDRe 240 1,0 24 Re 24C1Re vC3gD4gD4 2 4 DvC 6 Dg 6 Dg 2 AvCVV FEG 22 2 2 fa a 2 3 2 3 fa fe 2 fafe a 2 fafe 2 2 fa3 f 3 e frontal 2 fa ffee a =× ×π×××= πρ = ==××=ν= ==×× −×××××=ρ ρ−ρν= ρ+νρ=νρ ν=→ν= ===→< ρ+ρ=ρ πρ +πρ=πρ ρ+γ=γ += − − Exercício 9.2 ( ) 45,0C105,3Re10Para .adotadoserprecisará,vfCComo 42 DvC F a 53 a 22 a a =→×<< =→× πρ= .Cconfirmaqueo103,2 10 15,05,15vDRe s m5,15 15,02,145,0 14,18 DC F8 v a 5 5 22 a a ×=×=ν= =×π×× ×=ρπ= − Exercício 9.3 0120D2DD4240D2 8 D102,1266,0240 6 D102,1 4 D 2 vCG6 Dg FGE 2323 223 22 ara 3 ar a =−−→+= ×π×××+π=×π×× πρ+=πρ += D (m) 4,8 5,2 5,6 6,0 y -55,5 -33,5 -7,10 24,0 m4,9 6,52,1266,0 240 6 6,5102,18 DC G 6 Dg8 v 4 D 2 vCG 6 Dg:casoNeste 2 3 2 ara 3 ar 22 ara 3 ar =×π×× ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ π×−×π×× =πρ ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −πρ = πρ+=πρ α=⇒α= cos FTcosTF aa αα=−⇒α=− sencos FGEsenTGE a o 22 3 22 ara 3 ar a 6,41 889,0 8 6,5102,1266,0 240 6 6,5102,1 8 DvC G 6 Dg F GEtg =α =×π××× π−×π×× =πρ −πρ =−=α Exercício 9.4 3 3 fr 3 a a 102 52,2 6,3 v2,195,0 2 AvCN −× ×⎟⎠ ⎞⎜⎝ ⎛×× =ρ= E Fa G O valor mais próximo é D = 5,6 m T G Fa E v = 10m/s α ( ) .desejadográficooobtersepodevfNdetabelaaoConstruind kWemN h kmemv v10079,3N a a 35 a −= ×= − Exercício 9.5 Pelo gráfico da Figura 9.17, observa-se que o escoamento é lento, logo: Stou s cm43,2 s m1043,2 0822,0 10102,0 Re vDvDRe 0822,0 292 24 C 24Re Re 24C 22 4 3 a a =×=××==ν⇒ν= ===⇒= −− Exercício 9.6 44,0 28,28,272,1 109,122C m28,22,015,025,1172,0A s m8,27 6,3 1 h km100vkW9,12736,0CV5,17N:exemploPor .gráficodoqualquerpontoumadotarsepode,tetanconséCComo Av N2C 2 AvCN 3 3 a 2 fr a fr 2 ar a fr 2 ara =×× ××= =××+×+= =×=→=×= − ρ=⇒ ρ= Exercício 9.7 ( ) ( ) 292 02,08003 8007800101104 v3 gD4C vC3gD4gD4 4 D 2 vC 6 Dg 6 Dg FEG 2 3 2 f fe a 2 fafe 22 fa 3 f 3 e a =×× −××××=ρ ρ−ρ= ρ+ρ=ρ πρ+πρ=πρ += − G Fs Fa Desprezam-se a parte do contato que não seja da asa e a reação no apoio, no ponto de contato da embarcação kW17110 2 714,020000.106,0 2 AvCvFN m714,0 20000.17,0 102 vC G2A s m20 6,3 1 h km72vG 2 AvC GF)a 3 33 a a 2 2 5 2 s 2 s s =××××=ρ== =×× ×=ρ= ===ρ = − Exercício 9.8 .Cconfirmaqueo1009,1 108,1 0025,09,7vDRe s m9,7 2,145,03 0025,010000.14v 105,3Re000.1para45,0CseAdota C3 gD4 vgD4vC3 6 Dg 8 DvC GF)pequeno(empuxoooDesprezand a 5 6 5 a ara O2H O2H 2 ara 3 O2H 22 ara aar ×=× ×=ν= =×× ×××= ×<<=− ρ ρ=⇒ρ=ρ⇒πρ=πρ =⇒ρ − Exercício 9.9 m5 1,0 10105 v 105x 105xv105ReAdmitindo 65 0 5 cr 5cr05 cr =××=ν××= ×=ν→×= − Conclui-se que a camada limite é totalmente laminar, logo: dina133N1033,1 2 1,02,01,0000.110328,1F 10328,1 10 328,1 Re 328,1C 3 22 a 2 4L a =×=×××××= ×=== −− − s m1,0v0 = L=10cm b=20cm 4 6L 2 a a 10 10 1,01,0vLRe 2 AvCF =×=ν= ρ= − Exercício 9.10 ( ) kW55,6W550.61550.6vFN N550.6250300.6FFF N250 2 2075,15,11000.1105,2F 105,2 102 072,0C102 10 201vLRe Re 072,0CReReSupondo 2 AvC F N300.6 2 5,171000.12,1 2 AvC F a sapaa 23 sa 3 5 7a 7 6L 5 L sacrL 2 sa sa 22 pa pa ==×== =+=+= =×++××××= ×= × =⇒×=×=ν= =⇒>> ρ= =××××=ρ= − − − Exercício 9.11 cevC 2 A2vCF 2a 2 a a ρ=×ρ= Admitindo turbulento desde o bordo de ataque: ν=→= cvRe Re 074,0C 0L5 L a s m100 6,3 1 h km360v0 == 7 5L 101,210 1,2100Re ×=×= − ( ) %6,88100 40 4056,4100 N NN%N kW56,4101006,45vFN kW4010100400vFN N6,455,71,21001109,2F 109,2 101,2 328,1 Re 328,1C:arminlaSomente N4005,71,210011054,2F 1054,2 101,2 074,0C 3 a 3 a 24 a 4 7L a 23 a 3 5 7a =×−=×−′=Δ =××=′=′ =××== =×××××=′ ×= × ==′ =×××××= ×= × = − − − − − − e = 7,5m c = 2,1m Exercício 9.12 6,31 1 000.1 v v v v 1:Dividindo 8 DvC 6 Dg 8 DvC 6 Dg pesooseDesprezaFE:ardeBolha empuxooseDesprezaFG:águadeGota ar O2H ar O2H 2 arO2H 2 O2Har 22 arO2HO2H a3 O2H 22 O2Harara 3 O2H O2Ha araO2H ==ρ ρ =⇒ρ ρ= πρ =πρ πρ=πρ −→= −→= Exercício 9.13 kW25,0102,132,19vFN)c N9,112cos2,1978cos3,8112cosF78cosFF)b 3 0a ooo a o s =××== =+−=+= − τ Exercício 9.14 ( ) ( ) m.N097,025,0 8 1,010134,033,1M 8 DvCC 42 DvC 42 DvC M 22 22 2a1a 22 2a 22 1a =××π×××−= ×πρ−=×× πρ−×× πρ= lll Exercício 9.15 o 2 3 2 0 a 2 0a s 5,2:doInterpolan 56,0 274,442,1 10182 Av G2C 2 AvCG s m4,44 6,3 1 h km160vFG =α =×× ××=ρ=⇒ ρ= =×== Fa Fs F α N4,833,812,19FFF N3,81 2 2,12,132,172,0 2 AvCF N2,19 2 2,12,132,117,0 2 AvCF)a 222 s 2 a 22 0s s 22 0a a =+=+= =×××=ρ= =×××=ρ= Exercício 9.16 ( ) ( ) 1 60cos104,74102,1 145cos302 60cosAv G45cosT2C G45cosT 2 60cosAvCG45cosTF 95,0 60cos104,74102,1 45cos302 60cosAv 45cosT2C 45cosT 2 60cosAvC45cosTF o22 o o2 o s o o2 s o s o22 o o2 o a o o2 a o a =××× +=ρ += +=ρ⇒+= =××× ×=ρ= =ρ⇒= − − Fa Fs 45o T=30N G=1N 30o CAPÍTULO 10 GENERALIZAÇÃO DAS EQUAÇÕES INTEGRAIS PARA REGIME VARIADO Nos capítulos 3, 4 e 5 foram estudados problemas nos quais o regime foi admitido permanente. Isso eliminou a variável tempo, facilitando a compreensão dos fenômenos e das soluções. Apesar de essa hipótese ser restritiva em termos gerais, é importante ressaltar que na prática