Logo Passei Direto
Buscar
Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Prévia do material em texto

CAPÍTULO 1 
INTRODUÇÃO, DEFINIÇÃO E PROPRIEDADES DOS FLUIDOS 
 
 
Este capítulo introduz a experiência das duas placas para que o leitor perceba de forma lógica 
que, diferentemente de um sólido, um fluido não pode atingir o equilíbrio estático quando é 
submetido a uma força resultante do efeito tangencial. Entretanto, deve-se ressaltar o fato de 
que é possível se atingir o equilíbrio numa determinada velocidade, isto é, um equilíbrio 
dinâmico.Por meio dessa discussão aparecem em seqüência lógica as idéias de Princípio da 
Aderência, construção de diagrama de velocidades, deslizamento entre as camadas do fluido e 
o conseqüente aparecimento de tensões de cisalhamento entre elas. 
A lei de Newton da viscosidade, simplificada para escoamento bidimensional, introduz de 
forma simples as idéias de gradiente de velocidades e de viscosidade dinâmica, para o cálculo 
da tensão de cisalhamento. 
Além da viscosidade dinâmica, são apresentadas as definições de massa específica ou 
densidade, peso específico e viscosidade cinemática, propriedades dos fluidos usadas ao longo 
deste livro. 
Apesar da utilização quase que exclusiva do Sistema Internacional de Unidades, é necessário 
lembrar a existência de outros sistemas, já que, na prática, o leitor poderá se defrontar com os 
mesmos, e alguns dos exercícios referem-se à transformação de unidades, de grande utilidade 
no dia a dia. 
 
Solução dos exercícios 
 
Exercício 1.1 
Objetivo: manuseio das propriedades e transformação de unidades. 
 
Lembrar que ao transformar a unidade utiliza-se a regra seguinte: 
 
 
 
 
 
 
Exemplo 
Transformar 3 m em cm. 
 
cm300cm1003
m
100cmm3m3 =×=××= 
 
Solução do exercício. νρ=μ 
2
3
33r
m
s.kgf38,285028,0
m
utm85
10
850
g
m
kgf850
m
kgf000.185,0
O2H
=×=μ
==γ=ρ
=×=γγ=γ
 
Valor da grandeza 
na unidade nova =
Valor da grandeza 
na unidade velha X
Unidade nova x Fator de 
transformação 
 Unidade velha 
 
222 m
s.N3,23
m
s.
kgf
8,9Nkgf
38,2
m
s.kgf38,2 =
⎟⎟⎠
⎞
⎜⎜⎝
⎛ ×
==μ 
 
poiseou
cm
s.dina233
m
10cmm
s.
N
10dinaN
3,23
m
s.N3,23
2
2
42
2
5
2
=
⎟⎟⎠
⎞
⎜⎜⎝
⎛ ×
⎟⎟⎠
⎞
⎜⎜⎝
⎛ ×
==μ 
 
Exercício 1.2 
 
Stou
s
cm106
s
m
10cmm
106
s
m106
82
105
m
utm82
10
820
g
m
kgf820000.182,0
2
22
42
2
6
CGS
SI
2
6
4
S*MK
S*MK
S*MK
3
3O2Hr
−−
−−
×=
××
×=ν
ν=×=×=ρ
μ=ν
==γ=ρ
=×=γγ=γ
 
 
Exercício 1.3 
 
V = 3 dm3 = 3x10-3 m3 
2
4
2
3
2
3
S*MK
2
2
2
42
2
5
3
2
3
CGS
2
2
35
SISI
3
33
m
s.kgf108
m
s.
8,9N
kgfN
1083,7
m
s.N1083,7
poiseou
cm
s.dina1083,7
m
10cmm
s.
N
10dinaN
1083,7
m
s.N1083,7
s
m
Nkgqueesquecernão
m
s.N1083,73,78310
m
kg3,783
10
7833
g
m
N7833
103
5,23
V
G
−−−
−−−
−−
−
×=
⎟⎠
⎞⎜⎝
⎛
××=×=μ
×=
⎟⎟⎠
⎞
⎜⎜⎝
⎛ ×
⎟⎟⎠
⎞
⎜⎜⎝
⎛ ×
×=×=μ
⎟⎟
⎟⎟
⎠
⎞
⎜⎜
⎜⎜
⎝
⎛
=×=×=νρ=μ
==γ=ρ
=×==γ
 
2
62
2
2
3
2
3
2km
min.N km
min.N5,130
10m
kmm
60s
mins.N
1083,7
m
s.N1083,7 =
⎟⎟⎠
⎞
⎜⎜⎝
⎛
×
⎟⎠
⎞⎜⎝
⎛
××=×=μ −− 
É preciso deixar claro que esta última unidade só foi considerada para que se pratique a 
transformação. 
 
 
Exercício 1.4 
 
23
3
2
35
2
5
2
4
2
0
m
N6,16
102
4103,8
m
s.N103,883010
s
m10
s
m101,0
s
cmouSt1,0
v
=×××=τ
×=×=νρ=μ
=×==ν
εμ=τ
−
−
−−
−−
 
 
Exercício 1.5 
 
Sendo constante a velocidade da placa, deve haver um equilíbrio dinâmico na direção do 
movimento, isto é, a força motora (a que provoca o movimento) deve ser equilibrada por 
uma força resistente (de mesma direção e sentido contrário). 
t
o F30senG = 
 
2
2
o3o
o
o
m
s.N10
112
30sen20102
vA
30senG
Av30senG
A30senG
−− =××
×××=ε=μ
εμ=
τ=
 
 
Exercício 1.6 
 
s
m1,22
05,009,008,0
105,0105,0v
m
s.N08,0
10
000.810
g
;cm5,0
2
910
2
DD
DL
mgvDL
v
mgAG
2
0
2
4
ie
0
0
=××π×
×××=
=×=νγ=μ=−=−=ε
μπ
ε=⇒πεμ=⇒τ=
−
−
 
 
Exercício 1.7 
 
Para o equilíbrio dinâmico, a força de tração será igual ao peso do esticador somada à 
força tangencial provocada pelo lubrificante na fieira. 
m.N1,0
2
2,01
2
DTM
m
s.N1,0
1,0105,0314,0
1,01005,0
dLv
F
vA
F
s
m314,02,0
60
30nDv
mm05,0
2
5,06,0AvAF
N1,09,01GTF:Logo
GFT
23
3
tt
t
t
t
máx
=×==
=
×××π×
××=π
ε=ε=μ
=××π=π=
=−=εεμ=τ=
=−=−=
+=
−
−
 
 
Exercício 1.8 
 
32
2
2
1221
2
2
2
1
t21
m
N800.16
1,01005,0
2108000.20
cm05,0
2
101,10
D
v8v8DDDLv2L
4
DL
4
D
F2GG
=××
××−=γ
=−=ε
ε
μ−γ=γ⇒εμ+γ=γ⇒πεμ+
πγ=πγ
+=
−
−
 
 
Exercício 1.9 
 
 
 
 
 
 
 
 
 
 
v1 
v2 
v3 = 0,5m/s 
G 
rpm12360
1,02
29,1
R2
v
nRn2v
s/m29,12525,004,1vvv
s/m2525,0
2,0
101,05,0
R
R
vv
s/m04,1
101,03,021,0
101,02,010
LR2
GR
v
cm1,0101,10RR
GRLRR2v
MM)a
1
1
1111
21
3
2
32
2
2
2
2
3
12
322
G
=××π×=π=π=
=+=+Δ=
=×==
=××π××
×××=πμ
ε=Δ
=−=−=ε
=πε
Δμ
=
→
−
τ
 
 
m.N21,03,0
101,0
04,11,02M
LRv2LRR2vRAM)b
2
2e
2
11111e
=×××××π×=
ε
Δπμ=πε
Δμ=τ=
−
 
 
Exercício 1.10 
 
( )
( ) ( ) cm5,3m035,013,315,33,0208,0
101,010
vvR2
Mh
vv
hR2
hRR2
v
hRR2
v
M
m
s.N08,080010
cm1,0301,30
s
m15,3301.0
60
1002nR2v
cm1,09,2930RR
s
m13,3299,0
60
1002nR2v
2
2
ie
2
2
ie
2
2
22
e
e
22
i
i
2
4
e
3e
12i
1i
==+××π××
××=+πμ
ε=
+ε
πμ=πεμ+πεμ=
=×=νρ=μ
=−=ε
=××π×=π=
=−=−=ε
=××π×=π=
−
−
 
 
Exercício 1.11 
 
rpm531.40
05,1205,1556,1
12000.120
DD56,1
nD
n
56,1
Dn
DnnD
56,1
05,12
05,15
D
D
v
vv
mm025,0
2
05,151,15
2
DD
mm025,0
2
1205,12
2
DD
2
D
LD
v
2
D
LD
vv
MM)a
23
1
3
21
22
2
3
3
21
34
4,3
12
2,1
3
3
4,3
32
2
2,1
21
extint
=+×
×=+=′
=′π
′π−π
=⎟⎠
⎞⎜⎝
⎛=⎟⎟⎠
⎞
⎜⎜⎝
⎛=−
=−=−=ε
=−=−=ε
πεμ=πε
−μ
= ττ
 
( )
( )
m.N14,0
60
531.4001205,0
60
000.120012,0
10025,0
012,002,0108M
nDnD
LD
M
nDnD
LD
2
D
LDv2M)b
3
232
21
2
1
2
21
2
11
1
=⎟⎠
⎞⎜⎝
⎛ ×−××
××××π=
′−ε
μπ=
′π−πε
πμ=πε
Δμ=
−
−
 
 
Exercício 1.12 
 
).motor(movimentodofavoram.N1,04,25,2M
m.N5,2
2
5,025,0
101,0
1010M
s
m10
2
5,040
2
Dv
s
rd40
1,0
22
d
v2
2
DLDvM
m.N4,2
2
1,048
2
dFM
N48250FGF
N225,0
101,0
210F
cm1,0
2
502,50
2
DDLDvF
2
3
res
i
1
i
i
1
res
motmot
mot
2
3
ie
i
=−=
=×π××π×××=
=×=ω=→=×==ω→πεμ=
=×==
=−=−=
=π××π×××=
=−=−=ε→πεμ=
−
−
τ
−
−
τ
τ
 
 
 
 
 
 
 
 
 
 
Exercício 1.13 
 
 
 
 
 
 
 
 
 ( ) r.rdr2rr.rdr2vvdArdM 2121t πε
ω−ωμ=πε
−μ=τ=
( )
( )
( )
( )
4
t
21
4
21
t
4
21
t
R
0
321tM
0 t
321
t
D
M32
164
D2M
2
DR,mas
4
R2M
drr
2
dM
drr
2
dM
πμ
ε=ω−ω
×ε
ω−ωπμ=
=ε
ω−ωπμ=
ε
ω−ωπμ=
ε
ω−ωπμ=
∫∫
 
 
Exercício 1.14 
 
2
m05,0y
m05,0y
1
m05,0y
2
0y
0y
1
0y
2
2
cm
dina100254
dy
dvs25
dy
dv
cm
dina200504
dy
dvs50
dy
dv
50y500
dy
dvy50y250v
50be250aa02,0a01,05,2)1(em)2(
)2(a2,0bba2,00bay2
dy
dv0
dy
dvm1,0ypara
)1(b1,0a01,05,2
s
m5,2vm1,0ypara0c0v0ypara
cbyayv
=×=⎟⎟⎠
⎞
⎜⎜⎝
⎛μ=τ⇒=⎟⎟⎠
⎞
⎜⎜⎝
⎛
=×=⎟⎟⎠
⎞
⎜⎜⎝
⎛μ=τ⇒=⎟⎟⎠
⎞
⎜⎜⎝
⎛
+−=⇒+−=
=−=⇒−=
−=⇒+=⇒+=→=→=
+=⇒=→=
=⇒=→=
++=
=
=
−
=
=
=
−
=
 
 
004
dy
dv0
dy
dv
m1,0y
m1,0y
m1,0y
=×=⎟⎟⎠
⎞
⎜⎜⎝
⎛μ=τ⇒=⎟⎟⎠
⎞
⎜⎜⎝
⎛
=
=
=
 
 
r 
r+dr 
Exercício 1.15 
 
N2,348,0AF
m
N8,08010
dy
dv
s80v20
dy
dv
s8042,0200420yv200v20
dy
dv
vy100yv20v
2
2
0y
0y
1
máx
0y
1
máxmáx
m2,0y
máx
2
máx
=×=τ=
=×=⎟⎟⎠
⎞
⎜⎜⎝
⎛μ=τ
==⎟⎟⎠
⎞
⎜⎜⎝
⎛
−=××−×=−=⎟⎟⎠
⎞
⎜⎜⎝
⎛
−=
−
=
=
−
=
−
=
 
 
Exercício 1.16 
 
2
2
0y
0y
1
0y
2
2
m
N103
dy
dvs33y5,1
dy
dv)b
2y3y75,0v75,0
4
3a;3b
0ba4ba40bay2
dy
dv0
dy
dv2ypara
3b2a42b2a45
s
m5v2ypara
2c
s
m2v0ypara
cbyayv)a
−
=
=
−
=
×=⎟⎟⎠
⎞
⎜⎜⎝
⎛μ=τ⇒=+−=⎟⎟⎠
⎞
⎜⎜⎝
⎛
++−=⇒−=−==
=+⇒+=⇒+=→=→=
=+⇒++=⇒=→=
=⇒=→=
++=
 
 
Exercício 1.17 
 
2
1
2
2
112
23
2
1
11
m
N50
2
100
A
F
N1002150400AFF)b
m
N150
10
5103v)a
===τ
=×−=τ−=
=××=εμ=τ −
−
 
Y000.5v:Logo
000.5A10A55v10Ypara
0B0v0Ypara
BAYv)c
33
=
=⇒×=⇒=→=
=⇒=→=
+=
−− 
2
2
m
N505,0ypara
5,0b25,0a55v5,0ypara
0c0v0ypara
cbyayv)d
=τ→=
×+×=⇒=→=
=⇒=→=
++=
N60230AR
m
N305,74
dy
dv
5,7y10
dy
dv)e
y5,7y5v:olog
5,7be5a:dotanresul
5,12ba
5b5,0a25,0
:sistemaoresolversedeve
5,12b5,0a2
dy
dventãobay2
dy
dvcomo
5,12
4
50
dy
dv
dy
dv
0y
2
0y
20y
0y
2
5,0y
1
1
5,0y5,0y
22
=×=×τ=
=×=⎟⎟⎠
⎞
⎜⎜⎝
⎛μ=τ
+=⎟⎟⎠
⎞
⎜⎜⎝
⎛
+=
==
=+
=+
−
=+×=⎟⎟⎠
⎞
⎜⎜⎝
⎛+=
==μ
τ=⎟⎟⎠
⎞
⎜⎜⎝
⎛→⎟⎟⎠
⎞
⎜⎜⎝
⎛μ=τ
=
=
=
=
=
==
 
 
Exercício 1.18 
 
( )
( ) %5,17100
27320
27350
000.200
000.1501%
100
T
T
p
p
11001100%
RT
p
;
RT
p
2
1
1
2
1
2
1
21
2
2
2
1
1
1
=×⎟⎠
⎞⎜⎝
⎛
+
+×−=ρΔ
×⎟⎟⎠
⎞
⎜⎜⎝
⎛ ×−=×⎟⎟⎠
⎞
⎜⎜⎝
⎛
ρ
ρ−=×ρ
ρ−ρ=ρΔ
=ρ=ρ
 
 
Exercício 1.19 
 
Ks
m479
28871,0
108,9
T
pR
m
kg71,0
8,9
7
gm
N762,116,0
m
N62,118,9186,1g
m
kg186,1
288287
108,9
RT
p
2
24
33arr
3arar3
4
ar
=×
×=ρ=
==γ=ρ⇒=×=γγ=γ
=×=ρ=γ⇒=×
×==ρ
 
Exercício 1.20 
 
3arar
3
3
ar
ar
m
N4,491094,4g
m
kg94,4
311287
10441
TR
p
=×=ρ=γ
=×
×==ρ
 
 
Exercício 1.21 
 
)abs(kPa046.1
2
103,133
V
V
pp
Adiabático
)abs(kPa5,666
2
103,133
V
V
pp
VpVp
Isotérmico
28,1k
2
1
12
2
1
12
2211
=⎟⎠
⎞⎜⎝
⎛×=⎟⎟⎠
⎞
⎜⎜⎝
⎛=
=×==
=
 
Capítulo 2 
 
ESTÁTICA DOS FLUIDOS 
 
A ausência de movimento elimina os efeitos tangenciais e conseqüentemente a presença de 
tensões de cisalhamento. A presença exclusiva de efeitos normais faz com que o objetivo 
deste capítulo seja o estudo da pressão. Nesse caso são vistas suas propriedades num fluido 
em repouso, suas unidades, as escalas para a medida, alguns instrumentos básicos e a equação 
manométrica, de grande utilidade. Estuda-se o cálculo da resultante das pressões em 
superfícies submersas, o cálculo do empuxo, que também terá utilidade nos problemas do 
Capítulo 9, a determinação da estabilidade de flutuantes e o equilíbrio relativo. 
É importante ressaltar, em todas as aplicações, que o fluido está em repouso, para que o leitor 
não tente aplicar, indevidamente, alguns conceitos deste capítulo em fluidos em movimento. 
Para que não haja confusão, quando a pressão é indicada na escala efetiva ou relativa, não se 
escreve nada após a unidade, quando a escala for a absoluta, escreve-se (abs) após a unidade. 
 
Exercício 2.1 
 ( )
N13510101035,1G
Pa1035,1
20
5104,5
A
A
pp
Pa104,5
210
5,21072,21010500
AA
ApAp
p
ApG
ApAp
Pa1072,22000.136hp
ApAApAp
45
55
IV
III
34
5
53
HII
II2I1
3
V4
IV4III3
5
Hg2
II2HII3I1
=×××=
×=××==
×=−
××−××=−
−=
=
=
×=×=γ=
+−=
−
 
 
Exercício 2.2 
 
kN10N000.10
5
25400
D
D
FF
4
D
F
4
D
F
N400
1,0
2,0200F
1,0F2,0F
2
2
1
2
2
BO2
2
2
1
BO
BO
BOAO
==⎟⎠
⎞⎜⎝
⎛×=⎟⎟⎠
⎞
⎜⎜⎝
⎛=⇒π=π
=×=
×=×
 
 
 
Exercício 2.3 
 
mm3681000
000.136
5000.10h
hh
Hg
OHOHHgHg 22
=××=
γ=γ
 
 
Exercício 2.4 
)abs(mmHg3400)abs(
cm
kgf62,4)abs(MPa453,0)abs(
m
kgf200.46)abs(atm47,4p
mca10atm97,0MPa098,0Pa108,9
cm
kgf1
m
kgf000.1074,0600.13hp
mca2,36
000.1
200.36ph
bar55,398,0
cm
kgf62,310
m
kgf200.36p
MPa355,0108,9
m
kgf200.3666,2600.13hp
mmHg2660
1
5,3760p
patm5,3
mmHg760atm1
22abs
4
22HgHgatm
O2H
O2H
2
4
2
6
2HgHg
=====
===×≅=≅×=γ=
==γ=
=×=×=
=××=×=γ=
=×=
→
→
−
−
 
Exercício 2.5 
 
kPa35,13Pa350.13025,0000.101,0000.136p
01,0025,0p
1
HgOH1 2
==×−×=
=×γ−×γ+
 
 
Exercício 2.6 
 
kPa1,132Pa100.1321000.13625,0000.108,0000.8pp
p8,0125,0p
BA
BOHgO2HA
−=−=×−×−×=−
=×γ−×γ+×γ+
 
 
 
Exercício 2.7 
 
kPa6,794,20100p
kPa4,20Pa400.2015,0000.13615,0p
p100p
m
HgA
Am
=−=
==×=×γ=
−=
 
 
Exercício 2.8 
 
kPa55,36103,0500.834p
p3,0p)b
)abs(kPa13410034ppp
kPa100Pa000.10074,0000.136hp
kPa34Pa000.348,0500.83,0000.136p
07,03,07,08,0p)a
3
M
MOar
atmarabsar
HgHgatm
ar
O2HHgO2HOar
=××+=
=×γ+
=+=+=
≅≅×=γ=
==×−×=
=×γ−×γ−×γ+×γ+
−
 
)abs(kPa55,13610055,36ppp atmMabsM =+=+= 
 
 
Exercício 2.9 
 
( )
( ) )abs(mca12,17
000.10
000.171ph
)abs(Pa200.171200.95000.76ppp
Pa200.95000.1367,0p
Pa000.76p000.57
4
p
p
000.57pp000.30p000.27p
000.27pppap
000.30pp
p4p4
A
A
A
A
A
A
ApApAApApAp
2
A
A
kPa30pp
OH
absB
OH
atmBB
atm
B
B
B
ABAB
BCBC
AC
AB
H
2
H
1
1
2
HB2AH1B1B2A
1
2
AC
2
2
efabs
==γ=
=+=+=
=×=
=→=−
=−→=−−
−=→=γ+
=−
=→==×
=→−−=
=
=−
 
 
Exercício 2.10 
 
)abs(kPa991001ppp
kPa1Pa000.12,010500ghp
m
kg500
2,0
1,0000.1
h
hhh0ghp
0ghp
atm0abs0
AA0
3
A
B
BABBAABB0
AA0
=+−=+=
−=−=××−=ρ−=
=×=ρ=ρ⇒ρ=ρ⇒=ρ+
=ρ+
 
 
Exercício 2.11 
 
( ) ( )
( ) ( )
3324
3
o
OH
OHo
OHo
cm833.47m107833,41043,0
6
45,0xA
6
DV)c
m45,03,05,0
000.8
6,04,0000.10x5,0
x2y
D
m3,0
2
4,01
2
yyxyyx2
x2yx5,0D)b
m4,0
000.10
5,0000.8y
y5,0)a
2
2
2
=×=××+×π=+π=
=−−+=−−γ
+γ=
=−=−′=→′=+
+γ=++γ
=×=
×γ=×γ
−−
 
Exercício 2.12 
 ( )
( ) ( )
m105
5,11sen
5,4
1000.8
10
sen
D
d
pL0Lsen
D
dLp
D
dLH
4
DH
4
dL
Pa10001,010001,0p
0LsenHp
3
o
22
x
2
x
222
4
O2Hx
x
−×=
⎥⎥⎦
⎤
⎢⎢⎣
⎡ +⎟⎠
⎞⎜⎝
⎛
−=
⎥⎥⎦
⎤
⎢⎢⎣
⎡ α+⎟⎠
⎞⎜⎝
⎛γ
−=⇒=
⎥⎥⎦
⎤
⎢⎢⎣
⎡ α+⎟⎠
⎞⎜⎝
⎛γ+
⎟⎠
⎞⎜⎝
⎛=⇒π=π
−=−×=−×γ=
=α+γ+
Exercício 2.13 
 
( )
( )
( )
( )
( )
mca7,3
000.10
000.37p
Pa000.37000.17000.20000.17pp)b
absmmHg831684147p
mmHg147m147,0
000.136
000.20Pa000.20p
000.17p10331p104:)1(nadoSubstituin
p000.17p
p4,0000.104,0000.5005,0000.102p
m05,0
4,71
7,35
2
4,0
D
d
2
hh
4
d
2
h
4
Dh
phhh2p
1p10331p104
0357,00714,0
4
p31
4
0714,0p
dD
4
pF
4
Dp)a
2
12
abs1
1
1
21
21
2221
21
21
21
ar
arar
ar
ar
ar
3
ar
3
arar
arar
2222
arOHmOHar
ar
3
ar
3
22
ar
2
ar
22
ar
2
ar
==
=+=+=
=+=
====
+×=+×
=+
=×−×+×××
=⎟⎠
⎞⎜⎝
⎛=⎟⎠
⎞⎜⎝
⎛=Δ→π=πΔ
=γ−γ+Δγ+
×=+×−π=+×π
−π=+π
−−
−−
 
 
Exercício 2.14 
( )
1
2
11
22
222
111
arar
21
ar
HgO2Har
T
T
Vp
VpmRTVp
mRTVp)c
Pa050.12p0000.1361,0000.10155,0p
cm5
1
105,0hA.hA.y)b
Pa200.25000.10000.1362,0p
02,02,0p)a
=⇒=
=
=′⇒=×−×+′
=×=Δ⇒Δ=Δ
=−=
=×γ−×γ+
 
C44K317
100
95
200.125
050.112373T
cm95105,01010V
050.112000.100050.12p
)abs(Pa200.125000.100200.25p
o
2
3
2
abs2
abs1
==××=
=×−×=
=+=
=+=
 
 
 
Exercício 2.15 
 
 
3A
A
A
atmAAabs
atm
OH
A
OH
A
2222
A
212A
m
kg12,1
293287
576.94
RT
p
)abs(Pa576.94200.95624ppp
Pa200.95000.1367,0p)b
mca0624,0
000.10
624ph
Pa6240015,02000.8600p
m0015,0
40
4
2
3,0
D
d
2
hh
4
d
2
h
4
Dh
h2000.83,0000.103,0000.8p
0hhh2p)a
2
2
=×==ρ
=+−=+=
=×=
−=−=γ=
−=××−−=
=⎟⎠
⎞⎜⎝
⎛=⎟⎠
⎞⎜⎝
⎛=Δ→π=πΔ
Δ×−×−×=
=γ−γ+Δγ+
 
 
Exercício 2.16 
 
3
1
2
2
1
12
1
2
11
22
absgásO2Hgás
O2Hgás
absgás
atm
gásO2HHggás
m16,2
293
333
100
952
T
T
p
pVV
T
T
Vp
Vp
)abs(kPa1001090pkPa10Pa000.101000.10z.p)c
m5,0
000.10
000.5zz.p)b
)abs(kPa95590p
kPa90Pa032.90662,0000.136p
Pa500016,0000.10025,0000.136p16,0025,0p)a
=××==⇒=
=+=′⇒==×=′γ=′
==⇒γ=
=+=
==×=
=×+×=⇒×γ+×γ=
 
 
 
Exercício 2.17 
 
 
( ) ( ) 232222123322212211
32
21
3,0p1,05,0p5,0p
4
DpDD
4
p
4
Dp
000.22,0000.10pp
000.10pp
×+−×=×→π+−π=π
=×=−
=−
 
( )
( )
kPa5,43Pa500.43p3480p08,0
180000.10p33,0p25,0
180p33,0p25,0
000.2p09,0p24,0p25,0
11
11
21
221
==→=
−−=
−=
−+=
 
 
Exercício 2.18 
 
3222
2
ct
c
t
t
pGt
o
G
p
22
c
22p
22
c
11p
m
kg993.10
183,05,010
950.34
LDg
G4
L
4
Dg
G
gV
G)c
m183,0
5,0210
5,110005,0L
m0005,0
2
5,0501,0
2
DD
Dv
FLDLvF)b
N5,11FFF
desce196319755,0395030GsenF
cimaparaN196378549817F
N7854
4
5,0000.40
4
DpF
N9817
4
5,0000.50
4
DpF)a
=××π×
×=π=π==ρ
=×π××
×=
=−=−=ε
πμ
ε=⇒πεμ=
=−=
>=×==
=−=
=×π×=π=
=×π×=π=
−
 
 
Exercício 2.19 
( ) ( )
( ) ( )
cm8,127m278,1278,01L
m278,0ym0278,0x0600.36x10098,1x000.908000800
2
600.552
0200.735,0x15000.10x98,0800
A
F2
x10yy2,0x2
0200.7330ysen30sen1y000.10y25,0x55,0000.81,0
A
F2
m
N200.73
30sen1
8,0000.101,0000.8
2
600.55
30Lsen
8,01,0
A
F
030Lsen8,01,0
A
F
6
oo
3oo
21
3
o
321
==+=′
=⇒=⇒=−×−+++×
=×+−×+++
=⇒=
=×+×+−×++−+×+
=×
×+×+
=
×γ+×γ+
=γ
=γ−×γ+×γ+
 
Exercício 2.20 
 
( ) ( )
( ) ( )
( ) ( )
( )
kPa50109,39ppp)c
)abs(kPa1,60)abs(Pa100.6039908000.100p
Pa908.39
103,50
150102013,50000.10100
A
FAApGp
FApAApAApG
cm3,50
4
8
4
DA;cm201
4
16
4
DA)b
N15005,008,016,0
001,0
58,0DDvF
s
m.N8,0
10
000.810
g
)a
abm
absb
4
4
2
t12a
b
t2bH1aH2a
2
22
2
2
2
22
1
1
21t
2
3
−=−−=−=
==−+=
−=×
−×−×+=−−+=
++−=−+
=×π=π==×π=π=
=×+×π××=+πεμ=
=×=μγ=ν
−
−
−
l
 
 
 
Exercício 2.21 
 
2
3
p
p
p
p
p
p
2
p
p
pp2
12
m
s.N8,0
10
000.810
g
m001,0
2
998,01
2
DD
D
vL4pLv
4
D
p
LD
4
D
p
pistãonomédiapressãopondephp
000.10pp
=×=νγ=μ
=−=−=ε
ε
μ=→εμ=
τπ=π
==γ+
=−
−
 
 
 
 
 
 
 
 
 
Exercício 2.22 
 
N33933,0
4
2,1000.10b
4
RF
N160.23,02,16,0000.10AhF
22
y
x
=××π×=πγ=
=×××=γ=
 
 
 
kPa23,25Pa230.25000.10230.15000.10pp
m
N230.152000.85,769hpp
Pa5,769
998,0001,0
2,02,18,04p
21
2p2
p
−=−=−−=−=
=×−=γ−=
=×
×××=
Exercício 2.23 
 
m4,02,06,0b
m2,0
6
h
h
2
hAh
Ihh
N920.252,1
2
2,1000.30hhApF
m2,14,06,0
000.30
000.804,06,0h
6,0.4,0.h
2
12
4h
CG
cp
22
p
m
m
=−=
==
×
==−
=××=γ==
=−×=−×γ
γ=
γ=γ+γ
 
N640.8
2,1
4,025920
h
bFFbFhF pp =×==→×=× 
 
Exercício 2.24 
 
N948.59100.115,42,1F
N668.7
2
100.11100.5100.52,16,0F
N755.285,46,0
2
100.11100.55,46,0
2
100.5FFF
Pa100.116,0000.10100.56,0pp
Pa100.56,0500.86,0p
f
B
21A
212
11
=××=
=⎟⎠
⎞⎜⎝
⎛ ++××=
=××++××=+=
=×+=×γ+=
=×=×γ=
 
 
Exercício2.25 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
N500.225,121500.7AhF
m0833,10833,01
m0833,0
5,124AhAh
Ihh
N102,15,124000.10AhApF
F2FF
2o2
1
12
325,1
1
12
3bh
1
CG
11CP
5
1O2H11
22B11
=×××=γ=
=+=
=××===−
×=×××=γ==
+×=
×
l
ll
 
m333,1333,01
m333,0
5,121Ah
hh
2
12
325,1
2
12
3bh
22CP
=+=
=××==−
×
l
N105F
333,1500.222F0833,1102,1
4
B
B
5
×=
×+×=××
F
Fp 
h hcp 
b 
h 
5m 
2 m 
A 
B 
1l 2l 
3 m 
F1 F2 
FB 
Exercício 2.26 
 
m736,0
634.7
680.42,1
F
FyxxFyF
N634.73,0
4
8,1000.10b
4
RF
m2,18,1
3
2R
3
2y
N860.43,0
2
8,1000.10bR
2
RF
y
x
CPCPCPyCPx
22
y
c
2
x
=×==⇒=
=××π×=πγ=
=×==
=×=••γ=
 
 
 