muitos problemas podem ser abordados dessa forma, com grande aproximação, chegando a resultados satisfatórios para as aplicações. Quando as variáveis são função do tempo e das coordenadas, os problemas tornam-se, normalmente, muito complexos e às vezes permitem somente soluções aproximadas. Neste capítulo são desenvolvidas as equações gerais para volume de controle, para as quais não se faz nenhuma hipótese simplificadora quanto a possíveis variações das grandezas no espaço e no tempo; entretanto, devido à finalidade puramente didática do livro, o leitor observará que as aplicações restringem-se a casos de solução relativamente simples. Observe-se que todos os exercícios dos capítulos citados anteriormente podem ser resolvidos com as equações deste capítulo, adotando-se as hipóteses simplificadoras adequadas. Aliás, este é modo mais apropriado para adquirir uma grande intimidade com a matéria Exercício 10.1 0dAnvdV t )a SCVC =×ρ+ρ∂ ∂ ∫∫ rr Adotando um VC que envolva todo o fluido, tem-se fluxo apenas na seção de saída, onde nv rr × é positivo. Além disso, nota-se que o volume do VC é constante, ao passo que, com o passar do tempo tem-se a variação da massa específica do gás dentro do VC. Dessa forma: ( ) 0vA t V =ρ+∂ ρ∂ Como ρ varia somente com o tempo, supondo que se mantenha homogêneo dentro do tanque, a derivada parcial pode ser substituída pela total. ( ) s kg510005,01052tV2Q t2 dt d t1 p ppp Q dt dV 0m 0 2 000 0 m =××××=αρ= αρ−=ρ α−==ρ ρ→ρ=ρ −=ρ ( ) s m2 5,2 5Q m kg5,210005,015s10ttetaninsNo QQ)b 3 3 2 m == =×−×=ρ→= ρ= kg25105,2Vm)d s m4 5,02 A Qv)c =×=ρ= === Obviamente, a vazão na saída será interrompida quando a pressão interna se igualar com a externa. Supondo que a pressão externa é igual à pressão atmosférica de 2cm kgf1 ( ) ( ) ( ) kg1,51051,0Vm m kg51,04,13005,015t1)f s4,13 10 11 005,0 1 p p11t t1pp finalfinal 3 22 0final 0 final 2 0final =×=ρ= =×−×=α−ρ=ρ =⎟⎠ ⎞⎜⎝ ⎛ −×=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −α= α−= Exercício 10.3 ( ) ( ) ( ) %2,3ou032,0 62,0 061,0 25,0 251 D D v v1 L 4 D v L 4 Dv 1 V V L 4 DV; v Lt; 4 DvQ V tQ1 V V tQVVtQVtQ tQQVdtQQdV dtQQdV:tempodofunçãoésóVComo 0QQ t V 0dAnvdV t 2 2 c 2 a e a 2 c e 2 a a i .perd 2 c i e 2 a aa i a i .perd ai.perdaialgfo aalgfoi t 0aalgfo 0 v aalgfo aalgfo VC SC i =⎟⎠ ⎞⎜⎝ ⎛−=−=π ×π −= π==π= −=→−=→−= +=→+−= +−= =++∂ ∂ =×ρ+ρ∂ ∂ ∫∫ ∫ ∫ rr Exercício 10.5 0dAnvdV t SCVC =×ρ+ρ∂ ∂ ∫∫ rr Sendo o regime permanente: 0dAnv0dV t SCVC =×ρ⇒=ρ∂ ∂ ∫∫ rr Sendo o fluido incompressível: 0dAnv SC =×∫ rr 3214 4321 QQQQ 0QQQQ −+= =++−− Representando por q a vazão por unidade de largura: dxbqQ L 0 222 ∫= ( ) s L8,29225,114300Q s m01125,05,015,0 2 5,03,03,0Q x15,0 2 x3,03,0dx3,015,0x3,0Q 3,0a15,0a5,000qm5,0LxPara 15,0b15,0q0xPara bxaq dxbqQ s m004,0 3 5,0096,0 3 x096,0dx3,0x32,0Q:totanPor x32,0q32,0a:Logo 0bbax2 dx dq0 dx dq0xPara b5,0a25,008,0 m.s m08,0qm5,0LxPara 0c0q0xPara cbxaxq 4 32 3 5,0 0 5,0 0 25,0 03 3 3 3 3 L 0 33 33 5,0 0 35,0 0 2 2 2 2 22 3 2 2 2 2 =−+= =⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ×+×−×= ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ +−×=+−= −=′⇒+′=⇒=→== =′⇒=→= ′+′= = ===××= =⇒= =⇒+=⇒=→= +=⇒=→== =⇒=→= ++= ∫ ∫ ∫ Exercício 10.7 dAnvgzp 2 vdVgz 2 v t NN:18.10equaçãoPela SC 2 VC 2 diss rr ×⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ +ρ+ρ+⎟ ⎟ ⎠ ⎞ ⎜⎜⎝ ⎛ +ρ∂ ∂=− ∫∫ Sendo o fluido ideal: .1e0Ndiss =α= Não havendo máquina: 0N = Sendo um líquido, o fluido é incompressível. ⎥⎥⎦ ⎤ ⎢⎢⎣ ⎡ ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ +γ+−⎟ ⎟ ⎠ ⎞ ⎜⎜⎝ ⎛ +γ+ρ+⎟ ⎟ ⎠ ⎞ ⎜⎜⎝ ⎛ +ρ∂ ∂ ∫ 11212222 VC 2 zp g2 vzp g2 vQgdVgz 2 v t 21 2 2 2 1 VC 2 atm21 zz g2 vvdVgz 2 v tQ 1 efetivaescalanappp −+−=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ +ρ∂ ∂ γ == ∫ Sendo o fluido incompressível, 21 vv = e zzz 12 =−= z2dVgz 2 v tQ 1 VC 2 −=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ +ρ∂ ∂ γ ∫ A variação da energia potencial com o tempo é nula, pois, a toda subida de um lado, corresponde uma mesma descida do outro. z2 t v gQ2 V z2dV t v 2Q 1 2 VC 2 −=∂ ∂ −=∂ ∂ρ γ ∫ A velocidade é função somente do tempo e V = LA z2 dt dv g Lz2 dt dvv2 gv2 Lz2 dt dv gvA2 LA 2 −=→−=⇒−= Mas, dt dz dz dv dt dv = ( )22máx2máx22 2 máx máx 2222 zz L g2v L gz L gz 2 v L gzC0vzzPara C L gz 2 vC 2 z L g2 2 vIntegrando] zdz L g2vdvouz2 dt dz dz dv g L −=⇒+−= =⇒=→= +−=→+−= −=−= dt L g2 zz dz dt dzv 2 máx = − →= z PHR Posição inicial de equilíbrio Configuração num instante t qualquer -z +z (1) (2) g2 L2T 4 T L g2 2 4 T L g21senarczzperíodooéTonde 4 TtPara 0C0z0tPara Ct L g2 z zsenarc máx máx π=⇒=π =⇒=→= =′⇒=→= ′+=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ Exercício 10.9 ( ) ( ) ( ) m.N250.15,05,125 2 10100000.1rrv 2 QM s m25 1022 10100 A2 Qvve 2 QQQ QvrQvrM 0dVvr t :permanenteregimeoSendo dAnvvrdVvr t M:28.10equaçãoPela 3 232 1 z 3 3 2 1 32 1 32 333222z VC o SC o VC oz =−××××=−ρ= =×× ×===== ρ+ρ−= =ρ∂ ∂ ×ρ+ρ∂ ∂= − − − θ θθ ∫ ∫∫ rr Exercício 10.11 a) Sendo: vabs = v; vrel = w; varr = u Na entrada Na saída b) v1 = vr1 w1 u1 α1 s m32,9 15cos 9 cos uw s m41,215tg9tguv s m91,0 60 1720ndu o1 1 1 o 11r 11 1 ==α= =×=α= =××π=π= v2 w2 vu2 vr2 u2 α2 s m51,1741,234,17vvv s m70,5 25sen 41,2 sen v w s m34,17 25tg 41,251,22 tg v uvvv s m51,2225,0 60 1720ndu 22 ru2 o2 r 2 o2 r 2urr 22 22 2 2 212 =+=+= ==α= =−=α−=→= =××π=π= m8,39 8,9 51,2234,17 g uv H 2ut 2 =×==∞ CAPÍTULO 11 ANÁLISE DIFERENCIAL Neste capítulo estuda-se o comportamento individual de uma partícula de fluido. Para isso, estabelecem-se equações que permitam acompanhar o seu movimento e a variação de suas propriedades, de acordo com a posição e do tempo. Exercício 11.1 Trajetórias t 0 0 200 t 0 0 100 0z 2y 1x eyyt y ylnCylnyy exxt x xlnCxlnxx0tPara zz0dtvdz Ctylndt y dydtytdvdy Ctxlndt x dxdtxdtvdx β α =→β=→=→= =→α=→=→=→= =→== +β=→β=→β=→= +α=→α=→α== Linhas de corrente 2 zx 11 yx Cz0dz v dz v dx yCxClnylnxln y dy x dx y dy x dx v dy v dx =→=→= =→+β α=→β α=→β=α→= βα Exercício 11.3 2z2C2zPara Cz0dz v dz v dx y2x2C1ye2xPara yCxClnylnxln t y dy t x dx v dy v dx)a 2 2 zx 1 11 yx =⇒=→= =→=→= =⇒=→== =→+=→=→= 2zCz y2x:Logo ty1C1ye1tPara tCyClntlnyln t dt y dydt t ydydtvdy t2x2C2xe1tPara tCxClntlnxln t dt x dxdt t xdxdtvdx)b 3 2 22y 1 11x =⇒= = =⇒=→== =⇒+=→=→=→= =⇒=→== =⇒+=→=→=→= ( )yx2 2 y yy 2 x xx ee2 t 1a t 1 t v a t 1 t yv t 2 t v a t 2 t xv)c vrr +−= −=∂ ∂=→== −=∂ ∂=→== Exercício 11.5 0 y v x v 0vdiv:ívelIncompress yx =∂ ∂+∂ ∂⇒=r ( ) ( ) ( ) ( ) ( ) ( ) possível0xy6xy6 y xxy3 x yx3yB possível0x2x2 y xy2x x yxA)a 3223 32 =+−=∂ −∂+∂ −∂ =−=∂ −∂+∂ −∂ z xy y zx x yz e y v x v e x v z v e z v y v vrot)b rrrr ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ∂ ∂−∂ ∂+⎟⎠ ⎞⎜⎝ ⎛ ∂ ∂−∂ ∂+⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ∂ ∂−∂ ∂= Para ser irrotacional: 0vrot =r Sendo o campo de velocidades no plano xy: y v x v 0 y v x v xyxy ∂ ∂=∂ ∂→=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ∂ ∂−∂ ∂ ( ) ( ) ( ) 1 y yx y v y2x3 x xy2x x v A 2 x 2 3y −=∂ −∂=∂ ∂ −=∂ −∂=∂ ∂ ( ) ( ) ( ) 2223x 22 32y x3y3 y yx3y y v x3y3 x xxy3 x v B −=∂ −∂=∂ ∂ −=∂ −∂=∂ ∂ 0y2x311y2x3:Logo e 2 1e y v x v 2 1vrot 2 1)c 22 zz xy =−⇒=+− =⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ∂ ∂−∂ ∂==Ω rrrr Exercício 11.7 120 1a0Qs120tPara 1b s m1Q0tPara batQ)a 3 −=⇒=→= =⇒=→= += rotacional irrotacional ( ) ⎥⎥⎦ ⎤ ⎢⎢⎣ ⎡ ⎟⎠ ⎞⎜⎝ ⎛ − π −π−=⎟⎠ ⎞⎜⎝ ⎛ − π −π−= ⎟⎠ ⎞⎜⎝ ⎛ − π −=⎥⎦ ⎤⎢⎣ ⎡ ⎟⎠ ⎞⎜⎝ ⎛ − π −×⎟⎠ ⎞⎜⎝ ⎛ −π=∂ ∂ π−=∂ ∂ ∂ ∂+∂ ∂=∂ ∂+θ∂ ∂+∂ ∂+∂ ∂= ∇×+∂ ∂== ==θ⇒== +⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −π=⇒=→=→= +⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −π=⇒+ ⎟⎟ ⎟⎟ ⎟ ⎠ ⎞ ⎜⎜ ⎜⎜ ⎜ ⎝ ⎛ −π= ⎟⎠ ⎞⎜⎝ ⎛ −π=→⎟⎠ ⎞⎜⎝ ⎛ −π=→=⎟⎠ ⎞⎜⎝ ⎛ −π→= ⎟⎠ ⎞⎜⎝ ⎛ −π= π −=⇒π=θ=⇒θ== =×= −= θ θ ∫ ∫ ∫ ∫∫ π 2322 2 322r 2 3222 r r r r r rr z rr r r r r rr r 32z 2 0 2 2 010 1 2 1 2 2 r r rr0 rrn A n A 1 120 t rL 9 Lr40 1 120 t1 rL 9 Lr40 1a 120 t1 rL 9 120 t1 Lr 3 120 t1 Lr 3 r v v; Lr40 1 t v r v v t v z v v v r v r v v t v a vv t v dt dv a4.11equaçãoPela)c CzeC0ve0vComo r 240 tt L 6rrCrr0tPara C 240 tt L 6rCdt 120 2 t t L 3 2 r dt 120 t1 L 3rdrdt 120 t1 L 3rdr dt dr 120 t1 Lr 3 dt drv Trajetória)b e 120 t1 Lr 3v Lr40 t120v 3 LrvdLrvQdLrdAvv dAvdAnvQ:decontinuidadaequaçãoPela 120 t1Q:Logo 3 r rr rr Exercício 11.9 ( ) ( ) ( )[ ] ( ) .ívelincompresséNão0 z v y v x v vdiv)b e 2 1e2e 2 1e 2 22;3;6:Ponto e 2 1e 2 ze10e00e0z 2 1 e y v x v e x v z v e z v y v 2 1vrot 2 1)a zyx zxzx 2 zx 2 zyx 2 xy y zx x yz z ≠∂ ∂+∂ ∂+∂ ∂= −=−=Ω→ −=−+−+−=Ω ⎥⎥⎦ ⎤ ⎢⎢⎣ ⎡ ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ∂ ∂−∂ ∂+⎟⎠ ⎞⎜⎝ ⎛ ∂ ∂−∂ ∂+⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ∂ ∂−∂ ∂==Ω r rrrrr rrrrrr rrrrr Exercício 11.11 2 2 2222222 yx 1 yx a4 vyxya4xa4v eay2eax2v)b CxyCylnxln ay2 dy ax2 dx v dy v dx)a =+⇒+= −= =→=→−=→= − rrr c) Fluido ideal, incompressível, movimento no plano horizontal: ( ) ( ) ( ) ( ) ( ) 22 0 22 0 222 0 22 2 00 10 22 22 11 2 xa4ppyxbissetrizNa)d xa2pp0yOxeixoNo yxa2pp yx g2 a4pppCpp0,0y,xPara yx g2 a4 g2 vCpCp g2 v ρ−=⇒= ρ−=⇒=→ +ρ−= +−γ=γ⇒γ=→=→≡ +=−=γ→=γ+ Exercício 1.13 Aplicando Bernoulli entre (1) e (2) obtém-se: ( ) g2 RhRvComo hzz g2 v z p g2 v z p g2 v 2 1 12 2 1 2 1 2 2 1 1 2 1 ω−=⇒ω= −=−=→+γ+=+γ+ A equação de Bernoulli não é aplicável, pois, o movimento não é irrotacional. Aplicando a equação de Euler: ( ) ( ) g2 Rhz:Logo 0C0p0z0rPara )r(C 2 rgzp gzp r r:ededireçãonaSomente centrípetaaceleraçãoera gzpgrada0pgrad1ag 2 1 22 22 2 r r 2 ω== =⇒=→=→= +ω=+ρ ⎟⎟⎠ ⎞⎜⎜⎝ ⎛ −ρ−∂ ∂=ω− ω−= ⎟⎟⎠ ⎞⎜⎜⎝ ⎛ −ρ−=→=ρ−− r rr rrr Exercício 1.15 ( ) m.s m000.22000.1q01000.1 12 qv m1r:ApontoNo)c senvcosrvrln 2 q r 1 r 1v cosv r2 qcosrvrln 2 q rr v)b cosrvrln 2 q senrv 2 q senrvyv cosrvxv:polaresscoordenadaemuniformeEscoamento 2 q rln 2 qFonte)a 3 r AA 00 00r 021 021 002 002 1 1 A π=π×=→=−×+×π= π=θ= θ−=⎟⎠ ⎞⎜⎝ ⎛ θ+πθ∂ ∂=θ∂ φ∂= θ+π=⎟⎠ ⎞⎜⎝ ⎛ θ+π∂ ∂=∂ φ∂= θ+π=φ+φ=φ θ+θπ=Ψ+Ψ=Ψ θ==Ψ θ==φ θπ=Ψ π=φ→ θ Exercício 11.17 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) L 2 2yLy2yLy 2 y 2 ydyyb L v dyby L v dAvdAv vL L v v;y L v v;00 L v v QQ)e rotacionale L v e y y L v 0e y v x v vrot)d Permanente)c possível0 y v x v vdiv)b 0 x v lineardiagramay L v y L2 v yy v)a 22222 L y 2y 0 2L y 0y 0 0A C C B 0 0 x 0 x 0 x B,AC,A z 0 z 0 z xy yx y 020 x ACB =⇒=→−= =→=→= ===== = −= ⎟⎟ ⎟⎟ ⎟ ⎠ ⎞ ⎜⎜ ⎜⎜ ⎜ ⎝ ⎛ ∂ ⎟⎠ ⎞⎜⎝ ⎛∂ −=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ∂ ∂−∂ ∂= =∂ ∂+∂ ∂= =∂ Ψ∂−= =⎟⎠ ⎞⎜⎝ ⎛ ∂ ∂=∂ Ψ∂= ∫∫∫∫ rrrr r Exercício 11.19 r2r v r2 q r v rln 22 q 2 q r2 q rrr )a r 21 1 111 π Γ=∂ Ψ∂−= π−=θ∂ Ψ∂= π Γ−θπ−=Ψ+Ψ=Ψ θπ−=Ψ⇒π−=θ∂ Ψ∂⇒θ∂ Ψ∂=∂ φ∂ θ m500400300yxrPPonto 2222 =+=+=→ s m50 5002 105v s m20 5002 102v 4 4 r π=×π ×= π−=×π ×−= θ θπ+π−= e 50e20v r rrr ( ) 2222 22 2 22 2 22 2 22 r 2 1 2 0 2 0 2 q v2 1rq v4 1r r4r4 qvvv C g2 vtetanconspdePontos C p g2 vp g2 v)b Γ+π=→Γ+π = π Γ+ π =+= =→= =γ+=γ+ θ Exercício 11.21 ( ) ( ) ( ) ( ) m.s m9 2 x2Q0ydyyx2dxbvQ m.s m6,9y16Q0xdy16x2dybvQ yx2y2x2 x v 16x2 y v y16xy2xs2tPara yt4xy2x 33 0 2 C,A 3 0 3 0 yC,A 36,0 0B,A 6,0 0 6,0 0 xB,A y x 2 22 −=−=⇒=→+−== ==⇒=→+== +−=+−=∂ Ψ∂−= +=∂ Ψ∂= ++=Ψ→= ++=Ψ ∫∫ ∫∫ Exercício 11.23 ( ) 6 Chh1 6 ChbhvQ 3 2 4 Ch 6 Ch v v 6 Ch 3 h 2 h h C 3 Cy 2 hCy h 1dyCyCyh h 1dybv bh 1v 4 Ch 2 hh 2 hCv 2 hy0Cy2Ch dy dv :máximoévondePonto 32 m 2 2 máx m 233h 0 32h 0 2h 0 xm 2 máx x x =××== == =⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −=−== =⎟⎠ ⎞⎜⎝ ⎛ −= =→=−=→ ∫∫ Exercício 11.25 a) Supondo que o eixo dos tubos seja horizontal a velocidade terá componente somente na direção de x e variará somente na direção radial. Logo: ( )rfve0v;0v xr ===θ Sendo o regime permanente: 0 t vx =∂ ∂ e as equações 11.41 reduzem-se a: ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ∂ ∂+ ∂ ∂μ=∂ ∂ r v r 1 r v x p x 2 x 2* como no Exemplo 4 da página 317. De forma semelhante, como p* é função apenas de x e vx é função apenas de r conclui-se que: r C 2 r dr dv C 2 r dr dv r r dr dv r dr d dr dv r dr d r 1 dr dv r 1 dr vd 1x 1 2 x xxx 2 x 2 +β=→+β= β=⎟⎠ ⎞⎜⎝ ⎛→β=⎟⎠ ⎞⎜⎝ ⎛→β=+ Chamando de rmáx o raio para o qual acontece a velocidade máxima, tem-se: Para 2 r C r C 2 r 00 dr dv rr 2 máx 1 máx 1máxx máx β−=⇒+β=⇒=→= 2 2 máx 2 x 2 máxx Crln 2 rrv r2 r 2 r dr dv:Logo +β−β=→β−β= ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]2máx2122 22 máx 22 2 m x 2 máx 2 1 2 2m R R 22 máx 22 22 1 2 2A xm 1 2 2 1 2 2 máx 1 22 máx 2 1 2 2x1 22 máx 22 2 2 2 2 2 máx 2 máx 2 x 2 2 2 2 máx 222 2 máx 2 2 x2 r2RR r R lnr2rR 2 v v r2RR 8 v rdr2 r R lnr2rR 4RR 1dAv A 1v R R ln2 RR r R R lnr2RR 4 00vRrPara r R lnr2rR 44 R Rln 2 r rln 2 r 4 rv 4 R Rln 2 r CCRln 2 r 4 R 00vRrPara 2 1 −+ ⎥⎦ ⎤⎢⎣ ⎡ −− = −+β−= π⎥⎦ ⎤⎢⎣ ⎡ −−β− −π == −= ⎥⎦ ⎤⎢⎣ ⎡ −−β−=⇒=→= ⎥⎦ ⎤⎢⎣ ⎡ −−β−=β−β+β−β= β−β=→+β−β=⇒=→= ∫∫ ( ) ( ) s m156,0 101,021,0102,0 101,0 102,0ln101,02101,0102,0 2079,0v r2RR r R lnr2rR 2vv cm1,10 10 2,10ln2 1,02,10 R R ln2 RR r s m079,0 1,0102,0 101,0 RR Qv)b 222 222 máx 2 máx 2 1 2 2 máx 22 máx 2 máx 2 2 mmáx 22 1 2 2 1 2 2 máx 22 3 2 1 2 2 m = ×−+ ××−− ××= −+ −− ×= = × −=−= = −π ×= −π = − Exercício 11.27 Pelas equações 11.40, com: vx = 0; vy = 0, numa seção da película ascendente, tem-se vz = f (x). Sendo o regime permanente: .0 t vz =∂ ∂ z v (x) f v:Como x v z p1g z v v:Logo z z 2 z 2 z z ∂ ∂⇒= ∂ ∂ν+∂ ∂ ρ−−=∂ ∂ Como a espessura é constante e na superfície da película p = patm, para qualquer z 0 z p =∂ ∂⇒ 0v 2 gh 6 gh0xv 2 ghx 6 gx 0dxbvxgh 2 gxdAvQ v1h2 xxghvouvxgh 2 gxv:Logo ghC0 dx dv 0 dx dv hxPara vC)chapadavelocidade(vv)chapadaerfíciesupna(0xPara CxC 2 gxvCxg dx dv g dx vd oug x v :Logo 0 22h 0 0 23 h 0 0 2 A z 0z0 2 z 1 zz 020z 21 2 z1 z 2 z 2 2 z 2 =+ν−ν→=⎟ ⎟ ⎠ ⎞ ⎜⎜⎝ ⎛ +ν−ν =⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ +ν−ν== +⎟⎠ ⎞⎜⎝ ⎛ −ν=+ν−ν= ν−=⇒=⇒=μ=τ→= =⇒=→= ++ν=⇒+ν= ν=ν=∂ ∂ ∫∫ ( ) s mm6 s m106 1053 103,010 3 ghv 3 5 232 0 =×=×× ××=ν= − − − Capítulo 12 ESCOAMENTO COMPRESSÍVEL Neste capítulo a Mecânica dos Fluidos funde-se com a Termodinâmica, devido à importância que os fenômenos térmicos adquirem. Por causa disso, a primeira parte do capítulo destina-se a uma compatibilização da nomenclatura e à introdução de conceitos que não haviam sido utilizados até este momento por estarem ligados aos efeitos térmicos. Nas aplicações é mais fácil trabalhar com energias por unidade de massa e não por unidade de peso, fazendo-se as devidas transformações. Esse assunto é extremamente vasto e complexo e o leitor que desejar um maior aprofundamento de seus conhecimentos deverá consultar livros dedicados apenas a ele. O objetivo deste capítulo consiste em alertar o leitor sobre as complicações advindas da variação da massa específica ao longo do escoamento e chamar a atenção para os fenômenos provocados por essa característica. Destacam-se