Exercício 2.27 
 
m65,230cos75,02h
AhApF
o =×+=
γ==
 
 
 
kN4,991075,365,2000.10F
m75,35,25,1A
3
2
=×××=
=×=
− 
 
Exercício 2.28 
 
( )
( )
( ) ( )
3
oO2H
2
O2H
22
oinfsup
2
2
O2Hinf
2
osup
m
N000.35
6,0
5,2000.86,05,3000.10
6,0
h6,0h
4
D6,0h6,0
4
D
4
DhFGF
6,0
4
DG
4
D6,0hF
4
DhF
=×−+×=γ−+
′γ=γ
π+′γ=×πγ+πγ⇒=+
×πγ=
π+′γ=
πγ=
 
 
 
Exercício 2.29 
 
 
 
 
 
 
 
 
xCG CG 
γ1
γ2 
R 
R 
O 
Fx1 F2 
Fy1 
21 ll = 
2
bRRb
2
RF
AhF
FxFF
2
1
11x
1111x
22CG1y11x
γ=γ=
γ=
=+ ll
 
 
6
R
Rb
2
RAh
Ihh 12
3bR
CG
11CP ===− 
3
1
22
3
R
2
bR
3
R4
4
bR
3
R
2
bR
b
4
RVF
2
bR
Rb
2
RAhF
3
R
6
R
2
R
2
12
1
1
2
2
2
1
2
1
2
11y
2
2
22222
21
1
=γ
γ→γ=γ+γ
×γ=π×
πγ+×γ
πγ=γ=
γ=γ=γ=
==−= ll
 
 
Exercício 2.30 
 
( )
( )
N3,465
1
579,0300.14583,0000.15
BA
brFbrF
FBAFMM
m579,0079,05,0br
m079,0
5,106,1
125,0
Ay
Iyy
m06,156,05,0y
m56,0
000.9
032.5ph
N300.145,11532.9ApFPa532.9
2
032.14032.5
2
pp
p
Pa032.141000.950321pp
Pa032.5037,0000.136037,0pp
m583,0083,05,0br
m083,0
5,11
125,0yy
m125,0
12
15,1
12
bI
Ay
Iyy)b
N000.155,11000.10ApFPa000.10
2
000.15000.5
2
pp
p
Pa000.155,1000.105,1p
Pa000.55,0000.105,0p)a
esqesqdirdir
BBesqdir
esq
esq
CG
esqCP
esq
o
ar
areq
esqesq
esqBesqA
esq
oesqAesqB
HgaresqA
dir
dirCP
4
33
CG
CG
CP
dirdir
dirBdirA
dir
O2HdirB
O2HdirA
=×−×=−=⇒×+=
=+=
=×==−
=+=
==γ=
≅××==⇒=+=+=
=×+=×γ+=
=×=×γ==
=+=
=×=−
=×==→=−
=××==⇒=+=+=
=×=×γ=
=×=×γ=
l
 
 
 
 
Exercício 2.31 
 
( ) ( ) N6363,06,0
4
3,0000.103,0D
4
hApF
N107,1
4
6,06,0000.10
4
D
hApF
2222
MMMMM
3
22
F
FFFF
=−π××=−πγ==
×=×π××=πγ==
 
 
Exercício 2.32 
 
N230.76
2
083,1000.1205,0000.45F083,1F5,0F2F
m083,0
412
2
y12by
12/b
Ay
Iyy
N000.1205,12000.40ApFPa000.40
2
000.50000.30p
Pa000.505000.105p
m3
000.10
000.30ph
N000.455,11000.30ApF
Pa000.304,0000.1025,0000.1364,025,0p
BCAB
223
CG
CP
BCBCBCBC
O2HC
O2H
AB
ABABAB
O2HHgAB
=×+×=⇒×+×=×
=×====−
=××=×=⇒=+=
=×=×γ=
==γ=
=××==
=×−×=×γ−×γ=
l
l
l
 
 
 
Exercício 2.33Exercício 2.34 
 
m1CBMM
2
CBbCB3M
3
3b3
2
3M
BCAB
BCAB
=⇒=
γ=→γ=
 
 
 
F1 F2 
1l 2l 
( )
( ) ( )
( ) ( )
m27,6z
5,1108,225,6z5,2
5,11
5,2z
08,25,25,2z
5,2106,4
5,2z
08,25,25,2z10
m5,2
N106,4251046pAF
5,2z
08,25,2
55
2
53
2
1
=
=+−
=⎥⎦
⎤⎢⎣
⎡
−+−
××=⎥⎦
⎤⎢⎣
⎡
−+−
=
×=×××==
−+=
l
l
Exercício 2.35 
 
 
2
1
h
xh
3
x6h
3
x
2
xhxb
3
xb
2
x
2
x
hxbF
3
x
xb
2
xAhF
FF
2
1
2
2
1
2
22
1
1111
2211
=→=→=γ
γ
×γ=×γ
=
γ=
=
γ=γ=
=
l
l
ll
 
 
Exercício 2.36 
 
kN204H880.218015H
m.kN1805,1120MkN120
000.1
134000.10V
m.kN880.2
000.1
41126000.10M
V
x
=⇒+=×
=×=⇒=×××=
=××××=
 
 
Exercício 2.37 
 
O ferro estará totalmente submerso. 
N2183,0
4
3,0300.10h
4
DVE
22
flfl =××π×=πγ=γ= 
A madeira ficará imersa na posição em que o peso seja igual ao empuxo. 
 
sub
2
fl
22
mad
h
4
DE
N1593,0
4
3,0500.7h
4
DGE
πγ=
=××π×=πγ==
 
 
 
m218,0
3,0300.10
1594
D
E4h
22
fl
sub =×π×
×=
πγ
= 
 
Exercício 2.38 
 
N625023,0000.25500VGG conconcil =×+=γ+= 
F1 
F2 
1l 
2l 
( )
m3,02,05,0h
m5,0
1
23,0
000.10
62504
D
V/G4H
H
4
DVGEG
22
con
2
con
=−=
=×π
⎟⎠
⎞⎜⎝
⎛ −×
=π
−γ=
⎟⎟⎠
⎞
⎜⎜⎝
⎛ ×π+γ=⇒=
 
 
 
Exercício 2.39 
 
 
 
 
 
 
 
 
 
 
 
( ) m7,29,08,1BAx:Logo
m9,0
270
6,0080.13,0350.1
F
GE
m6,0
3
8,1
3
BA
m3,0
3
9,0
3
IH
N270080.1350.1GEF:Logo
N080.11
2
6,08,1000.2b
2
CBBAVG
N350.11
2
9,03,0000.10b
2
IHCHVE
2
BAIH
FGE
EGF
2F
21
3
2
1
ccc
OHsubOH
321
22
=−−=−=
−=×−×=−=
===
===
=−=−=
=×××=××γ=γ=
=×××=××γ=γ=
=
+=
=+
l
lll
l
l
lll
 
A força deverá ser aplicada à direita do ponto B, fora da plataforma AB. 
 
Exercício 2.40 
 
( )( )
( )( ) 22dd444
3
odo
3
m1036,3A02,0A3,031055103,002,010
12
6,0
AARhGRA
26
D
−×=⇒−+×+=××−××π
−+γ+=γ−γ××
π
 
A B
C 
I H
E 
G 
F 
1l 
2l 
3l 
 
Exercício 2.41 
 
Supondo o empuxo do ar desprezível: 
3c
ccc
3
fl
fl
ap
m
N670.26
03,0
800
V
GVG
m03,0
000.10
300EVVE
N300500800EEGG
===γ→γ=
==γ=→γ=
=−=→+=
 
 
Exercício 2.42 
 
mm2,7m102,7
005,0
104,14
d
V4hh
4
dV
m104,11068,21082,2V
m1068,2
200.8
102,2GVVEG
m1082,2
800.7
102,2GVVEG
3
2
7
2
2
3766
36
2
2
2222
36
2
1
1111
=×=×π
××=π
Δ=Δ⇒Δ×π=Δ
×=×−×=Δ
×=×=γ=⇒γ==
×=×=γ=⇒γ==
−−
−−−
−−
−−
 
 
Exercício 2.43 
 ( )
( )
( )
( )
m8,0hh000.16000.40h000.6000.32
h5,2000.16h000.6000.32
h5,14hp
m
N000.324000.8p4AApGAp
2Situação
m
N000.1622A4A
EG1Situação
ooo
oo
ooobase
2basebasecbasebasebasebase
3cbbc
=→−+=
−+=
−−γ+γ=
=×=→×γ=→=
=γ→γ=γ→×γ=×γ
=→
l
lll
 
 
Exercício 2.44 
 
m6
000.61009,2
2105,4x
N1009,2
12
210
26
DE
N105,4135,110AhF
GE
2FxxE3
3
2FxG
4
4
4
3
4
3
44
=−×
××=
×=×π×=×
πγ=
×=×××=γ=
−
×=⇒•=××+•
 
 
 
E 
G F 
Exercício 2.45 
 ( )
( )
( )
3B
B
BAbase
2b
bc
b
base
bbase
3cAbAbc
m
N000.25
4,02,0000.15000.13
2,06,02,0p
m
N000.13
1
000.1016,0000.5
A
FA6,0
A
FGp
FGAp
2Situação
m
N000.15000.5332,0A6,0AEG
1Situação
=γ
×γ+×=
−×γ+×γ=
=+××=+××γ=+=
+=
=×=γ=γ→×γ=×γ→=
 
 
Exercício 2.46 
 
( ) ( ) N171.10
6
121085,7132,110
6
DgG
1085,7
293400.41
200.95
TR
p
m
kg132,1
293287
200.95
TR
p
Pa200.957,0000.1367,0p
3
3
3
2Har
3
2H
2H
2H
3
ar
ar
ar
Hgatm
=×π××−×=πρ−ρ=
×=×==ρ
=×==ρ
=×=×γ=
−
− 
 
Exercício 2.47 
79,0x
21,0x
62
16466x:Raízes
01x6x6
0
2
x
2
1
x12
1xFazendo0
22
1
12
0
2
b
2
b
b
2
b
2
b0
V
I
r
bhbhbEG
2
2
cc
c
c
3
c
12
b
c
c
y
c
sub
2
sub
3
c
4
=′′
=′→×
××−±=
>+−
>+−→=γ
γ→>γ
γ+−γ
γ
>⎟⎟⎠
⎞
⎜⎜⎝
⎛
γ
γ−−
γ
γ
γ
γ−=→>−γ
γ=
γ
γ=→γ=γ→=
ll
l
l
l
l
l
l
l
ll
179,021,00 cc <γ
γ<<γ
γ<
ll 
Exercício 2.48 
 
 
estável0m037,00467,0
5,2
103,083.2000.10r
cm3,083.2
12
1025
12
bLI0
G
I
r
cm67,433,05cm5yCG
cm33,05,0
3
2yCC
cm5,0
10
5,2
L
Vh
hL
2
bh2V
m105,2
000.10
5,2GV
GVEG
8
4
33
y
yf
im
2
im
im
im
34
f
im
imf
⇒>=−××=
=×==→>−γ=
=−=⇒=→
=×=→
===
==
×==γ=
=γ⇒=
−
−
l
l
l
 
 
Exercício 2.49 
( )
( )
⎟⎟⎠
⎞
⎜⎜⎝
⎛
γ
γ−γ
γ<→−<
<−−→>+−
=γ
γ
>γ
γ+−γ
γ→>γ
γ+−γ
γ→>⎟⎟⎠
⎞
⎜⎜⎝
⎛
γ
γ−−
γπ
πγ
⎟⎟⎠
⎞
⎜⎜⎝
⎛
γ
γ−=−=π=γπ=
>−γ=
γ
γ=
γπ=πγ
=
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
12
1
R
H
x1x2
1
R
H
01x2x2
R
H0
R
H2.x
R
H2
x
1
:RportudodividindoexFazendo
0H2H2R0
2
H
2
H
H4
R
0HH
2
1
HR4
R
HH
2
1
2
h
2
H
4
RIHRG
0
G
I
r
Hh
HRhR
GE
2
2
2
2
2
2
2
2
222
2
2
4
sub
4
y
2
y
sub
2
sub
2
 
 
 
CG 
CC 0,5cm 
Exercício 2.50 
 
z6
g
g51z
g
a
1zp yz Δγ=⎟⎟⎠
⎞
⎜⎜⎝
⎛ +Δγ=⎟⎟⎠
⎞
⎜⎜⎝
⎛ ±Δγ=Δ 
 
 
Exercício 2.51 
 
h
km2,646,3
s
m83,17557,3tav)b
s
m57,320tg8,9a20tgga
g
a
x
z)a
x
2
o
x
o
x
x
=×=×==
=×=→=→=Δ
Δ
 
 
Exercício 2.52 
 
oo
o
x 4130tg
30cos8,9
45,2tg
cosg
atg =θ⇒+×=α+α=θ 
 
 
Exercício 2.53 
 
( )
2x
3
x
3
Hg
s
m72,1
5,1
257,010
x
zga
m257,0
000.136
10140175z
g
a
x
z)b
m29,1
000.136
10175ph)a
=×=Δ
Δ=
=×−=Δ→=Δ
Δ
=×=γ=
 
 
Exercício 2.54 
 
)abs(kPa106
10
6,010000.1100ghpp
)abs(kPa7,125
10
6,010000.17,119ghpp
)abs(kPa7,119100106,0
2
5,10000.1p
s
rd5,10
60
1002n2pr
2
p
3atmC
3AB
32
2
A
atm
2
2
A
=××+=ρ+=
=××+=ρ+=
=+×⎟⎟⎠
⎞
⎜⎜⎝
⎛ ××=
=×π×=π=ω→+Δωρ=
−
 
 
Exercício 2.55 
 
 2x
x
s
m78,2
10
6,3
100
t
va
g
atg)a ===→=α 
140 
175 Pa 
zΔ
( ) ( )
( ) ( ) Pa600.314,05,0000.10h5,0p
Pa400.614,05,0000.10h5,0p
m14,0278,05,0h
5,0
htg)b
5,15278,0
10
78,2tg
O2HB
O2HA
o
=−×=Δ−γ=
=+×=Δ+γ=
=×=Δ→Δ=α
=α→==α
 
 
Exercício 2.56 
 
2
o
x
xo
oo
o
4
3
dir
dir
4
3
esq
esq
s
m8,530tg10a
g
a30tg
m73,1
30tg
1
30tg
hL
L
h30tg
m11011hm11
10
10110ph
m10
10
10100ph
=×=⇒=
==Δ=⇒Δ=
=−=Δ⇒×=γ=
=×=γ=
 
 
Exercício 2.57 
 
s5
4
6,3
72
a
vt
t
va
s
m4
5,0
2,010a
g
a
tg
x
x
2x
x
===→=
=×=
=α
 
 
Exercício 2.58 
 
( ) kN6,13N600.131010006,31000GmaFmaGF
s
m6,31
000.10
200.27600.13g1
z
ppa
g
a
1zpp
Pa600.131,0000.1361,0p
Pa200.272,0000.1362,0p
2
12
y
y
12
Hg2
Hg1
−=−=×−−×=−=⇒=+
−=⎟⎠
⎞⎜⎝
⎛ +−=⎟⎟⎠
⎞
⎜⎜⎝
⎛ +Δγ
−=⇒⎟⎟⎠
⎞
⎜⎜⎝
⎛ +Δγ=−
=×=×γ=
=×=×γ=
 
 
 
 
 
 
 
Capítulo 3 
 
CINEMÁTICA DOS FLUIDOS 
 
Neste capítulo pretende-se, implicitamente, estabelecer a visão euleriana do estudo dos fluidos 
em movimento. É interessante lembrar que o estudante, acostumado com a visão lagrangeana 
estabelecida pela Mecânica Geral e pela Física, tem muita dificuldade para focalizar o fluido 
como um contínuo e observar as suas propriedades em diversospontos no mesmo instante. 
Insiste-se na idéia do regime permanente, já que a eliminação da variável tempo simplifica o 
estudo e a solução dos problemas e, de certa forma, resolve a maioria dos problemas práticos. 
Procura-se fixar as idéias de campos de propriedades e de diagramas de velocidades, típicas 
do estudo de fluidos. Evita-se propositadamente a denominação “volume de controle”, porém 
seu conceito está utilizado implicitamente quando se trata de tubo de corrente. O 
aprofundamento do estudo será feito no Capítulo 10, quando o leitor já tiver uma melhor 
compreensão do assunto, com as limitações impostas nos primeiros capítulos. 
Exercício 3.1 
 