ainda as mudanças de comportamento no escoamento supersônico, a existência de uma vazão em massa máxima nos condutos e o aparecimento da onda de choque. Todos esses fenômenos, abordados dentro de hipóteses simplificadoras, poderão orientar o leitor quando estiver lidando com algum problema prático sobre o assunto. Exercício 12.1 ( ) ( ) ( ) 3 5 2 2 2 p v p v pp m kg226,5 27395260 105 RT p )e kJ627J688.62610956,9218TmcH)d kJ450J888.44910956,6618TmcI)c K.kg J6,661 393,1 6,921 k c c)b K.kg J260 393,1 1393,16,921 k 1kcR 1k kRc)a =+× ×==ρ ==−××=Δ=Δ ==−××=Δ=Δ === =−×=−=→−= Exercício 12.2 ( ) MJ21154,1UkTmcH)d MJ151020460717568,47TmcU kg568,47 293287 2102 RT Vp m)c C460K733 2 5293T T T p p mRTVp mRTVp )b K.kg J717 14,1 287 1k Rc)a K.kg J287 29 315.8R p 6 v 6 1 11 o 2 1 2 1 2 11 22 v =×=Δ=Δ=Δ =×−××=Δ=Δ =× ××== ==×=⇒=→ ⎭⎬ ⎫ = = =−=−= == − Exercício 12.3 ( ) ( ) kg kJ3,93 s m275.93201505,717Tcu K.s m5,717 14,1 287 1k Rc K.s m287 29 315.8 M RR)b C150K423 4,0 27320 4,0 T T4,0 T T )abs(kPa371 4,0 103p 4,0 p pV4,0V V V p p )a 2 2 v 2 2 v 2 2 mol o 4,01k 1 2 1k 2 1 4,12k 1 212 k 1 2 2 1 ==−×=Δ=Δ =−=−= === ==+==→= ==→=→=→⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛= − − ( ) kg kJ6,130 000.1 1201505,004.1h K.kg kJ5,004.1 14,1 2874,1 1k kRc Tch)c p p =×−×=Δ =− ×=−= Δ=Δ Exercício 12.4 K.kg J562 500 500ln3,461 573 423ln872.1 p p lnR T T lncs 1 2 1 2 p −=×−×=−=Δ Exercício 12.5 29,0 342 100 c v s m3422932864,1kRTc s m100 6,3 360v ===Μ =××== == Exercício 12.6 kPa9,5)abs(kPa1,94 6,0 2 14,11 120 2 1k1 p p 2 1k1 p p 14,1 4,1 21k k 2 0 1k k 20 −== ⎟⎠ ⎞⎜⎝ ⎛ ×−+ = ⎟⎠ ⎞⎜⎝ ⎛ Μ−+ = ⎟⎠ ⎞⎜⎝ ⎛ Μ−+= −− − s m2093,3012874,16,0kRTv m kg088,1 3,301287 101,94 RT p C3,28K3,301 6,0 2 14,11 323 2 1k1 T T 3 3 o 22 0 =×××=Μ= =× ×==ρ ===−+ = Μ−+ = Exercício 12.7 ( ) %45,0100 3,67 6,673,67êrro 6,6702,0000.136 19,1 2v m kg19,1 293287 10100 RT p h2 hg2 ppg2v pp g2 v ívelIncompress s m3,672932874,1196,0kRTMv 196,01 100 72,102 14,1 2M 1 p p 1k 2MM k 1k1 p p )abs(kPa72,10210072,2p kPa72,2Pa272002,0000.136hp 1 3 3 Hg Hg 121 21 2 1 4,1 14,1 k 1k 01k k 20 0 Hg0 abs =×−= =××= =× ×==ρ γρ=γ γ=−γ=→γ=γ+→ =××== = ⎥⎥ ⎥ ⎦ ⎤ ⎢⎢ ⎢ ⎣ ⎡ −⎟⎠ ⎞⎜⎝ ⎛ −= ⎥⎥ ⎥ ⎦ ⎤ ⎢⎢ ⎢ ⎣ ⎡ −⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −=⇒⎟⎠ ⎞⎜⎝ ⎛ −+= =+= ==×=γ= − − − Exercício 12.8 mm970m97,011 293287 400 4,12 14,1 000.136 10100h 11 RT v k2 1kph1 p h 1RT 1k k2v 14,1 4,1 23 1k k 2 m k 1k m2 == ⎥⎥ ⎥ ⎦ ⎤ ⎢⎢ ⎢ ⎣ ⎡ −⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ +××× −×= ⎥⎥ ⎥ ⎦ ⎤ ⎢⎢ ⎢ ⎣ ⎡ −⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ +−γ=⇒⎥⎥ ⎥ ⎦ ⎤ ⎢⎢ ⎢ ⎣ ⎡ −⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ γ+−= − − − %8,27100 970 970700 mm700m7,0 000.136 120.95 g pp h Pa120.95 2 400189,1 2 vpp Hg 0 22 0 =×−=ε ===ρ −= =×=ρ=− Exercício 12.9 )abs(Pa102,35,0000.13610hpp)a 45Hg12 ×=×−=γ−= [ ] [ ][ ] [ ] ( ) %113100 47,0 1111 Q Q 1 Q QQ êrro Q Q)c s kg518,0 5,01 32,012 293287 1047,095,0 A A 1 p p 12 A RT pCQ)b 47,0 32,0132,05,01 5,0132,015,332,0 5,0 50 25 A A e32,0 10 102,3 p p p p 1 p p A A 1 A A 1 p p 1 1k k p p m invm m incmmm incm 2 5 2 1 2 1 2 2 1 Dm 429,12 2286,0 714,0 1 2 5 4 1 2 1 2k 2 1 2 2 1 2 2 1 2k 1k 1 2 k 1 1 2 =×⎟⎠ ⎞⎜⎝ ⎛ −=φ−=−= −=⇒φ= =− −× ×××= ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛− ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ − φ= =−××− −×−×=φ ===×= ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ − ⎥⎥ ⎥ ⎦ ⎤ ⎢⎢ ⎢ ⎣ ⎡ ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛− ⎥⎥⎦ ⎤ ⎢⎢⎣ ⎡ ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛− ⎥⎥ ⎥ ⎦ ⎤ ⎢⎢ ⎢ ⎣ ⎡ ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛−− ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛=φ − Exercício 12.10 ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ − ⎥⎥ ⎥ ⎦ ⎤ ⎢⎢ ⎢ ⎣ ⎡ ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛− ⎥⎥⎦ ⎤ ⎢⎢⎣ ⎡ ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛− ⎥⎥ ⎥ ⎦ ⎤ ⎢⎢ ⎢ ⎣ ⎡ ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛−− ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛=φ − 1 2k 2 1 2 2 1 2 2 1 2k 1k 1 2 k 1 1 2 p p 1 p p A A 1 A A 1 p p 1 1k k p p kPa149101,5000.10200hpp 3Hg12 =××−=γ−= − ( ) ( ) ( ) s kg151,1 444,01 745,012 4 1,0 3662077 10200844,095,0Q A A 1 p p 12 A RT pCQ K.kg J2077200.5 665,1 1665,1c k 1kR 1k kRc 844,0 745,01745,0444,01 444,01745,01 1665,1 665,1 745,0 444,0 15 10 D D A A ;745,0 200 149 p p 2 23 m 2 1 2 1 2 2 1 Dm pp 665,1 2 2 2665,1 1665,1 665,1 1 22 1 2 1 2 1 2 =− −×××π×× ×××= ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛− ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ − φ= =×−=−=⇒−= = −×⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ×− −×⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −×− ×=φ =⎟⎠ ⎞⎜⎝ ⎛=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛=== − Exercício 12.11 ( ) ( ) ( ) ( ) %4,5100 1310 12391310êrro)c s m1310 5,1 15,1 405,12 111015,1 0651.0 2v