∫=
A
m vdAA
1v
 
Mostrar claramente a facilidade de se utilizar uma coordenada polar quando se trabalha com 
seções circulares. Mostrar que a área elementar é calculada por 2πrdr. 
( )
máxm
44
4
máx
m
R
0
422
4
máxR
0
32
4
máx
m
R
0 2
22
2
máx
m
2R
0 máx2m
v5,0v
4
R
2
R
R
v2
v
4
r
2
rR
R
v2
drrrR
R
v2
v
rdr
R
rR
R
v2
v
rdr2
R
r1v
R
1v
=
⎟⎟⎠
⎞
⎜⎜⎝
⎛ −=
⎟⎟⎠
⎞
⎜⎜⎝
⎛ −=−=
⎟⎟⎠
⎞
⎜⎜⎝
⎛ −=
π⎥⎥⎦
⎤
⎢⎢⎣
⎡
⎟⎠
⎞⎜⎝
⎛−
π
=
∫
∫
∫
 
 
Exercício 3.2 
 
( )
dxdr;xRr;rRx:iávelvardeMudança
rdrrR
R
v2rdr2
R
r1v
R
1v
vdA
A
1v
R
0
7
1
7
15
máx7
1
R
0 máx2m
m
−=−=−=
−=π⎟⎠
⎞⎜⎝
⎛ −π=
=
∫∫
∫
 
( )( )
máx
7
15
7
15
7
15
máx
R
0
7
15
7
8
7
15
máx
m
R
0
7
8
7
1
7
15
máx0
R
7
1
7
15
máx
m
v
60
49R
15
7R
8
7
R
v2
15
x7
8
Rx7
R
v2
v
dxxRx
R
v2
dxxRx
R
v2
v
=⎟⎟⎠
⎞
⎜⎜⎝
⎛ −=⎟⎟
⎟
⎠
⎞
⎜⎜
⎜
⎝
⎛
−=
⎟⎟⎠
⎞
⎜⎜⎝
⎛ −=−−= ∫∫ 
 
Exercício 3.3 
 
s/m10
15,010
510
A
gQ
v
s/m20
15,05
510
A
gQ
A
Q
v
BB
m
m
AA
m
AA
m
m
B
A
=××
×=γ=
=××
×=γ=ρ=
 
 
Exercício 3.4 
 
s
N10110gQQ
s
kg110000.1QQ
s
m10
60100
6
t
VQ
mG
3
m
3
3
=×==
=×=ρ=
=×==
−
−
 
 
Exercício 3.5 
 
s
m2
105
10
A
Qv
s
N10110gQgQQQ
s
kg110000.1QQ
s
L1
s
m1010101AvQ
4
3
2
2
mG
3
m
3
34
11
=
×
==
=×==ρ=γ=
=×=ρ=
==××==
−
−
−
−−
 
 
Exercício 3.6 
 
s
m1067,2
9,0
104,2QQ
s
m102
2,1
104,2QQ
s
kg104,210200102,1AvQ
3
2
2
2
m
2
3
2
2
1
m
1
24
111m
−−
−−
−−
×=×=ρ=
×=×=ρ=
×=×××=ρ=
 
s
m267
1010
1067,2
A
Q
v
s
N24,0104,210gQQ
4
2
2
2
2
2
mG
=×
×==
=××==
−
−
−
 
 
Exercício 3.7 
 
Supondo o regime permanente, já que o enunciado não dá nenhuma indicação de variação 
com o tempo, pode-se utilizar a Equação da Continuidade correspondente. 
3
2211
3
332211
Q
QQ
QQQ
ρ+ρ=ρ
ρ=ρ+ρ
 
Sendo os fluidos incompressíveis e o reservatório rígido, pode-se utilizar também a equação 
para fluido incompressível. 
s/m10
1030
1030
A
Q
v
m/kg933
30
1080020000.1
QQQ
4
3
3
3
3
3
3
213
=
×
×==
=×+×=ρ
+=
−
−
 
 
Exercício 3.8 
 
s500
1010
552,0
Q
hA
Q
Vt
s
m104
55
1010
A
Qv
3
tan
4
3
tan
=×
××===
×=×
×==
−
−−
 
 
Exercício 3.9 
 
s
m14,4
1
25,34
D
Q4v
s
m25,3
500
10
100
5
t
V
t
V
Q
22
333
2
2
1
1
=
×π
×=
π
=
=+=+=
 
 
Exercício 3.10 
 
s
m01,0
2
02,0
2
v
v
D
DvDvv
4
Dv
4
Dv
4
Dv
1máx
1
2
3
2
22
2
11
3
2
3
3
2
2
2
2
1
1
===
−=
π+π=π
 
 
s
m064,0
5
5,2106,01501,0v
s
m106,013,0
60
49v
60
49v
2
22
2
3máx2
=×−×=
=×== 
 
Exercício 3.11 
 
Seja: Qe = vazão de entrada 
 QF = vazão filtrada 
 QNF = vazão não filtrada 
∫=
+=
ANF
NFFe
vdAQ
QQQ
 
Por semelhança de triângulos: ⎟⎠
⎞⎜⎝
⎛ −=→−= R
rRvv
rR
v
R
v
máx
máx 
 
 ( )
( )
s
L8,82,110QQQ
s
L2,1
s
m102,1
3
1014,63,0Q
cm14,620tg105,2R
3
Rv
3
R
2
R
R
v2
3
r
2
Rr
R
v2
Q
drrRr
R
v2
rdr2
R
rRvQ
NFeF
3
3
22
NF
o
2
máx
33
máx
R
0
32
máx
NF
R
0
2máxR
0 máxNF
=−=−=
=×=×××π=
=×+=
π=⎟⎟⎠
⎞
⎜⎜⎝
⎛ −π=⎟⎟⎠
⎞
⎜⎜⎝
⎛ −π=
−π=π⎟⎠
⎞⎜⎝
⎛ −=
−−
∫∫
 
Aproveitar este exercício para mostrar que a vazão coincide geometricamente com o volume 
do diagrama de velocidades. No caso do diagrama cônico, o volume do cone é: 
3
vR
3
alturaBase máx
2 ×π=× 
 
Exercício 3.12 
 
s
m8,02,01QQQ
s
m1111AvQ
s
m2,0
5
1
t
V
Q)b
s
m1
3
y3dyy3bdyy3
11
1v
vdA
A
1v)a
3
Bcalha
3
mcalha
3
B
B
B
31
0
21
0
2
m
m
=−=−=⇒=××==
===
===×=
=
∫∫
∫
 
s
m86,1332,11
49
60v
49
60v104,3
10
3,032,11Re
s
m32,11
3,0
8,04
D
Q4vvDRe)c
mmáx
6
6
22
=×=⇒×=×=
=×π
×=π=→ν=
−
 
 
 
Exercício 3.13 
 
( )
( )
( )
m099,0
10810
624,04
Re
Q4
D
D
D
Q4
Re
D
Q4
v
Dv
Re
s/m624,0
09,1
68,0QQ
s/kg68,073,441,5QQQ
s
m021,5
942,0
73,4QQs/kg73,4
4
8,010942,0
4
D
vQ
s/m10
8,0
10108
D
Re
v
Dv
Re
s/kg41,55,4201,1QQ
m
kg201,1
27317287
10100
RT
p
m
kg942,0
27397287
10100
RT
p
m
kg09,1
27347287
10100
RT
p
s
m5,4
3600
1
h
m16200Q
55
1
1
1
1
2
1
1
12
1
1
1
11
1
3
1
1m
1
2m0m1m
3
2
2m
2
22
2
222m
55
2
2
2
22
2
000m
3
3
0
0
0
3
3
2
2
2
3
3
1
1
1
33
0
=×××π
×=νπ=
νπ=→π=→ν=
==ρ=
=−=−=
==ρ=→=
×π××=πρ=
=××=ν=→ν=
=×=ρ=
=+×
×==ρ
=+×
×==ρ
=+×
×==ρ
=×=
−
−
 
 
Exercício 3.14 
 
h
0
32h
0
2
m
2
3
0y
0y
1
0y
1
cm2y
2
3
52
5
2
3
y
2
y30
h
1bdy)yy30(
bh
1vdA
A
1v)c
m
N189,030103,6
dy
dvs30
dy
dv)b
s262230
dy
dvy230
dy
dv)a
m
s.N103,6
10
900107
gs
m107
s
cmouSt7,0cSt70
⎟⎟⎠
⎞
⎜⎜⎝
⎛ −=−==
=××=⎟⎟⎠
⎞
⎜⎜⎝
⎛μ=τ→=⎟⎟⎠
⎞
⎜⎜⎝
⎛
=×−=⎟⎟⎠
⎞
⎜⎜⎝
⎛⇒−=
×=××=νγ=μ⇒×==
∫∫
−
=
=
−
=
−
=
−−−
 
 
s
kg75,025,005,0107,66
10
900AvQ)d
s
cm7,66
3
5515
3
hh15
3
hh15
h
1v
2
mm
223
2
m
=××××=ρ=
=−×=−=⎟⎟⎠
⎞
⎜⎜⎝
⎛ −=
−
 
 
Exercício 3.15 
 
2
2
4
2
cm5,1r
3
0G
1der0
der
der2431
3
22
m3
3
2m2
322
4m4
322
1m1
máx
m
4
4m
4
m
4
1m
1
m
m
N7,66
015,0
101,0
m
s.N1,0000.110v)g
s/m12,5
5,2
5,118v)f
s/N199109,1910000.1gQQ
s
L9,199,188,38QQQ)e
forapara
s
L8,3838,71,159,18Q
QQQQQ
s
L1,15s/m0151,0
4
08,03
4
D
vQ
s
L3s/m003,002,003,05AvQ)d
s
L8,7s/m0078,0025,04RvQ
s
L9,18s/m0189,0035,09,4RvQ)c
s/m5
2
10
2
v
v)b
2000
10
025,024DvRe
s
m4
2
8v
3430
10
035,029,4DvRe
s
m9,46
60
49v)a
3
3
2
4
1
2
2
4
4
1
1
=×=τ
=×=νρ=μεμ=τ
=⎥⎥⎦
⎤
⎢⎢⎣
⎡
⎟⎠
⎞⎜⎝
⎛−=
=×××=ρ=
=−=−=
=−++=
+=++
==×π×=
π
=
==××==
==×π×=π=
==×π×=π=
===
=××=ν=
==
=××=ν=
=×=
−
=
−
−
−
 
 
 
 
Exercício 3.16 
 
s
m66,233,12v2v
QQ)d
s
m33,1
3
2,05
2
2,0200)yv100yv20(
bh
1v)c
N8,024,0AF
m
N4,04010
dy
dv)b
s402,02200220
dy
dv
yv200v20
dy
dv
yv100yv20v)a
mmáx
21
32
2,0
0
2,0
0
2
máxmáxm
22
0y
0y
1
m2,0y
máxmáx
2
máxmáx
=×==
=
=⎟⎟⎠
⎞
⎜⎜⎝
⎛ ×−=−=
=×=τ=⇒=×=⎟⎟⎠
⎞
⎜⎜⎝
⎛μ=τ
−=××−×=⎟⎟⎠
⎞
⎜⎜⎝
⎛
−=
−=
∫
−
=
=
−
=
 
 
Exercício 3.17 
 
s/m730
2,05,0
13,02002,1
A
QAv
v
AvQAvQQQ
22
m111
2
222m111mmm
3
3231
=×
+××=ρ
+ρ=
ρ=+ρ→=+
 
 
Exercício 3.18 
 
2
43
2
311m
1
1m
1
1
2
11m1
33
3m
3m
2m1m3m
2
2m
2
2máx
2m
2
22m22m
111m
m
s.N1077,66,010128,1
s
m10128,1
000.2
564,022000.2
R2v
000.2Re)c
m564,0
2
2
v
Q
RRvQ)b
s
m15
5,04,0
3
A
Q
v
s
kg38,12,1QQQ
s
kg88,14,032,1Q
m4,0R;
s
m3
3
9
3
v
vRvQ
s
kg2,126,0QQ)a
−−
−
×=××=νρ=μ
×=××=ν⇒=ν⇒≤
=×π=π=⇒π=
=×=ρ=
=+=+=
=×π××=
====→πρ=
=×=ρ=
 
 
 
 
 
Exercício 3.19 
 
s/L57,1s/m1057,1102,05,2DvQ
s/m5,2
2
5
2
v
v
s/m5
22,01052
4
2,0000.5052010
DL2
4
pD520
v
4
pD520
DLv2
520
DLv2
4
Dp
520DL
2/
v
4
Dp
333
m
máx
m
3
2
3
2
máx
2
máxmáx
2
máx
2
=×=××π×=επ=
===
=
××××
⎟⎟⎠
⎞
⎜⎜⎝
⎛ ×−
=μ
⎟⎟⎠
⎞
⎜⎜⎝
⎛ −ε
=
−=ε
μ→=ε
μ+
π=πεμ+
π
−−
−
−
 
 
Exercício 3.20 
 
( )
2
22
x
yx
yy
z
y
y
y
xy
2x
x
xx
xx
z
x
y
x
xx
s
m6)4;3(a
s
m2,12212)4;3(v
s
m12434;3v
2v;y3v)c
0
t
v
z
v
v
y
v
v
x
v
va
s
m632a
y
v
va
t
v
z
v
v
y
v
v
x
v
va)b
permanente)a
=
=+=
=×=
==
=∂
∂+⎟⎟⎠
⎞
⎜⎜⎝
⎛
∂
∂+∂
∂+∂
∂=
=×=
∂
∂=⇒∂
∂+⎟⎟⎠
⎞
⎜⎜⎝
⎛
∂
∂+∂
∂+∂
∂=
 
 
Exercício 3.21 
 
yx9x3.xy3
y
v
va
t
v
z
v
v
y
v
v
x
v
va
0
t
v
z
v
v
y
v
v
x
v
va)b
.Permanente)a
2y
yy
yy
z
y
y
y
xy
xx
z
x
y
x
xx
==∂
∂=
∂
∂+⎟⎟⎠
⎞
⎜⎜⎝
⎛
∂
∂+∂
∂+∂
∂=
=∂
∂+⎟⎟⎠
⎞
⎜⎜⎝
⎛
∂
∂+∂
∂+∂
∂=
 
72229aa
12223vv)c
2
y
y
=××==
=××== 
 
Exercício 3.22 
 
( )
2
22
2y
2x
22
y
x
y
x
yx
s
m6,211812)3;2(a
s
m1836)3;2(a
s
m1226)3;2(a
s
m5,86)6()3;2(v
s
m623)3;2(v
s
m632)3;2(v)c
y63y2a
x62x3
y
v
va)b
=+=⇒−=×−=
−=×−=
=+−=⇒=×=
=×−=
−=×−=
−=−=∂
∂=
 
 
Exercício 3.23 
 ( )
( )
( )
4,5432a
4
t
v
a
3
t
v
a
2
t
v
a
2,161296v
12214v
9213v
6212v
222
z
z
y
y
x
x
222
z
y
x
=++=
=∂
∂=
=∂
∂=
=∂
∂=
=++=
=+×=
=+×=
=+×=
 
 
Exercício3.24 
 
2x
xx
z
x
y
x
xx
222
y
2
x
s
m32258221712107a
t8x217y2107
t
v
z
v
v
y
v
v
x
v
va
s
m10817107v
s
m175312v
s
m107541223v
=×+××+××=
+×+×=∂
∂+⎟⎟⎠
⎞
⎜⎜⎝
⎛
∂
∂+∂
∂+∂
∂=
=+=⇒=×+×=
=×+××+=
 
2
22
2
2
y
2
y
yy
z
y
y
y
xy
s
m368178322a
s
m1783122171107a
3xy217y107a
t
v
z
v
v
y
v
v
x
v
va
=+=⇒=+×××+×=
+×+=
∂
∂+⎟⎟⎠
⎞
⎜⎜⎝
⎛
∂
∂+∂
∂+∂
∂=
 
Capítulo 4 
 
EQUAÇÃO DA ENERGIA PARA REGIME PERMANENTE 
 
Neste capítulo o livro diferencia-se bastante de todos os outros sobre o assunto. Como já foi 
feito em relação à equação da continuidade no Capítulo 3, restringe-se a equação a aplicações 
em regime permanente. Novamente, a ausência de variações com o tempo permite simplificar 
a compreensão dos fenômenos e a solução de problemas importantes, sem restringir muito as 
aplicações, já que a maioria dos problemas práticos aproxima-se dessa hipótese. No Capítulo 
10, a equação é generalizada para permitir a solução de problemas mais complexos. 
Inicialmente, apresentam-se as energias mecânicas associadas a um fluido, excluindo-se 
efeitos térmicos. O leitor deve perceber que, sendo as energias entidades da mesma espécie, 
podem-se, por meio delas, associar entidades heterogêneas como velocidades, cotas e 
pressões. Graças às seis hipóteses estabelecidas inicialmente é possível deduzir a equação de 
Bernoulli para um tubo de corrente, que relaciona de forma elementar essas entidades em duas 
seções do escoamento. O desenvolvimento da equação de Bernoulli conduz a energias por 
unidade de peso, denominadas cargas, e por coincidência, as cargas podem ser medidas em 
unidade de comprimento, o que permite interpretações interessantes em certas aplicações. 
Nos itens seguintes as hipóteses de Bernoulli são retiradas aos poucos, o que permite resolver 
problemas sem restrições práticas, com exceção da hipótese de regime permanente. 
Após a retirada de todas as hipóteses simplificadoras chega-se à equação mais geral, que nada 
mais é do que a primeira lei da Termodinâmica para volume de controle, em regime 
permanente. 
A grande vantagem desse tratamento é a separação dos efeitos térmicos dos efeitos 
mecânicos, o que possibilita uma concentração maior nos tipos de problemas que podem ser 
resolvidos. Assim, o professor de Termodinâmica pode dedicar sua atenção a problemas em 
que os efeitos térmicos são predominantes e o de Mecânica dos Fluidos pode se dedicar 
àqueles em que os efeitos são desprezíveis. Apesar de se perder inicialmente na generalidade, 
ganha-se na compreensão e na facilidade de absorver os conceitos e visualizar os fenômenos 
físicos. Observa-se no fim do capítulo a interpretação da perda de carga. 
 
Exercício 4.1 
 
 
 
 
 
 
 
Ressaltar as hipóteses de Bernoulli: 
1) R.P. Reservatório de grandes dimensões. 
2) S.M. Visual. Não há bombas nem turbinas no trecho (1)-(2). 
3) S.P. Dado do enunciado: fluido ideal. 
4) F.I. Líquido. 
5) P.U.S. Jato livre. Não vale o princípio da aderência. 
6) S.T.C. Visual. 
 
O leitor deve ser hábil na escolha dos pontos (1) e (2). Como regra, o ponto (1) deve ser 
escolhido numa seção onde v, p e z sejam conhecidos, e o ponto (2), onde estiver a incógnita, 
ou vice-versa. 
v2
(1) 
(2) PHR 
h 
 
 
gh2v
g2
v
h
PHRnoponto0z
efetivaescalanap0p
incógnitaaév
PHRdopartiraacothz
efetivaescalanap0p
ioreservatórnofluidodonível0v
z
p
g2
v
z
p
g2
v
2
2
2
2
atm2
2
1
atm1
1
2
2
2
2
1
1
2
1
=→=
→=
→=
→
→=
→=
→=
+γ+=+γ+
 
Observa-se que o PHR é arbitrário. Ao ser mudado alteram-se z1 e z2, mas a solução da 
equação permanece a mesma. 
 
Exercício 4.2 
 
( )
( )
( ) ( ) ( ) 2122
11
2
1
xxbaa4
g
a2bag2
g
a2bag2
g
y2vx
baa4ay4
g
y2ga2
g
y2ga2
g
y2vxAlcance
bag2v
ga2v
=⇒+=×+=+==
+==×===
+=
=
 
 
Exercício 4.3 
 
m3,6
10
1075
20
9,4zz
p
g2
v
zzz
p
g2
v
z
kPa7510025ppp
z
p
g2
v
z
p
g2
v
)b
s/m9,42,120gz2v
g2
v
z
z
p
g2
v
z
p
g2
v
)a
4
32
AS
S
2
S
ASS
s
2
S
A
atmSS
S
S
2
S
A
A
2
A
AB
2
B
A
B
B
2
B
A
A
2
A
absef
=×−−−=−
γ−−=−→+γ+=
−=−=−=
+γ+=+γ+
=×==→=
+γ+=+γ+
 
 
Exercício 4.4 
 
( )
( )
s
m8,7
20
6,3
45
g2
v
hHhH
g2
v
Hhp
Hp
z
p
g2
v
z
p
g2
v
2
2
1
2
1
2
1
2
2
2
2
1
1
2
1
=
⎟⎠
⎞⎜⎝
⎛
==⇒γ
+γ=γ
γ+
+γ=
γ=
+γ+=+γ+
 
 
Exercício 4.5 
 
4vv2,0
g2
vv
2,0
p
comoez
p
g2
v
z
p
g2
v
2
0
2
1
2
0
2
1
0
1
1
2
1
0
0
2
0
=−→=−
=γ+γ+=+γ+
 
 
 
s
N211,210gQQ
s
kg1,20026,0
10
000.8Q
g
QQ
s
L6,2
s
m0026,0
4
08,052,0Q
4
D
vQ
s/m52,0v4vv16:anteriornadoSubstituin
v4v40v80v
4
D
v
4
D
v
mG
m
322
0
0
0
2
0
2
0
01
2
1
2
0
2
1
1
2
0
0
=×==
=×=γ=ρ=
==×π×=→π=
=→=−
=→×=×→π=πExercício 4.6 
 
( )
( )
s
L40
s
m104AvQ
s
m4
10
10308,320
p
8,3g2v
kPa3010106
000.1
2,020p
2,0ppp2,02,0p
8,3
p
g2
v
p
g2
vp
g2
v
3
2
14
3
1
1
44
1
O2Hm212mO2H1
1
2
1
0
2
01
2
1
=×==⇒=⎟⎟⎠
⎞
⎜⎜⎝
⎛ ×−×=⎟⎟⎠
⎞⎜⎜⎝
⎛
γ−=
=−×+=
γ−γ+=⇒=×γ−×γ+
=γ+
γ+=γ+
−
 
 
 
Exercício 4.7 
cm3
16,3
07,72
v
v
DD
4
D
v
4
D
v
s
m16,35,020v
m5,0
10
1020
20
07,7p
g2
v
g2
v
z
p
g2
v
z
p
g2
v
)b
s
N2,22
4
02,007,710
4
D
vQ
s
m07,75,2102gh2vh
g2
v
:PitotdetuboNo)a
1
2
21
2
2
2
2
1
1
1
4
32
1
2
2
2
1
2
2
2
2
1
1
2
1
2
4
2
2
2G
2
2
2
=×==→π=π
=×=
=×−=γ−=→+γ+=+γ+
=×π××=πγ=
=××==→=
 
 
Exercício 4.8 
 
( ) ( )
( )
( )
( )
cm7,5m107,5
43,12
1014,34
v
Q4D
4
D
vQ
s
m43,1246,138v
6,13816,1355,020vv
155,0g2vvzz155,0
pp
pzz55,055,0p
zz
pp
g2
v
g2
v
z
p
g2
v
z
p
g2
v
)c
0
101036,1
10187101052pzphpzhhp
kPa181017101052zzppz
p
g2
v
z
p
g2
v
)b
s
N3141014,310QQ
s
m1014,3
4
1,04
4
D
vQ
s
m410
10
10521620z
p
Hg2vz
p
g2
v
H)a
2
2
2
2
2
2
2
2
2
2
1
2
2
Hg2
1
2
212
Hg21
212Hg1
21
12
2
1
2
2
2
2
2
2
1
1
2
1
45
343
Hg
31
131Hg11
34
31133
3
2
3
1
1
2
1
24
G
3
2
22
1
1
4
3
1
1
111
1
2
1
1
=×=×π
××=π=⇒
π=
=+=
=−××=−
⎟⎟⎠
⎞
⎜⎜⎝
⎛ −γ
γ××=−⇒−+⎟⎟⎠
⎞
⎜⎜⎝
⎛ −γ
γ=γ
−
=−γ−×γ−×γ+
−+γ
−=−
+γ+=+γ+
=−×
×+×−×=γ−γ
−Δγ−=⇒=Δγ−γ−γ+
−=×−+=−γ+=⇒+γ+=+γ+
=××=γ=⇒×=×π×=π=
=⎟⎟⎠
⎞
⎜⎜⎝
⎛ −×−×=⎟⎟⎠
⎞⎜⎜⎝
⎛ −γ−=⇒+γ+=
−−
−
−−
 
 
 
 
 
Exercício 4.9 
 
s
kg14,8
4
072,02
10
000.10
4
D
v
g
Q
s
m2v84,59vv16
anteriornadosubstituinv4v
4
D
v
4
D
v
84,59
10
920.2920vv
p
g2vvz
p
g2
v
z
p
g2
v
Pa920.2922,0000.136hp
22
1
1m
1
2
1
2
1
12
2
1
1
2
2
2
4
2
1
2
2
22
1
2
21
1
2
1
2
2
2
2
Hg2
=×π××=πγ=
=⇒=−
→=→π=π
=−×−=−
γ−=−→+γ+=+γ+
−=×−=γ−=
 
 
Exercício 4.10 
 
0565,0
109,5
1033,3
Q
Q
s
kg109,5
4
025,01201
4
D
vQ
s
kg1033,3
4
00115,045,4720
4
D
vQ
s
m45,401,0
7200
720020z
p
g2v
0z
p
g2
v
z
p
g2
v
z
p
g2
v
:gasolinaNa
pPa7200
2
1201
2
v
g2
v
p
p
g2
vp
g2
v
:arNo
2
3
am
gm
2
22
a
aama
3
22
g
gggm
g2
g
g2
g2
g2
g
g2
2
g2
g2
g
g2
2
g2
g1
g
g1
2
g1
g2
22
a2
a
2
a2
aa2
a
a2
2
a2
a
a1
2
a1
=×
×=
×=×π××=πρ=
×=×π××=πρ=
=⎟⎠
⎞⎜⎝
⎛ +−−=⎟⎟⎠
⎞
⎜⎜⎝
⎛ +γ−=
=+γ+⇒+γ+=+γ+
=−=×−=ρ−=γ−=⇒γ+=γ+
−
−
−
−
 
Exercício 4.11 
 
kW375,0
000.1
1
8,0
301,010QHN
s
m01,0101010AvQ
m342
20
10HH
g2
vHz
Hzp
g2
vHzp
g2
v)a
4
B
B
B
3
4
66
2
B6,1p
2
6
B1
6,1p2
2
2
2
B1
1
2
1
=××=η
γ=
=××==
=−+=→+=+
++γ+=++γ+
−
 
 
( ) ( )
( ) N1,3810101081,1102010F
Pa1081,1pm81,1
20
5,1210
10
10p
s
m5,12
108
01,0
A
Qv
g2
vvpp
z
p
g2
v
z
p
g2
v
Pa10110p
HpH
p
Hz
p
g2
v
z
p
g2
v
AApApFFAApAp)b
4444
4
G
22
4
4
G
4
G
G
2
G
2
44G
G
G
2
G
4
4
2
4
44
4
6,4p46,4p
4
6,4p6
6
2
6
4
4
2
4
HpGp4HpGp4
=×××−−××=
×−=→−=−+=γ
=×==
−+γ=γ→+γ+=+γ+
=×=
γ=→=γ→++γ+=+γ+
−−=→+−=
−−
−
 
 
Exercício 4.12 
 
( ) ( )
( )
kW4,410
7,0
2002,17,12QHN
m200
7,12
7341806ppH
Pa18062,1427,122,142pm2,142100
20
5,730p
H
g2
vvp
Hz
p
g2
v
z
p
g2
v
Pa7348,577,128,57pm8,57100
20
5,730p
s
m5,7
4,04,0
2,1
A
Qv
s
m2,12,02,030AvQ
H
g2
vvp
Hz
p
g2
v
z
p
g2
v
3
v
v
v
01
v
1
22
1
A,1p
2
1
2
A1
A,1pA
A
2
A
1
1
2
1
0
22
0
0
0
3
AA
0,Ap
2
0
2
A0
0,Ap0
0
2
0
A
A
2
A
=×××=η
γ=
=−−=γ
−=
=×=×γ=⇒=+−=γ
+−=γ⇒++γ+=+γ+
−=−×=−×γ=⇒−=−−=γ
=×==⇒=××==
−−=γ⇒++γ+=+γ+
−
 
 
Exercício 4.13 
 
( ) ( ) Pa108,810102,18,0hpp phhp:amanométricEquação
ppg2vv
zp
g2
vzp
g2
v)a
445
F54
5F4
542
4
2
5
5
5
2
5
4
4
2
4
×=−×=γ−γ=−
=γ−γ+
γ
−=−
+γ+=+γ+
 
176
10
108,820vv 4
4
2
4
2
5 =××=− 
 
s
m047,0101007,4AvQ
s
m7,4
8
176v176vv9
v3vAvA3vAvAv
3
4
44
4
2
4
2
4
4555545544
=××==
==→=−
=→=→=
−
 
 
( ) kPa49Pa109,47,368,410p
HzH
p
Hz
p
H
Hz
p
g2
v
Hz
p
g2
v
)c
m8,4
047,010
75,0103
Q
N
H
QH
N)b
44
6
6,1p6B
6
6,1p6
6
B
6,1p6
6
2
6
B1
1
2
1
4
3
BB
B
B
B
B
−=×−=−−×=
−−=γ→++γ=
++γ+=++γ+
=×
××=γ
η=→η
γ=
 
 
Exercício 4.14 
 
( )
( ) ( )
( )
( ) kW3102,150196,010QHN)d
m2,212,156HzzHHHHH
m2,15
10
000.765
20
9,610H
s
m9,6
6
510
D
D
vv
pp
g2
vv
H)c
Pa000.761036,1101105hppphhp)b
s
L6,19
s
m0196,0
4
05,010
4
D
vQ
s
m10251220v
z
p
Hg2vz
p
g2
v
H)a
34
B
B303,0p3,0p3B0
4
22
B
2
2
1
2
2
21
12
2
1
2
2
B
544
Hg212Hg1
322
2
22
2
2
222
2
2
2
2
=×××=γ=
=+=+−=⇒+=+
=−−+−=
=⎟⎠
⎞⎜⎝
⎛×=⎟⎟⎠
⎞
⎜⎜⎝
⎛=
γ
−+−=
−=×−×+×=γ−γ+=⇒=γ−γ+
==×π×=π=⇒=−−=
⎟⎟⎠
⎞
⎜⎜⎝
⎛ −γ−=⇒+γ+=
−
 
Exercício 4.15 
 
νπ=ν×π=→π=ν=
=×
×==→=
−
1
1
2
1
12
1
1
11
1
3
canalcanal
D
Q4D
D
Q4Re
D
Q4v;DvRe)b
s
m5,0
4,02,0
1040
bL
QvbLvQ)a
 
( ) ( )
s
m75,0
667,0
5,0
667,0
v
v667,0v
2
h10
3
h25
h
v
v
dyy10y25
h
v
Ldyyv10yv25
bL
1v
yv10yv25v:Logo
v10bev25a:sistemaosolvendoRe
b2,0a20bay2
dy
dv0
dy
dv;m2,0ypara
2,0b2,0avvv;m2,0ypara
0c0v;0ypara)d
m7,16
8000
103,0
20
4,2078,0H
s
m4,20
05,0
10404
D
Q4v
s
m78,0
255,0
10404
D
Q4v
p
g2
vv
H
Hz
p
g2
v
z
p
g2
v
)c
m255,0
200010
10404
Re
Q4D
m
máxmáx
23
máx
m
h
0
2máxh
0 máx
2
máxm
máx
2
máx
máxmáx
2
máxmáx
622
2,1p
2
3
2
2
2
2
3
2
1
1
1
2
2
2
1
2,1p
2,1p2
2
2
2
1
1
2
1
4
3
1
1
===⇒×=⎟⎟⎠
⎞
⎜⎜⎝
⎛ +−=
+−=+−=
+−=
=−=
+×=→+=→==
×+×=⇒==
=⇒==
=×+−=
=×π
××=π=
=×π
××=π=
γ+
−=
++γ+=+γ+
=××π
××=πν=
∫∫
−
−
−
−
 
 
Exercício 4.16 
 
( )
( )
224
3
1
1
1,0p
1
011,0p1
1
2
1
0
3
34
22
23
2
3
2
33
2
3
32
2
3
2
2
3,2p
232
3
2
23,2p3
3
2
3
2
2
2
2
cm45,1m1045,1
9,4
1071,0
v
QA
s
m9,48,03520H
p
zg2vHz
p
g2
v
z)b
s
L71,0
s
m1071,01011,7AvQ
s
m1,7354,020v
s
m354,0v50vv400v20
A
A
vv
50235,320vv
H
pp
g2vvHz
p
g2
v
z
p
g2
v
)a
=×=×==
=−−=⎟⎟⎠
⎞⎜⎜⎝
⎛ −γ−=⇒++γ+=
=×=××==
=×=⇒=⇒=−⇒==
=+−×=−
⎟⎟⎠
⎞⎜⎜⎝
⎛ +γ−γ=−⇒++γ+=+γ+
−−
−−
 
 
W4,932,11071,010QHN
m32,1
20
9,41,7
g2
vv
H)c
34
B
222
1
2
2
B
=×××=γ=
=−=−=
−
 
 
Exercício 4.17 
 
( )
m545
20
2030
10
104,0H
p
g2
v
H
p
H
HHHH)c
mca4525
10
102,0pH
pp
z
p
g2
v
Hz
p
g2
v
)b
kW4
1000
18,025102010pQHN
m25H
m25305
10104,01510
10
1025,0H
Hz
p
HHz
p
HHHHH
)0(a)5(deEscoamentoHH
m455
10
102,0
20
20z
p
g2
v
H
s
m20
1010
1020
A
Qv
m3510
10
1025,00z
p
g2
v
H)a
2
4
6
p
2
2
2
M
5
p
p2M5
4
6
2
M
12
1
1
2
1
M2
2
2
2
34
TTT
T
4
6
4
6
M
p0
0
MM5
5
p0MM5
01
4
62
1
1
2
1
1
4
3
1
1
4
6
0
0
2
0
0
2,5
22,5
2,52
1
1
1
0,512
0,512
=−−+×=
γ−−+γ=
+=+
=−−×=γ→−γ=γ
+γ+=++γ+
=×××××=ηγ=
=
−=−−×−++×=
++γ=+++γ
+=++
→>
=+×+=+γ+=
=
×
×==
=+×+=+γ+=
−
−
−
 
 
Exercício 4.18 
 
m2,23
10
10200
20
8p
g2
v
H
s
m2
108
1016v;
s
m8
102
1016v)a
4
32
2
2
2
2
3
3
33
3
2
=×+=γ+=
=×
×==×
×= −
−
−
−
 
 
 
( )
( ) ( ) MPa362,010512,4010zHHp
HHz
p
)d
kW95,1102,12101610QHN
)turbina(m2,1213,23
10
101,0HH
p
H
HHHH)c
m173,232,40HHH)b
).1(para)4(deSentidoHHm2,40
10
10400
20
2p
g2
v
H
64
43,4p34
3,4p34
4
334
TT
4
6
1,2p2
1
M
1,2p1M2
232,3p
234
32
3
2
3
3
=×−+=−+γ=
+=+γ
=××××=γ=
−=+−×=+−γ=
+=+
=−=−=
⇒>→=×+=γ+=
−
−−
 
 
 
Exercício 4.19 
 
1,2p1
1
2
1
2
2
2
2
1,2p12
2
4
2
4
4
4
2
4
4
2
3
3
3
2
3
3
Hz
p
g2
v
z
p
g2
v
HHH)b
)1(para)6(deSentido
13
g2
v
49
g2
v
z
p
g2
v
H
11
g2
v
z
p
g2
v
H)a
++γ+=+γ+
+=
+=++=+γ+=
+=+γ+=
 
 
kW192,0
1000
18,0410610QHN
m4Hm4117ppH)c
s
m10610106vAQ
s
m6vm8,1728,17
g2
v
34
TTT
T
32
1M
3
34
2
2
2
=×××××=ηγ=
=→−=−=γ−γ=
×=××==
=→=−+=
−
−−
 
4,6p64
4
2
4
2M
4,6p4
4
2
4
2M6
6
2
6
4,6p42M6
Hzz
p
g2
v
H
Hz
p
g2
v
Hz
p
g2
v
HHHH)d
+−+γ+=
++γ+=++γ+
+=+
 
kW59,0
1000
18,910610QHN
)bomba(m8,9239
20
6H
34
B2
2
2M
=××××=γ=
=+−+=
−
 
 
 
Exercício 4.20 
 
m7,20HH
p
HHH)c
MPa207,0Pa107,20pm7,2047,26
10
10502
20
47,4p
m7,26
1062,510
105,1
Q
NHQHN
H
p
Hz
p
g2
v
HHHH)b
s
m1062,5
4
04,047,4
4
D
vQ
s
m47,422
10
105020v
kPa5010050ppp
Hz
p
g2vHz
p
g2
v
0
HHH)a
0,3p0,3p
3
0,3p03
4
34
32
3
34
3
BB
3,2p
3
B1
1
2
1
3,2p3B1
3
3
22
1
14
3
1
atmabs1ef1
1,0p1
1
11,0p1
1
2
1
1,0p10
=⇒=γ
+=
=×=⇒=−+×−+=γ
=××
×=γ=⇒γ=
+γ=++γ+
+=+
×=×π×=π=⇒=⎟⎟⎠
⎞
⎜⎜⎝
⎛ ++×−×−=
−=−=−=
⎟⎟⎠
⎞⎜⎜⎝
⎛ ++γ−=⇒++γ+=
+=
−
−
 
 
Exercício 4.21 
 
( )
TB
32
2
3
2
2
2,1p
2,1p3
3
2
3
TB2
2
2
2
2,1p3TB2
3
4
3
TT
T
TTT
T
B
TTTB
4
6
21
B
HHpp
g2
vvH
Hzp
g2
vHHzp
g2
v
HHHHH)b
s
m04,0
75,02010
106
H
NQQHN
m20
75,02
30
2
HHQH2QH
m30
10
1003,0ppH)a
−+γ
−+−=
++γ+=−++γ+
+=−+
=××
×=ηγ=→ηγ=
=×=η=→ηγ=γ
=×−=γ
−=
 
( )
4,1p4
4
2
4
1
1
2
1
4
622
2,1p
4
2
24
3
3
Hz
p
g2
v
z
p
g2
v
)c
m45,02030
10
101,00
20
45H
s
m5
1080
04,0
A
Qv;
s
m4
10100
04,0
A
Qv
++γ+=+γ+
=−+×−+−=
=×===×== −−
 
 
m55,9
10
101,0
20
54p
g2
vv
H
Hz
p
g2
v
z
p
g2
v
)d
MPa295,0Pa1095,245,010103,0Hpp
H
pp
4
622
3
2
2
2
3
2,3p
2,3p2
2
2
2
3
3
2
3
546
4,1p14
4,1p
14
=×+−=γ+
−=
++γ+=+γ+
=×=×−×=γ−=
−γ=γ
 
 
Exercício 4.22 
 
kW4,31036,11103010QHN
m36,11H15H20H56,0HHHH
m20
103010
106
Q
N
HQHN
H56,0H8,07,0HHH
QH
QHNN
334
T
TTTpT2B1B
34
3
2B
2B2B2B
T1BTBTT1B
B
1B
TTBT
=××××=γ=
=⇒=−+⇒=−+
=××
×=γ=⇒γ=
=⇒××=ηη=⇒η
γ=ηγ⇒=
−−
−
 
Exercício 4.23 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
( )
( )
2
24
316
24
312181216
8
R
6
R3
4
R3
2
R
R
16
drrrR3rR3rR
R
16
rdrrR
R
16rdr2
2
v
R
r1v
R
1
dA
v
v
A
1
8888
8
R
0
752346
8
R
0
322
8
3
R
0 máx
2
máx
2
3
A
m
=α
×=−+−×=⎟⎟⎠
⎞
⎜⎜⎝
⎛ −+−=α
−+−=α
−=π
⎪⎪⎭
⎪⎪⎬
⎫
⎪⎪⎩
⎪⎪⎨
⎧
⎥⎥⎦
⎤
⎢⎢⎣
⎡ ⎟⎠
⎞⎜⎝
⎛−
π=α
⎟⎟⎠
⎞
⎜⎜⎝
⎛=α
∫
∫∫
∫
Exercício 4.24 
 
( )
06,1
R
17
7R
10
7
R
672,3x
17
7Rx
10
7
R
672,3
dx)xRx(
R
672,3dxxRx
R
672,3
dxdr;xRr;rRx:iávelvardeMudança
rdr)
R
rR(
R
672,3rdr2
v
60
49
R
r1v
R
1
dA
v
v
A
1
7
17
7
17
7
17
R
0
7
17
7
10
7
17
7
10
R
0
7
3
7
17
R
0
7
3
7
17
7
3
R
02
3
R
0
máx
7
1
máx
2
3
m
=α
⎟⎟⎠
⎞
⎜⎜⎝
⎛ −=⎟⎟⎠
⎞
⎜⎜⎝
⎛ −=α
−=−=α
−=−=−=
−=π
⎥⎥
⎥⎥
⎥⎥
⎦
⎤
⎢⎢
⎢⎢
⎢⎢
⎣
⎡
⎟⎠
⎞⎜⎝
⎛ −
π=α
⎟⎟⎠
⎞
⎜⎜⎝
⎛=α
∫∫
∫∫
∫
 
 
Exercício 4.25 
 
 
m5,0
20
311,1
g2
v)e
W104985,1
2
103100011,1
2
AvC)d
11,1
58
2
58,4
3
596,0
4
5064,0
135
1
22
m
5
33
m
234
=×=α
×=×××=ρα=
=α
⎟⎟⎠
⎞
⎜⎜⎝
⎛ ×+×+×+×=α
 
( )dy8y8,4y96,0y064,0
135
1dy2
3
2y4,0
52
1
2y4,0v:olog
4,0C2C544v5ypara
2C2v0ypara
CyCv
dA
v
v
A
1)c
s
m30523bhvQ)b
s
m3
2
24v)a
5
0
235
0
3
11
2
21
3
A m
3
m
m
∫∫
∫
+++=⎟⎠
⎞⎜⎝
⎛ +
×=α
+=
=⇒+=⇒=→=
=⇒=→=
+=
⎟⎟⎠
⎞
⎜⎜⎝
⎛=α
=××==
=+=
Exercício 4.26 
 
( )
73,1
7
55
6
305
5
700.25
4
000.27
103
1
7
hh
6
30h
5
700.2h
4
000.27
103
1
dy)yy30y700.2y000.27(
103h
1bdy)
67
yy30(
bh
1)e
h
kg135.27600.325,005,067,0900bhvQ)d
s
m67,0
3
5515v
3
hh15
3
h
2
h30
h
1bdy)yy30(
bh
1v)c
m
N9,130063,0
m
s.N063,0
10
107000.9
g
s
m107
s
m107,0St7,0cSt70;
m
N000.9
dy
dv30
dy
dv)b
s26
dy
dvy230
dy
dv)a
6
543
5
6
543
5
654h
0
3
5
3h
0
2
mm
2
m
232h
0
2
m
20y
2
5
2
5
2
4
3
0y0y
1
cm2y
=⎟⎟⎠
⎞
⎜⎜⎝
⎛ −×+×−××=α
⎟⎟⎠
⎞
⎜⎜⎝
⎛ −+−×=α
−+−××=
−=α
=××××=ρ=
=−×=
−=⎟⎟⎠
⎞
⎜⎜⎝
⎛ −=−=
=×=τ
=××=γν=μ
×=×===ν=γ
⎟⎟⎠
⎞
⎜⎜⎝
⎛μ=τ⇒=⎟⎟⎠
⎞
⎜⎜⎝
⎛
=⎟⎟⎠
⎞
⎜⎜⎝
⎛⇒−=
∫∫
∫
=
−
−−
==
−
=
 
 
Exercício 4.27 
 
s
L20
s
m02,0101002AvQ
s
m28,4
10
10409
1
20v
Hzp
g2
vzp
g2
v
HHH
NHQNHQHQ
3
4
t20
4
3
2
2,0p2
2
2
2
20
0
2
0
0
2,0p20
diss661100
==××==
=⎟⎟⎠
⎞
⎜⎜⎝
⎛ −×−=
++γ+α=+γ+α
+=
+γ=+γ+γ
−
 
s
L351520QQQ 106 =+=+= 
m7H
m9H
1
0
=
=
 
kW31,1
1000
18,01640NN
W1640N
10006,010103510N71015109102010
m6,0
20
5,31H
s
m5,3
10100
1035
A
Q
v
g2
v
H
TT
343434
2
6
4
3
t
6
6
2
6
66
=××=η=
−=
+××××=+×××+×××
=×=
=×
×==→α=
−−−
−
−
 
 
Exercício 4.28 
 
m4,11234,27HHHH
m4,27HH10510310510
21010103,0105103,231051030101010
m3,0
20
5,2
g2
v
H
m3,2525
20
5,2H
v
s
m5,2
05,0
1054
D
Q4vz
g2
v
H
m3010
10
102,0z
p
H
s
L5
2
10
2
Q
QQ
HQHQHQHQHQHQ
7,6p5,4p7,4p6,5p
7,4p7,4p
3434
34343434
22
7
7
2
3
72
3
2
3
33
2
3
3
4
6
0
0
0
0
73
7,4p73,2p31,0p0773300
=−−=−−=
=⇒×××+×××+
+×××+×××+×××=×××
===
=+=
==×π
××=π=→+=
=+×=+γ=
====
γ+γ+γ+γ+γ=γ
−−
−−−−
−
 
 
Exercício4.29 
 ( ) ( )
kW75,3
8,0
3NN
kW68,05,7NN
m10H;0H;0H
HQHHQHHQHQHQNNHQ
T
T
2
BB1
760
p7pp6pp077662100 7,36,54,33,21,0
==η=
=×=η=
===
γ++γ++γ+γ+γ=−+γ
 
3
60
6
4
0
4
34
6
4
0
434
1010QQ
1050Q108Q106
21010108Q106Q101010101037506000
−
−−
×+=
=××+××
×××+××+××+×××=−
 
 Resolvendo o sistema de equações: 
 
m2,117
8,0102,310
103
Q
N
HHQN
m4,45
102,1310
8,0105,7
Q
N
H
HQ
N
s
L2,13Q
s
L2,3Q
34
3
T6
T
TTT6T
34
3
0
BB
B
B
B0
B
0
6
=
×××
×=ηγ=→ηγ=
=
××
××=γ
η=→η
γ=
=
=
−
−
 
 
Exercício 4.30 
 
( )
s
L56
s
m056,0028,02Q2Q
s
m028,0
210
8,0700
H
N
Q
HQ
N)b
bombam2H25,0125,2
2
H
7
4
2
Q
1
2
Q
1Q4
2
Q
5
2
Q
H
2
Q
7Q
m4zH
m5zH
m72
10
1050z
p
H
2
Q
QQQ2QQQ
HQHQHQHQHQHQHQ)a
3
30
3
4
B
BB
3
B
B3
B
M
M
00
0
00
M
0
0
33
22
4
3
0
0
0
0
322320
3,1p32,1p21,0p03322M300
==×==
=×
×=γ
η=⇒η
γ=
=⇒++++=+
×γ+×γ+×γ+×γ+×γ=×γ+×γ
==
==
=+×=+γ=
==⇒=+=
γ+γ+γ+γ+γ=γ+γ
 