p pp k2 11pp2v)b s m12391015,1 0651,0 2v m kg0651,0 5504189 105,1 K.s m4189532.14 405,1 1405,1c k 1kR RT p pp2v)a 5 c 0 c0 c0 0 c 5 c 3 5 0 2 2 p 0 0 0 c0c =×−= =⎟⎠ ⎞⎜⎝ ⎛ − ×+××−×= −+−ρ= =×−= =× ×=ρ =×−=−=→=ρ −ρ= Exercício 12.12 s10 2,1477,591 440.7 vv st)c m440.7502,147800.14s s50 296 800.14 c Rt 5,0 296 2,147 c v s m2,147 6,3 530v 2 296 7,591 c v s m7,5916,3 130.2v s m2962182874,1kRTc)b 21 1 2 22 1 11 =+=+ Δ= =×−=Δ === ===Μ⇒== ===Μ⇒== =××== Exercício 12.13 s m8162952574,137,2kRTMv 37,2 25sen 1M M 1 2 sen o =×××== ==→=α Exercício 12.14 3* * * 133,1 33,1 5 1k k 0*1k k * 0 ** 0*2 * 0 m kg338,0 346462 036.54 RT p )abs(kPa54)abs(Pa036.54 2 133,11 10 2 1k1 p p 2 1k1 p p s m46134646233,1kRTv K346 2 133,11 403 2 1k1 T T 2 1k1 T T =×==ρ == ⎟⎠ ⎞⎜⎝ ⎛ −+ = ⎟⎠ ⎞⎜⎝ ⎛ −+ =→⎟⎠ ⎞⎜⎝ ⎛ −+= =××== =−+ =−+ =→Μ−+= −− − Exercício 12.15 1.Tab1Ms →= K5,4775738333,0T8333,0 T T )abs(MPa5283,015283,0p5283,0 p p s 0 s s 0 s =×=→= =×=→= s kg338,0102438856,3Q s m4385,4772874,11kRTMv AvQ m kg856,3 5,477287 105283,0 RT p 4 m sss sssm 3 6 s s s =×××= =×××== ρ= =× ×==ρ − Exercício 12.16 2 1* 1 5 0 1 5 1atmHg1 cm1,2015340,1A340,1 A A 8434,0 102 680.168 p p )abs(Pa680.168505,0000.13610pphp =×=⇒=→=×= =×+=⇒=γ− Exercício 12.17 a) T0 = 373 K = 100 oC bloqueadoestánão833,0 102,1 10 p p )b 5 5 0 s →= × = 1.Tab8333,0 p p 0 s →= s kg183,010196984,0AvQ s m1963542874,152,0kRTMv m kg984,0 354287 10 RT p 3 sssm sss 3 5 s s s =××=ρ= =×××== =×==ρ − c) A mesma 1.Tab3,0M)d →= 23m 5 cm6,151056,1 073,1115 193,0 v Q A s m1153662874,13,0kRTMv 073,1 366287 10127,1 RT p =×=×=ρ= =×××== =× ×==ρ − K3543739487,0T9487,0 T T 52,0M s 0 s s =×=→= = )abs(Pa10127,1102,19395,0p9395,0 p p K3663739823,0T9823,0 T T 55 0 0 ×=××=→= =×=→= e) Ms=1 1.Tab→ ⎪⎪⎩ ⎪⎪⎨ ⎧ =×=→= ×==→= K3113738333,0T8333,0 T T )abs(Pa10893,1 5283,0 10p5283,0 p p s 0 s 5 5 0 0 s s kg396,0105,35312,1AvQ s ,m5,3533112874,11kRTMv m kg12,1 311287 10 RT p 3 sssm sss 3 5 s s s =××=ρ= =×××== =×==ρ − Exercício 12.18 ( ) mm64m064,0 000.136 1029564,01h 9564,0 p p erpolandoint38,2 1026,1 103 A A p p p 1 hphp)e m1026,1 59,1 102 59,1 A A)d s m7,1367,2902874,14,0kRTv 59,1 A A 4,0 969,0 300 7,290 T T )c )abs(Pa102p)b )abs(Pa102pp K300TT)a 5 0 A 3 3 * A Hg 0 0 A AHg0 23 3 B* 2BB * B B 0 2 5 A2M 5 2M0 10 ==××−= ⎩⎨ ⎧ =→→=× ×= γ ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ − =⇒=γ− ×=×== =×××=Μ= ⎪⎩ ⎪⎨ ⎧ = =Μ →== ×= ×== == − − −− Exercício 12.19 Fixando o sistema de referência no conduto, isto é, no avião: v1 = 180 m/s →→=== =××== 1.Tab55,0 5,327 180 c v M s m5,3272672874,1kRTc 1 1 1 1 1.Tab8,0M 2 →= s m2542512874,18,0kRTMv 222 =×××== Exercício 12.20 s m1,933452874,125,0kRTv )abs(MPa55,0575,0957,0p957,0 p p K345349988,0T988,0 T T 25,0 39,2009,137,2 A A A A A A 009,1 A A )abs(MPa575,0 5913,0 34,0p5913,0 p p K349 8606,0 300T8606,0 T T 9,0 3002874,1 312 kRT v 222 2 0 2 2 0 2 2 * 1 1 2 * 2 * 1 0 0 1 0 0 1 1 1 1 =×××=Μ= ⎪⎪ ⎪⎪ ⎩ ⎪⎪ ⎪⎪ ⎨ ⎧ =×=→= =×=→= =Μ →=×=×= ⎪⎪ ⎪ ⎩ ⎪⎪ ⎪ ⎨ ⎧ = ==→= ==→= →=××==Μ Exercício 12.21 →== 2 10 20 A A * e rpm49260 22 103 R2 v n s m1032932874,13,0kRTMv ' e'' e ' e =××π×=π=→=××== rpm360460 22 755 R2 v n s m7552932874,12,2kRTMv '' e'''' e '' e =××π×=π=→=××== K283 9449,0 267T9449,0 T T )abs(kPa128 8201,0 100p8201,0 p p 0 0 1 0 0 1 ==→= ==→= K2518865,0283T8865,0 T T )abs(kPa80656,0128p656,0 p p 2 0 2 2 0 2 =×=→= =×=→= 2,2M 3,0M '' e ' e = = Exercício 12.22 22 ss m s 3 5 s s s sss s 0 s s 6 5 0 s 2 G G 22 GG m G GGG 3 5 G G G G 0 G 56 G 0 G G cm413m0413,0 794037,1 34 v Q A m kg037,1 336287 10 RT p )d s m7943362874,116,2kRTv K3366505173,0T5173,0 T T 16,2 1,0 10 10 p p )c m165,010147,24 A4 Dm10147,2 467394,3 34 v Q A s m4675422874,11kRTv)b m kg394,3 542287 1028,5 RT p K5426508333,0T8333,0 T T )abs(Pa1028,5105283,0p5283,0 p p 1)a ==×=ρ= =×==ρ =×××=Μ= ⎪⎩ ⎪⎨ ⎧ =×=→= =Μ == =π ××=π=⇒×=×=ρ= =×××=Μ= =× ×==ρ ⎪⎪⎩ ⎪⎪⎨ ⎧ =×=→= ×=×=→= =Μ −− Exercício 12.23 →= = 1M K310T)a G 0 8333,0 T T 5283,0 p p 0 G 0 G = = .mesmoO)c K2583108333,0T08333T )abs(kPa6,1067,2015283,0p5283,0p)b m kg27,2 310287 107,201 RT p )abs(kPa7,201)abs(kPa695.201p 200.95p5283,0p200.95pp 200.95pp 7,0000.136phpp 0G 0G 3 3 0 0 0 0 00G0 G0 GHgG0 =×== =×== =× ×==ρ == =−→=− += ×+=γ+= Exercício 12.24 2s* 223 ss m s 3 3 s s s xSsss * s s 0 s s 0 s smxS smemsmiiiS cm3,17 999,3 3,69 999,3 A A)c cm3,69m1093,6 864.1348,0 5,4 v Q A m kg348,0 000.1287 10100 RT p )b N838818645,4F s m1864000.12874,194,2kRTv 999,3 A A K000.1730.23665,0T3665,0 T T 94,2 0294,0 400.3 100 p p vQF vQvQvQnApF)a === =×=×=ρ= =× ×==ρ =×−=⇒=×××=Μ= ⎪⎪ ⎪ ⎩ ⎪⎪ ⎪ ⎨ ⎧ = =×=→= =Μ == −= −=+−= − ∑ rrrrr Exercício 12.25 →== 76,1 1,0 176,0 A A * 3 )abs(MPa08,068,01164,0p1164,0 p p 06,2M )abs(MPa622,068,09143,0p9143,0 p p 36,0M '' 3 0 '' 3 '' 3 ' 3 0 ' 3 ' 3 =×=→= = =×=→= = s kg1621,05,31021,5Q s m5,3102402874,11kRTMv m kg21,5 240287 10359,0 RT p )abs(MPa359,068,05283,0p5283,0p K2402888333,0T8333,0T vAQ m GGG 3 6 G G G 0G 0G m =××= =×××== =× ×==ρ =×== =×== ρ= Exercício 12.26 ⎪⎪ ⎪ ⎩ ⎪⎪ ⎪ ⎨ ⎧ =×=⇒= =×=⇒= =×=⇒= →=Μ =×=×=ρ= =×××=Μ= =× ×==ρ ⎪⎪⎩ ⎪⎪⎨ ⎧ =×=⇒= =×=⇒= →=Μ − 2 s* s s 0 s s 0 s s 222 GG m G GGG 3 6 G G G G 0 G G 0 G G cm419251668,1A668,1 A A )abs(MPa0128,01,01278,0p1278,0 p p K1442605556,0T5556,0 T T 2 cm251m1051,2 295815,0 3,6 v Q A s m2952172874,11kRTv m kg815,0 217287 10053,0 RT p K2172608333,0T8333,0 T T )abs(MPa053,01,05283,0p5283,0 p p 1 Exercício 12.27 →== 089,1 293 319 A A * s )abs(MPa516,051,13417,0p3417,0 p p 7358,0 T T 34,1M s 0 s 0 s s =×=→= = = Na realidade, existe também a solução subsônica, entretanto, com essa velocidade de saída, a temperatura seria um valor prático impossível. N342.4110319000.2324,0AvF m kg324,0 544.5287 10516,0 RT p AvF K544.5 2874,134,1 000.2 kRM v TkRTMv 42 s 2 ssS 3 6 s s s s 2 ssS 2 2 2 s 2 s ssss x x =×××=ρ= =× ×==ρ ρ= = ×× ==→= − Exercício 12.28 ⎪⎪ ⎪⎪ ⎩ ⎪⎪ ⎪⎪ ⎨ ⎧ ===⇒== =Μ →= =××=××= =⇒=×=×= =××=××== ⎪⎪ ⎪⎪ ⎩ ⎪⎪ ⎪⎪ ⎨ ⎧ = = = →=Μ ⎪⎪ ⎪⎪ ⎪ ⎩ ⎪⎪ ⎪⎪ ⎪ ⎨ ⎧ = = ===⇒= =Μ →=Μ ⎪⎪ ⎪⎪ ⎩ ⎪⎪ ⎪⎪ ⎨ ⎧ = = =Μ →= )abs(kPa1,121 8259,0 100 8259,0 p p8259,0 p p 9468,0 T T 53,0 256,1 A A 256,1 176,1 1094,135,1 A A A A A A A A )c A075,1A93,0094,1 176,1 1 A A A A A A )b 46,2 272,0 19298,07209,0 p p p p p p p p Int)a 094,1 A A 7209,0 p p 9108,0 T T 7011,0 458,2 p p 32,1 T T )abs(kPa130 9298,0 1,121 9298,0 p p9298,0 p p 7011,0 5,1 176,1 A A 6897,0 T T 5,1 272,0 p p s y0 y0 s 0 s s * y s x * x * y y * x s * y s * x * y* y y x * x * y * x x x0 x0 y0 y0 y x y OC * y y y0 y 0 y y x y x y y0 x0 x0 y0 y x * x x 0 x x x0 x K317 9468,0 300 9468,0 T T)e )abs(kPa130p)d s 0 x0 === = K.kg J8,20 458,2 32,1ln004.1 p p T T lncss)g A6,213A184161,1Q s m1843002874,153,0kRTv m kg161,1 300287 10 RT p AvQ)f 41,1 14,1 k 1k x y x y pxy ssm sss 3 5 s s s sssm =×= ⎟⎠ ⎞⎜⎝ ⎛ =− =××= =×××=Μ= =×==ρ ρ= −− Exercício 12.29 →= 1278,0 p p x0 x →= 2M x →= 58,0M y 437,1213,1 688,1 12 A A A A A A A A * y y x * x * x s * y s =××=××= →= 437,1 A A * y s 688,1 A A 5556,0 T T 2M * x x 0 x x = = = 5,4 p p 687,1 T T 7209,0 p p 5774,0M x y x y 0 0 y x y = = = = 213,1 A A 7962,0 p p 9370,0 T T * y y 0 y 0 y y = = = )abs(Pa1004,1 8650,0 109,0p8650,0 p p 9594,0 T T 46,0M 5 5 0 0 s 0 s s y y ×=×=→= = = m47,0 1036,1 1084,11028,8pph )abs(Pa1028,81084,15,4p5,4p )abs(Pa1084,11044,11278,0p1278,0p php)b K313 9594,0 300 9594,0 T T )abs(kPa144)abs(Pa1044,1 7209,0 1004,1 7209,0 p p)a 5 44 Hg xy 44 xy 45 0x yHgx s 0 5 50 0 x y x = × ×−×=γ −= ×=××== ×=××== =γ= === =×=×== 8650,0 p p x 7962,0 p p x 5283,0 p p x)c y0 s s y0 y yOC x0 G G =→ =→ =→ Exercício 12.30 ⎩⎨ ⎧ =Μ ′′ =Μ′→=×= =Μ→=×= − − 2,2 3,0 2 10 102 A A 76,0756,0 10 1056,7 p p s 3 3 * s s6 5 0 s Sim. Para ser totalmente subsônico Ms ≤ 0,3. Como Ms = 0,76, o escoamento passou para supersônico e posteriormente para subsônico através de uma onda de choque. Exercício 12.31 →=×= − − 4,1 10 104,1 A A )a 3 3 * x c 1850,0 p p 6175,0 T T 76,1M x0 x 0 x x = = = 447,3 p p 502,1 T T 8302,0 p p 6257,0M x y x y x0 y0 y = = = = →= 76,1M x →= 6257,0M y →= × ×= − − 667,1 102,1 102 A A 3 3 * y s ( ) ( ) s kg78,110217122,5AvQ s m1715052874,138,0kRTMv m kg22,5 505287 1056,7 T p )c s m4224836257,032176,12874,1v K4835209286,0T9286,0T K3215206175,0T6175,0T TMTMkRkRTMkRTMvvv)b 3 sssm sss 3 5 ss s s 0y 0x yyxxyyxxyx =×××=ρ= =×××== =× ×=ρ=ρ =×−×××=Δ =×== =×== −=−=−=Δ − Exercício 12.32 Ver o exercício 12.31 Exercício 12.33 23 3y* y* y y 0 y 0 y m102,1 166,1 104,1 166,1 A A166,1 A A 7716,0 p p 9286,0 T T y −− ×=×==→= = = )abs(Pa1035,8 9052,0 1052,7 9052,0 p p9052,0 p p K520 9719,0 505 9719,0 T T)a9719,0 T T 38,0M 5 5 s y0 y0 s s 0 0 s s ×=×==→= ===→= = 24 4 s* y* y s y0 s s m107,33 188,1 1040 188,1 A A188,1 A A 784,0 p p 6,0M −− ×=×==→= = = →== 9324,0 429 400 T T y0 s →= × ×= − − 128,1 107,33 1038 A A 4 4 * y 1 000.136p5283,0p7465,0 )abs(Pa000.136pp php xy 00 Gy yHgG =− =− =γ+ →= 66,0M y ( )absPa109,010013,18876,0p )abs(Pa10013,1p 000.136p5283,0p8876,07465,0 66 0 6 0 00 y x xx ×=××= ×= =−× Exercício 12.34 ⎪⎪ ⎪⎪ ⎪ ⎩ ⎪⎪ ⎪⎪ ⎪ ⎨ ⎧ = = = =Μ →=Μ =×=×=ρ= =×××=Μ= =× ×==ρ ⎪⎪⎩ ⎪⎪⎨ ⎧ =×=⇒= =×=⇒= →=Μ − 783,3 p p 562,1 T T 7947,0 p p 84,1 606,0)b cm924m1024,9 422818,2 110 v Q A s m4224442874,11kRTv m kg818,2 444287 10359 RT p K4445338333,0T8333,0 T T )abs(kPa3596805283,0p5283,0 p p 1)a x y x y x0 y0 x y 222 GG m G GGG 3 3 G G G G 0 G G x0 G G 7465,0 p p 9199,0 T T 66,0M y0 y 0 y y = = = x x y 0y0 0 0 p8876,0p8876,0 p p =→= 2* ys* y s s 2y* y* y y y 2 x* x x x0 x 0 x x cm835.1154.159,1A59,1A59,1 A A 4,0 cm154.1 188,1 1371 188,1 A A188,1 A A 606,0)c cm371.1484,1924A484,1 A A 1537,0 p p 5963,0 T T 84,1 =×=⎪⎩ ⎪⎨ ⎧ =⇒=→=Μ ===⎪⎩ ⎪⎨ ⎧ ⇒=→=Μ ⎪⎪ ⎪⎪ ⎩ ⎪⎪ ⎪⎪ ⎨ ⎧ =×=⇒= = = →=Μ Exercício 12.35 9325,0 400 373 T T 0 1 == Na segunda situação * 1 A A não muda, mas o escoamento é supersônico. 