 
Exercício 4.31 
 
g2
v5,1H;
g2
v5H
;
g2
v
3
1H;
g2
v5H;
g2
v7H;8H;0H
H2HH3H2HH3H3
HQ2HQHQ3HQ2HQHQ3HQ3
Q3QQQQ;Q2Q
HQHQHQHQHQHQHQ
2
2
2,sp
2
1
1,sp
2
e
e,0p
2
2
2
2
1
1B0
2,sp1,spe,0p21B0
2,sp11,sp1e,0p12111B101
1021012
2,sp21,sp1e,0p02211B000
==
=+=+===
++++=+
γ+γ+γ+γ+γ=γ+γ
=→+==
γ+γ+γ+γ+γ=γ+γ
 
g2
v3
g2
v5
g2
v
g2
v210
g2
v783
2
2
2
1
2
e
2
2
2
1 ++++++=× 
kW15
1000
1
48,0
80897,010HQN
s
m0897,0
4
138,06
4
D
vQ
s
m6v
s
m2v140v35v9v20v6140
v2vv3v
g2
v
g2
v
5
g2
v
67
4
B
Be
B
322
e
ee
e1
2
1
2
1
2
1
2
1
121e
2
e
2
2
2
1
=×××=η
γ=
=×π×=π=
=⇒=→=→++=
==
++=
 
 
Exercício 4.32 
 
( ) kW36,210101061015104106,11101010N
HQHQHQN)c
m10
p
H;m15
p
H
m6,114,820
pp
H)b
kPa84pm4,8
p
8,15101048,11106
p
51010
m8,15
10
1015,0
20
4p
g2
v
H
m8,11
10
101,0
20
6p
g2
v
H
c5
p
g2
v
H
HQHQHQ
s
m6
1010
106
A
Q
v;
s
m4
1010
104
A
Q
v;
s
m10
1010
1010
A
Q
v
s
L6410QQQ)a
3343434
diss
6,5p64,3p42,1p1diss
5
6,5p
3
4,3p
21
2,1p
2
23323
4
62
3
2
3
3
4
62
5
2
5
5
2
2
2
2
335522
4
3
6
54
3
4
34
3
1
2
416
=××××+×××+×××=
γ+γ+γ=
=γ==γ=
=−=γ−γ=
=⇒=γ⇒×××+××=⎟⎟⎠
⎞
⎜⎜⎝
⎛
γ+××
=×+=γ+=
=×+=γ+=
+=γ+=
γ+γ=γ
=×
×===×
×===×
×==
=−=−=
−−−−
−−−
−
−
−
−
−
−
 
 
Exercício 4.33 
 
1212
12
2
1
2
2
M
2M1
ppevvpp
g2
vvH
HHH)a
<<→γ
−+−=
=+
 
m6,13z
104404,3026,13z44204424,3096,13
m9
10
1080
20
53,4p
g2
v
H
HQHQHQHQHQHQHQ
s
m53,4
1030
0136,0
A
Q
v
s
m0136,00304,0046,0QQQ)d
s
m046,0
2010
8,01011
H
N
Q
HQ
N)c
s
m0304,087,3
4
1,0v
4
DQ
QQ)b
m3,2615
20
87,31515
g2
v15
H
s
m87,3v12
g2
v16
3
g2
v
15
g2
v15
30:)1(nadoSubstituin
15
g2
v15pp
g2
vv16pp
g2
vv
H
v4vevv
)1(H
g2
v
Hz
HHHH
turbina0H
4
32
6
2
6
6
9,8p95,4p47,6p699BB4466
4
6
6
3
CB6
3
4
3
B
BB
B
B
BB
B
32
2
2
A
AC
22
2
T
2
2
2
2
2
2
2
2
221
2
2
2
221
2
2
2
1
T
2123
3,0p
2
3
T0
3,0p3T0
M
=
×+×+×+=×+×+×
=×+=γ+=
γ+γ+γ+γ=γ+γ+γ
=×==
=−=−=
=×
××=γ
η=→η
γ=
=××π=π=
=
=+×=+=
=⇒=
+=−−
+=γ
−+−=γ
−+−=
==
+=−
+=−
⇒<
−
 
 
Exercício 4.34 
 
m1,8
20
7,12
g2
v
H
s
m4,25v
s
m7,12
05,0
10254
D
Q4
v
NHQNHQ2NHQNHQHQ
22
1
1
32
3
2
1
1
1
diss3311diss332211
===
=⇒=×π
××=π=
+γ=+γ⇒+γ=+γ+γ
−
 
 
kW6,16
75,0
49,12NN
W490.124401,810251022,32105010N
m2,32
20
4,25H
B
B
3434
2
3
==η=
=+××××−×××=
==
−− 
 
 
Exercício 4.35 
 
kg
kJ5,7
kg
J7500qg
massa
calor
m750
20
25125
g2
vv
q
p
g2
v
q
p
g2
v
s
m125255v5v
5
2,0
1
p
ppp
v
v
AvAv
222
1
2
2
2
2
2
2
1
1
2
1
12
2
1
2
1
2
2
1
1
2
1
1
2
222111
===
=−=−=
γ+=+γ+
=×==
===ρ
ρ→ρ=ρ
ρ
ρ=→ρ=ρ
 
 
Exercício 4.36 
 
kW75,0
s
J7501750Q
s
kg111QQgqQQ
kg
J750
2
1040gq
s
m40
05,0
1,0
1,0
2,010
A
A
p
p
v
A
A
vvAvAv
s
m10
1,0
1
A
Q
v
g2
vv
q
11mm
22
2
1
2
1
1
2
1
2
1
12222111
1
1
1
2
1
2
2
==×=
=×=ρ=→=
=−=
=××==ρ
ρ=⇒ρ=ρ
===
−=
&
&
 
 
Exercício 4.37 
 
g
p
g2
vHqTc
g
p
g2
v
2
2
2
2
M1v
1
1
2
1
ρ+=+++ρ+ 
 
( )
s
kg1634
42,5
10001098,02
vv
NQ~2
Q
s
m2,5
4.0
52,04
A
A
vv
TTeppSe
g2
v
gQ
N
gQ
Q~
g2
v
gQ
NHgHQN
gQ
Q~qqgQQ~
pp
TT
222
1
2
2
m
2
1
12
212121
2
2
mm
2
1
m
MMm
m
m
2
2
1
1
21
=−
×+−×=−
⎟⎠
⎞⎜⎝
⎛ +
=
=×==
ρ=ρ⇒==
=++
=→=
=→=
ρ=ρ⇒=
&
&
&&
 
 
Exercício 4.38 
 
( )
kW5610
600.3
500.45,187.45gqQQ
kg
J5,187.45800.58810760.2090.2
2
60275gq
kg
J800.588
3600
4500
10736
Q
NgHgHQN
gHhh
2
vv
gqh
2
v
gqgHh
2
v
3
m
3
22
3
m
mmm
M12
2
1
2
2
2
2
2
M1
2
1
−=××−==
−=+×−+−=
=×==⇒=
+−+−=⇒+=+−+
−&
 
 
Exercício 4.39 
 
 
diss332211 NHQHQNHQ +γ+γ=+γ 
s
m6
25,0
5,1
A
Qv
s
m5
5,0
5,2
A
Qv
s
m5,115,2QQQ
s
m12,05AvQ
3
3
3
1
1
1
3
213
3
222
===
===
=−=−=
=×==
 
 
 
949,0
7,14273
273
N
N
kW273W1073,2107,1425,215,2108,315,11025,31110N
m8,31
10
103,0
20
6p
g2
v
H
m25,31
10
103,0
20
5p
g2
v
H
m25,21
10
102,0
20
5p
g2
v
H
B
B
53442
4
62
3
2
3
3
4
62
2
2
2
2
4
62
1
2
1
1
=+==η
=×=×+××−××+××=
=×+=γ+=
=×+=γ+=
=×+=γ+=
 
 
Capítulo 5 
 
Equação da Quantidade de Movimento para Regime Permanente 
 
Neste capítulo admite-se ainda a hipótese de regime permanente para simplificar o raciocínio. 
O tratamento do regime variado, como já foi dito, será feito no Capítulo 10. 
O objetivo deste capítulo é mostrar como calcular a força resultante que um fluido aplica em 
superfícies com as quais está em contato. Essa resultante deve-se ao efeito normal, criado 
pelas pressões, e ao tangencial, provocado pelas tensões de cisalhamento. 
Pelo equacionamento utilizado, é possível verificar que a integral das forças normais e 
tangenciais reduz-se a uma solução bastante simplificada. 
Na solução dos problemas despreza-se o efeito do peso do fluido, que poderia ser obtido pelo 
produto do volume pelo seu peso específico. Esse cálculo poderia causar embaraços, no caso 
de volumes de figuras complexas; entretanto, será sempre um problema geométrico, que não 
tem nenhuma relação com os objetivos do capítulo. 
 
 
Exercício 5.1 
 
( )[ ]12m222111s vvQnApnApF rrrrr −++−= 
Na escala efetiva p1 = 0, p2 = 0 e é dado do enunciado que v1 = 0. 
N3,132
4
35,030
8,9
7,12
4
D
v
g
F
AvF:xSegundovQF
2
2
2
22
2s
2
2
2s2ms
x
x
=×π××−=πγ=
ρ−=→−= rr
 
kW99,1
1000
1464,37,12QHN
s
m4,3
4
38,030
4
D
vQ
m46
8,92
30
g2v
H
HHHH
B
322
2
2
22
2
B
p2B1 2,1
=×××=γ=
=×π×=π=
=×==
+=+
 
 
Exercício 5.2 
 
( ) ( ) ( )[ ]
( )
( )[ ]
2,1p2
2
1
2
21
2,1p2
2
21
2
1
4
3
2
24
3
1
1
o
1m
o
11zS
o
1m
o
11zS
2
o
1m
o
11xS
o
12m22
o
11xS
Hz
g2
vvpHz
g2
vp
g2
v
s
m5,7
108
106
A
Qv;
s
m3
1020
106
A
Qv
60senvQ60senApF
60senvQ60senApF
v60cosvQ60cosApF
60cosvvQ1Ap60cosApF
++−=γ⇒++=γ+
=×
×===×
×==
+=
−−−=
−+=
−+++−−=
−
−
−
−
 
( )
N12660sen3106000.160sen1020106,63F
N285,760cos3106000.160cos1020106,63F
kPa6,63pm36,631
20
35,7p
o3o43
zS
o3o43
xS
1
22
1
=××××+××××=
≅−×××+××××=
=⇒=++−=γ
−−
−− 
 
Exercício 5.3 
 
( )[ ]12m222111s vvQnApnApF rrrrr −++−= ( ) ( ) ( )[ ]
( )
( )
2
2
222s
222222s
232
3
2
233322
322222s
23223322s
AvApF
v2vAvApF
v4v
20
80v
A
A
vvAvAv
cosvvAvApF
vcosvAvcosAp1ApF
3,2x
3,2x
3,2x
3,2x
ρ−=
−ρ+=
=→==→=
θ−ρ+=
−θρ+θ+−−=
 
 
 
m5,7
000.10
1050
20
07,7h
p
g2
v
hHH
s
m07,7
8
400vv84000
1080v1000108010500
32
2
2
2
21
2
2
2
42
2
43
=×+=→γ+=→=
==→−=
×××−×××= −−
 
 
Exercício 5.4 
 
( ) ( ) ( )[ ]
( ) ( ) ( )[ ]
N6001020102010200F
N5601020102010180F
kPa180pm1811
10
10200Hz
pp
Hz
pp
s
kg201020000.1QQ
s
m10
1020
1020
A
Qvvv
vQApF
v0Q0Ap1ApF
vQApF
0vQ1Ap0ApF
43
zS
43
xS
24
3
2,1p2
12
2,1p2
21
3
m
4
3
21
1m11zS
1m2211zS
2m22xS
2m2211xS
=×+×××=
−=×−×××−=
=⇒=−−×=−−γ=γ⇒++γ=γ
=××=ρ=
=×
×====
+=
−++−−=
−−=
−++−=
−
−
−
−
−
 
 
N820600560FFF 222zS
2
xSS =+=+= 
 
Exercício 5.5 
 
REDUÇÃO 
( )
( ) Pa500.16123
2
1000000.84p
vv
2
p
g2
vv
pp
s
m1234vv4v
15
30v
D
D
vv
4
D
v
4
D
v
p
g2
vp
g2
v
HH
22
2
2
2
2
11
2
2
2
1
12
212
2
1
2
2
1
12
2
2
2
2
1
1
2
2
21
2
1
21
=−+=
−ρ+=−γ+=
=×=→=
⎟⎠
⎞⎜⎝
⎛=⎟⎟⎠
⎞
⎜⎜⎝
⎛=→π=π
γ+=γ+→=
 
( )[ ]12m222111s vvQnApnApF rrrrr −++−= ( ) ( ) ( )[ ]
( )
( ) N740.3123212
4
15,0500.16
4
3,0000.84F
s
kg212
4
3,03000.1
4
D
vQ
vvQApApF
vvQ1Ap1ApF
22
s
22
1
1m
21m2211s
12m2211s
Rx
Rx
Rx
=−×+×π×−×π×=
=×π××=πρ=
−+−=
−+++−−=
 
 
TURBINA 
3
3
m
TT
T23
3
T
2
3T2
m
N000.1010000.1g
s
m212,0
000.1
212QQ
Q
NHQHN
Hpp
p
H
p
HHH
=×=ρ=γ
==ρ=
γ=→γ=
γ−=→γ=−γ
=−
 
( ) ( ) N242
4
15,0800.2500.16AppF
Pa800.237,1000.10500.16p
m37,1
212,0000.10
109,2H
2
32s
3
3
T
Tx
=×π×−=−=
=×−=
=×
×=
 
Exercício 5.6 
 
( )[ ]
( ) ( )[ ]
N792.810314,0000.10314,01018vQApF
vQ1ApF)b
kW7,80107,25314,010N
m7,251
20
5,210
10
10218H
s
m5,2
4,0
314,04
D
Q4v;
s
m10
2,0
314,04
D
Q4v
z
g2
vvpp
H
g2
vp
Hz
2
vp
QHN)a
4
1m11xS
1m11xS
34
22
4
4
T
22
2
222
1
1
1
2
2
2
121
T
2
22
T1
2
11
T
=××+××=+=
−+−−=
=×××=
=+−+×−−=
=×π
×=π==×π
×=π=
+−+γ
−=⇒+γ=−++γ
γ=
−
 
 
 
Exercício 5.7 
 
( )[ ]12m222111s vvQnApnApF rrrrr −++−= 
( ) ( )[ ]
( ) ( )[ ]
( ) ( )[ ]
N120430F
vQvQApvQ1ApF)2
N180630F
vQvQApvQ1ApF)1
s
m4
1075
03,0
A
Qv
s
m6
1050
03,0
A
Qv
s
m03,0Q
s
kg30101003000.1AvQ
s
m3
10
90vv10000.1090.1
10100v000.11010010100090.1
AvApF
vQ1ApF
2y
2y
1y
1y
x
x
s
2m2m222m22s
s
1m1m111m11s
42
2
41
1
3
4
00m
0
2
0
42
0
43
0
2
000s
1m00s
−=×−=
−=−−=++−=
=×=
=+=−+−−=
=
×
==
=
×
==
=
=×××=ρ=
==→+=
××−×××−=−
ρ−−=
+++−=
−
−
−
−−
 
 
Exercício 5.8 
 
 ( ) ( ) ( )[ ]o1o2mo22o11xS 30cosv60cosvQ60cosAp30cosApF +−+−+−= ( )
( )
( )
N3401,2495,231F
N1,24930sen560sen101010000.130sen1020105,137F
N5,23130cos560cos101010000.130cos1020105,137F
kPa5,137pm75,1310
20
510H
g2
vvp
H
g2
vp
g2
v
s
m10
1010
1010
A
Qv;
s
m5
1020
1010
A
Qv
)]30senv60senv(Q30senApF
)]30senv60senv(Q)60sen(Ap)30sen(Ap[F
30cosv60cosvQ30cosApF
22
S
oo3o43
yS
oo3o43
xS
1
22
2,1p
2
1
2
21
2,1p
2
21
2
1
4
3
2
24
3
1
1
o
1
o
2m
o
11yS
o
1
o
2m
o
22
o
11yS
o
1
o
2m
o
11xS
=+=
=×+×××+××××=
−=×−×××+××××−=
=⇒=+−=+−=γ
+=γ+
=×
×===×
×==
++=
−−+−+−−=
−+−=
−−
−−
−
−
−
−
 