188,1 A A * 1 = 52,1M x = CouK91274365TTT oxy =−=−=Δ Exercício 12.36 24,1 A A 857,0 429,1 225,1 m kg429,1 400287 10164 RT p )a * x 0 3 3 0 0 0 =⎩⎨ ⎧→==ρ ρ =× ×==ρ 188,1 A A 6,0M * 1 1 = = K274400684,0T684,0T684,0 T T 52,1M 0x 0 x x =×==→= = K365274334,1T334,1T333,1 T T 6941,0M xy x y y =×==→= = s m3663332874,11kRTv K3334008333,0T8333,0 T T 1)c s kg29,410160517519,0AvQ s m5172672874,158,1kRTv m kg519,0 267287 1040 RT p )b )abs(kPa401642423,0p2423,0p2423,0 p p K2674006670,0T6670,0T6670,0 T T 58,1 24,1 A A GGG G 0 G G 4 xxxm xxx 3 3 x x x 0x 0 x 0x 0 x x * x =×××=Μ= =×=⇒= ⎩⎨ ⎧→=Μ =×××=ρ= =×××=Μ= =× ×==ρ ⎪⎪ ⎪⎪ ⎩ ⎪⎪ ⎪⎪ ⎨ ⎧ =×=×=⇒= =×=×=⇒= =Μ →= − Exercício 12.37 1,0 101 100 p p )a 30 s = × = b) Se a onda de choque está na seção de saída, a montante tem-se a segunda solução isoentrópica, que corresponde à solução do item anterior. 16,2M x = Exercício 12.38 ⎪⎪ ⎪⎪ ⎩ ⎪⎪ ⎪⎪ ⎨ ⎧ = = =Μ =Μ →== = 666,6 p p 059,2 T T 521,0 42,2 5283,0 p p p p pp x y x y y x x0 y0 x0 G y0G K2,1553005173,0T5173,0T5173,0 T T 16,2M 0s 0 s s =×==→= = K2832,155822,1T822,1T822,1 T T 5525,0M xy x y y =×==→= = s m1853162874,1521,0kRTv K3163339487,0T9487,0 T T521,0 yyy y 0 y y =×××=Μ= =×=⇒= ⎩⎨ ⎧→=Μ Exercício 12.39 2 máx 1 máx 2 máx 1 máx D L f D Lf D L f D L f D L f D Lf ⎟⎠ ⎞⎜⎝ ⎛+=⎟⎠ ⎞⎜⎝ ⎛→⎟⎠ ⎞⎜⎝ ⎛−⎟⎠ ⎞⎜⎝ ⎛= M2 = 0,9 32,0M1 = L=15m (1) (2) p2 = 105 Pa(abs) T2 = 294 K M2 = 0,9 D = 7,5cm f = 0,02 T0 ? p0 ? 01451,0 D L f )abs(Pa1086,8 129,1 10 129,1 p p129,1 p p K6,284 033,1 294 033,1 T T033,1 T T 2 máx 4 5 2* * 2 2* * 2 =⎟⎠ ⎞⎜⎝ ⎛ ×===→= ===→= 0145,401451,0 075,0 1502,0 D L f 1 máx =+×=⎟⎠ ⎞⎜⎝ ⎛ )abs(Pa1031086,8389,3p389,3 p p K7,3346,284176,1T176,1 T T 32,0M 54 1* 1 1* 1 1 ×=××=→= =×=→= = )abs(Pa1022,3 9315,0 103p9315,0 p p K342 9799,0 7,334T9799,0 T T 5 5 0 0 1 0 0 1 ×=×=→= ==→= Exercício 12.40 )abs(MPa011,0259,027,0ppp 176,1 T T )abs(MPa259,00764,0389,3p389,3 p p 32,0 224,4 D L f 224,4 025,0 2,13008,0299,5 D L f D L f D L f 299,5 D L f )abs(MPa0764,0 619,3 27,0 619,3 p p619,3 p p 179,1 T T 3,0 21 * 2 2* 2 2 H máx H máx 1H máx 2H máx H máx 1* * 1 * 1 1 =−=−=Δ ⎪⎪ ⎪ ⎩ ⎪⎪ ⎪ ⎨ ⎧ = =×=⇒= =Μ →=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ =×−=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛−⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ⎪⎪ ⎪⎪ ⎩ ⎪⎪ ⎪⎪ ⎨ ⎧ = ===⇒= = →=Μ Exercício 12.41 5,0M1 = 5,0M1 = 1M2 = s m3342772874,11kRTMv 222 =×××== Exercício 12.42 ⎪⎩ ⎪⎨ ⎧ =⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛→=Μ =⎪⎩ ⎪⎨⎧ ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛→=Μ 3050,0 D Lf 2 5222,0 D Lf 3 2H máx 2 1H máx 1 ( )absMPa166,0 843,0 14,0 843,0 p p843,0 p p 1 0 0 1 1 1 ===→= ( )absMPa124,0 34,1 166,0 34,1 p p34,1 p p 11 0* 0* 0 0 ===→= ( ) K2773338333,0T8333,0T8333,0 T T absMPa065,0124,05283,0p5283,0p5283,0 p p 02 0 2 * 02* 0 2 =×==→= =×==→= 8,1 012,0 1,02172,0 f D2172,0 L 2172,03050,05222,0 D Lf H H máx =×=×= =−=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ Exercício 12.43 3M1 = s m4204392874,11kRTMv *** =×××== 2M2 = s m6852922874,12kRTMv 222 =×××== m17,2 01,0 1,02172,0 f D2172,0L 2172,03050,0522,0 D Lf D Lf D Lf 2,1 2 máx 1 máx2,1 =×== =−=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛−⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛= Exercício 12.44 K245 504,3 p p 1775,1 5,288 1775,1 T T1775,1 T T 31,0 8,4 025,0 602,0 D Lf * 1 1* * 1 1 1 máx = ⎪⎪ ⎪⎪ ⎩ ⎪⎪ ⎪⎪ ⎨ ⎧ = ==⇒= =Μ →=×=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ( ) m22,5 01,0 1,05222,0 f D5222,0L5222,0 D Lf absMPa46,0 2182,0 1,0 2182,0 p p2182,0 p p K439 4286,0 188 4286,0 T T4286,0 T T 1máx 1 máx 1* * 1 1* * 1 =×==→=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ===→= ===→= ( ) 3050,0 D Lf absMPa19,046,04083,0p4083,0p4083,0 p p K2924396667,0T6667,0T6667,0 T T 2 máx * 2* 2 * 2* 2 =⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ =×==→= =×==→= s kg219,0 4 025,0314422,1 4 DvQ s m3142452874,11kRTv m kg422,1 245287 10100 RT p 22 ** máx *** 3 3 * * * =×π××=πρ= =×××=Μ= =× ×==ρ Exercício 12.45 A leitura do termômetro é 600 K, uma vez que a temperatura de estagnação não se altera. →== 2 20 40 A A * 3 →= 2,2M x →= 5471,0M y →== 59,1 5,31 50 A A * y 4 →= 4,0M 4 cm8504 A4 D 44 =π ×=π= 059,1 08,0 502,0309,2 D Lf D Lf D Lf 4 máx 5 máx =×−=−⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ( )absMPa0468,05,009352,0p09352,0p09352,0 p p K3056005081,0T5081,0T5081,0 T T 2,2M x x 0x 0 x 0x 0 x x =×==→= =×==→= = ( )absMPa314,05,06281,0p6281,0p6281,0 p p 5471,0M xy x y 00 0 0 y =×==→= = 23* y* y 3 cm5,31 27,1 40 27,1 A A27,1 A A ===→= ( )absMPa281,0314,08956,0p8956,0p8956,0 p p 4,0M y y 04 0 4 4 =×==→= = ( ) 309,2 D Lf absMPa197,0 59,1 314,0 59,1 p p59,1 p p 4 máx 0* 0* 0 0 yy =⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ===→= →=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ 059,1 D Lf 5 máx s kg68,110501987,1AvQ s m1985802874,141,0kRTv m kg7,1 580287 10283,0 RT p 4 555m 555 3 6 s 5 5 =×××=ρ= =×××=Μ= =× ×==ρ − MPa13,01,023,0p )abs(MPa23,0108,0158,2p38,2 p p 5,0M ef5 5* 5 5 =−= =×=→= =