 
Exercício 5.9 
 
( )[ ]12m222111s vvQnApnApF rrrrr −++−= ( ) ( )[ ]
( )
( ) N58958911782053,39
4
1,010150F
s
kg3,39Q
s
m0393,0
4
1,05
4
D
vQ
s
m20
5
105
D
D
vv
vvQApF
vvQ1ApF
2
3
s
m
322
1
1
22
2
1
12
21m11s
12m11s
x
x
x
=−=−+×π××=
=→=×π×=π=
=⎟⎠
⎞⎜⎝
⎛×=⎟⎟⎠
⎞
⎜⎜⎝
⎛=
−+=
−+−−=
 
N785
4
05,020000.1AvFF
2
3
2
2
2sx =
×π××=ρ== 
 
Exercício 5.10 
 
2
h
hAghAgh2FF
AghAhF
Agh2Fgh2vAvF
2
121dirxS
22dir
1xS1j
2
jxS
=⇒ρ=××ρ⇒=
ρ=γ=
××ρ=⇒=→ρ=
 
 
Exercício 5.11 
 
( )[ ]12m222111s vvQnApnApF rrrrr −++−= ( ) ( ) ( )[ ]
( ) ( )
( )
( ) ( ) ( )[ ]
N3645sen55,220F
senvQsenvQsenApF
0senvQsenAp0ApF
N9,1445cos155,220F
s
m55,2
1,0
10204
D
Q4vv
s
kg201020000.1QQ
cos1vQcosvvQcosApApF
vcosvQcosAp1ApF
o
s
2m2m22s
2m2211s
o
s
2
3
2
j
21
3
m
m21m2111s
12m2211s
y
y
y
x
x
x
−=××−=
θ−=θ−θ−=
−θ+θ+−=
=−××=
=
×π
××=
π
==
=××=ρ=
θ−=θ−+θ−=
−θ+θ+−−=
−
−
 
 
Exercício 5.12 
 
( ) kW3,25107,02,27133,010QHN s
m133,0
4
15,052,7Q
m2,27
20
5,730H
s
m5,7
15,0000.1
000.14
D
F4
v
4
DvF
g2
v
zH
g2
v
Hz
34
TTT
32
2
T
22
xS
2
2
2
2xS
2
2
1T
2
2
T1
=××××=ηγ=
=×π×=
=−=
=×π×
×=ρπ=⇒
πρ=
−=⇒=−
−
 
 
Exercício 5.13 
 
N5201020106,2F
Pa106,22,11021036,1p
022,1p
ApF
45
pistão
545
p
HgOHp
pppistão
2
=×××=
×=×−××=
=×γ−×γ+
=
 
( )[ ]12m222111s vvQnApnApF rrrrr −++−= 
( )
( ) ( ) ( )
( ) pistãoo
j
2
xs
o
j
oo
21mxs
12ms
F60cos1
A
QF
60cos1
A
QQ60cos1Qv60cosvvQF
vvQF
=−ρ=
−ρ=−ρ=−=
−−= rrr
 
( ) ( ) sm233,060cos1000.1 1052052060cos1 AFQ
3
o
4
o
jpistão =−×
××=−ρ=
− 
 
Exercício 5.14 
 ( )
( )
( ) ( )
( )( ) ( )( )
s
L10
s
m01,0101010AvQ
s
m10
60cos110
60cos13010
60cos1A
60cos1A
vv
60cos1Av60cos1Av
60cos1AvF
60cos1AvF
3
4
djdj
o
o
o
dj
o
ej
ejdj
o
djd
2
j
o
eje
2
j
o
djd
2
jdxS
o
eje
2
jexS
==××==
=+
−×=+
−=
+ρ=−ρ
+ρ=
−ρ=
−
 
 
Exercício 5.15 
 
Adotando o eixo x na direção do jato do bocal: 
 
 
s
m2
1050000.1
30sen40
A
30senGv
30senGF
A
F
v
AvvQF
4
o
j
j
o
s
j
s
j
j
2
jjms
x
x
x
=
××
×=ρ=
=→ρ=
ρ==
−
 
 
Exercício 5.16 
 
( ) ( )
( ) ( )
s
m86,5
08,0000.1
8,1724vFF
D
F4
v
4
D
vF
H
g2
v
Hz
N8,17260cos1
4
1,063,6000.160cos1
4
D
vF
s
m63,68,2520Hzg2vH
g2
v
z)a
221xS2xS
2
2
2xS
2
2
22
22xS
2,0p
2
2
B0
o
2
2o
2
12
11xS
1,0p011,0p
2
1
0
=×π×
×=⇒=
ρπ=⇒
πρ=
+=+
=−××π××=−πρ=
=−×=−=⇒+=
 
 
 
N376173250299FGFF
N173
4
08,086,5000.14
D
vF
N29960sen
4
1,063,6000.160sen
4
D
vF)b
kW26,010
7,0
62,00294,010QHN
s
m0294,0
4
08,086,5
4
D
vQ
m62,059,3
20
86,5zH
g2
v
H
2yS1ySsolo
2
2
2
22
22yS
o
2
o
2
12
11yS
3
4
B
B
B
322
2
2
2
02,0p
2
2
B
=−+=−+=
=×π××=πρ=
−=××π××−=πρ=
=×××=η
γ=
=×π×=π=
=−+=−+=
−
 
 
Exercício 5.17 
 
( )[ ]12m222111s vvQnApnApF rrrrr −++−= 
( ) ( )
( ) ( )
s
m21120vuvvvu
s
m20
60cos110000.1
20
60cos1A
F
u
N2030sen2010
10
11,030senGAv30senGAT
T60cos1Au60cos1uQF
jj
o4o
j
s
o2
4
oo
fio
fio
o
j
2o
ms
x
apx
=+=+=→−=
=
−×
=
−ρ
=
=+××=+εμ=+τ=
=−ρ=−=
−
−
−
 
 
Exercício 5.18 
 
s
L9,19
s
m0199,0102094,9AvQ
s
m94,9194,8vuv
s
m94,8
1020000.1
1
105,0
110330sen200
A
Av30Gsen
u
Av30GsenAuF
3
4
jj
sj
4
3
2o
j
so
so
j
2
xS
==××==
=+=+=
=××
××××+×=ρ
εμ+=
εμ+=ρ=
−
−
−
−
 
 
 
Exercício 5.19 
 ( )( )
s
m7,705,1
60
4502nR2Rv
vcos1vvvAN
s
ssjjj
=×π×=π=ω=
θ−−ρ=
 
( )( ) kW115.41
000.1
17,70170cos17,701001001,0000.1N o =××−−×××= 
 
Exercício 5.20 
 
N890.387307320072F
s
m730
2,05,0
73
A
Q
v
s
kg73172QQQ
s
kg723,02002,1AvQ
vQvQF
xS
22
2m
2
3m1m2m
1111m
22m11mxS
−=×−×=
=×=ρ=
=+=+=
=××=ρ=
−=
 
 
Exercício 5.21 
 
( )[ ]12m222111s vvQnApnApF rrrrr −++−= 
( )
m2,3
20
8
g2
vh
s
m8
1096,1
107,15
A
Qv
m1096,1
6,125
107,15000.1
F
QA
N6,1251081057,1F
Pa1057,1785,0102hp
ApFF
A
QvQF
22
3
3
2
2
23
23
s
2
2
34
s
44
1p
ppps
2
2
2ms
x
x
x
x
===→=
×
×==
×=××=ρ=
=×××=
×=××=γ=
==
ρ−=−=
−
−
−−
− 
 
Exercício 5.22 
 
Pa2160
2
602,1
2
v
p
g2
vp
N35,0108,0602,1AvF
22
si
0
2
s0
422
sxS
=×=ρ=⇒=γ
−=×××−=ρ−= −
 
 
Exercício 5.23 
 
s
m155,53
10
1013020Hz
p
g2v
H
g2
v
z
p
HHH
4
3
2,0p0
0
2
2,0p
2
2
0
0
2,0p20
=−+××=⎟⎟⎠
⎞⎜⎜⎝
⎛ −+γ=
+=+γ→+=
 
( )[ ]12m222111s vvQnApnApF rrrrr −++−= 
m115,0
4,13000.1
17674
v
F4
D
4
D
vAvF
s
m4,135,51
10
1013020Hz
p
g2v
N1767
4
1,015000.1
4
D
vF
FAvvQF
22
2
s
2
2
22
22
2
2s
4
3
p0
0
2
2
2
2
22
2s
s2
2
22ms
x
x
2,0
x
xx
=
××π
×=′πρ
=′
′π′ρ=′′ρ=
=⎟⎟⎠
⎞
⎜⎜⎝
⎛ −+××=⎟⎟⎠
⎞⎜⎜⎝
⎛ −′+γ=′
=×π××=πρ=
−=ρ−=−=′
 
 
 
Capítulo 6 
 
ANÁLISE DIMENSIONAL – SEMELHANÇA 
 
Neste capítulo o leitor deverá compreender a utilidade da análise dimensional para a 
construção de leis da Física. O agrupamento de grandezas em números adimensionais facilita 
a análise empírica das funções que representam os fenômenos da natureza. 
O capítulo é dedicado à interpretação dos principais adimensionais utilizados na Mecânica 
dos Fluidos e à teoria dos modelos ou semelhança, de grande utilidade em análise 
experimental. 
 
Exercício 6.1 
 
Base FLT 
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ] 1
12
2
1121
m
1
G
13
2
2
3
24
21
2
3
2
FLTN
FLW
FLM
TL
TFL
TFLTTFLQ
FTQ
TLQ
FL
FLp
FL
TFL
FF
TFLm
LTa
LV
LA
−
−
−
−−−
−
−
−
−
−
−
−
−
=
=
=
=ν
=μ
=×=
=
=
=τ
=
=γ
=ρ
=
=
=
=
=
 
 
 
Exercício 6.2 
 
( )
( )vazãodeecoeficient
nD
QQDn
ynoldsRedenúmeronDRe
nDnD
Dn
D,n,:Base
32
321
2
2
1
321
1
φ==π⇒ρ=π
ν=⇒
ν=ρ
μ=π⇒μρ=π
ρ
βββ
ααα 
 Base MLT 
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ] 3212
22
222
12
1122
1
m
312
G
13
21
2122
2232
3
2
2
3
2
TMLLTMLTN
TMLW
TMLLMLTM
TL
TMLTLMLT
MTQ
MLTTMLTQ
TLQ
TML
TMLLMLTp
TMLLMLT
ML
MLTF
Mm
LTa
LV
LA
−−−
−
−−
−
−−−−
−
−−−
−
−−
−−−−
−−−−
−
−
−
=×=
=
=×=
=ν
=×=μ
=
=×=
=
=τ
=×=
=×=γ
=ρ
=
=
=
=
=
 
( )omanométricecoeficient
Dn
gH
Dn
H
HDn
22
B
22
B
3B
321
3 Ψ==ρ
γ=π⇒γρ=π δδδ
 
Exercício 6.3 
 
( ) ( ) 0f0h,g,,pf
)h,g,(fp
=π→=ρ
ρ=
 
 
[ ]
[ ]
[ ]
[ ] Lh
TLg
TFL
FLp
12
24
2
=
=
=ρ
=
−
−
−
 
Como só existe um adimensional, ele será uma constante. 
ghCpC
gh
p ρ=⇒=ρ=π 
 
 
Exercício 6.4 
 ( )
g
CTgTTg
2
1;
2
1012
0
TLTTLLTg
0g,,Tf
2
1
2
1
212
21
12221222121
l
ll
l
l
=⇒==π
=α−=α⇒=+α−
=α+α
=π→=π→=π
=
−
+α−α+αα−αααα
 
 
Exercício 6.5 
 ( )
( ) ( ) 0f0p,,D,Qf
p,,DfQ
=π→=ρ
ρ=
 
Como só existe um adimensional, ele será uma constante. 
[ ]
[ ]
[ ]
[ ] 2
24
13
FLp
TFL
LD
TLQ
−
−
−
=
=ρ
=
=
 
 
 
m = n – r = 4 – 3 = 1 
D,p,:Base
134rnm
ρ
=−=−=
 
( ) ( )
012
0324
0
TLF
TLLFLTFLQDp
1
321
21
12324
13224
132121
321321
=−α
=+α+α−α−
=α+α
=π
=ρ=π
−α+α+α−α−α+α
−αα−α−ααα
 
 
2
1
2
2
1
22
1
2
1
pD
QQDp ρ=ρ=π −− 
 
ρ=
pCDQ 2 
 
Exercício 6.6 
 ( )
( ) ( )
( ) 25212
2
2
1
2
1
12
1
21
1121211212121
hCg2tghghQ
2tgh2
h2htg2A2htg2bh2
b
2
tg
2
bhAvAQ
ghvvhg
2
1;
2
1
012
01
TLLTLTLvhg
0h,g,vf
=α×π=
α=×
α
=⇒α=⇒=α→=→=
π=⇒=π
−=α−=α
⎭⎬
⎫
=−α−
=+α+α
=π→=π→=π
=
−−
−α−+α+α−αα−ααα
 
Exercício 6.7 
 ( )
( ) ( ) 0f0H,Q,,Nf
H,Q,fN
BB
BB
=π→=γ
γ=
 
Como só existe um adimensional, ele será uma constante. 
 
 
[ ]
[ ]
[ ]
[ ] LH
TLQ
FL
FLTN
B
13
3
1
B
=
=
=γ
=
−
−
−
 
 
2
1
2
2
1
1
3
2
=α
−=α
−=α
 
BH,Q,:Base
134rnm
γ
=−=−=
 
( ) ( )
01
0133
01
TLF
FLTLTLFLNHQ
2
321
1
1213231311
1321313
B
3
B
21
=−α−
=+α+α+α−
=+α
=π
=γ=π
−α−+α+α+α−+α
−αα−α−ααα
 
 
BB QHCN γ= 
 
Exercício 6.8 
( )
( )
( )
( )Mach
c
v
v
ccLv
1
0
0
012
014
0
Froude
Lg
vFr
v
LgLgv
2
1
0
022
014
0
Euler
Lv
FEu
Lv
FFLv
2
2
1
02
04
01
ynoldsRevLRe
vL
Lv
1
1
1
012
024
01
LTLTLTLFcLv
LTLTLTLFgLv
FLTLTLFFLv
TFLLTLTLFLv
L,v,:Base
c,g,F,,L,v,:Grandezas
010
4
2
3
1
21
321
1
2
2
20
3
2
3
1
21
321
1
2222
221
2
2
3
1
21
321
1
111
1
2
3
1
21
321
1
132212141
1
321
4
232212141
1
321
3
32212141
1
321
2
232212141
1
321
1
=Μ⇒=ρ=π⇒
−=λ
=λ
=λ
⎪⎭
⎪⎬
⎫
=−λ−λ
=+λ+λ+λ−
=λ
=⇒=ρ=π⇒
−=δ
=δ
=δ
⎪⎭
⎪⎬
⎫
=−δ−δ
=+δ+δ+δ−
=δ
ρ=⇒ρ=ρ=π⇒−=β
−=β
−=β
⎪⎭
⎪⎬
⎫
=β−β
=β+β+β−
=+β
μ
ρ=⇒ρ
μ=μρ=π⇒
−=α
−=α
−=α
⎪⎭
⎪⎬
⎫
=+α−α
=−α+α+α−
=+α
=π⇒ρ=π
=π⇒ρ=π
=π⇒ρ=π
=π⇒μρ=π
ρ
μρ
−
−
−−−
−−−
−λλ−λλλ−λλλλ
−δδ−δδδ−δδδδ
ββ−βββ−ββββ
−αα−ααα−αααα
 
 
Exercício 6.9 
 ( )
( ) ( )4321 ,,,f0c,,,D,,v,Ff
c,,,D,,vfF
ππππ→=μρω
μρω=
 
 
1
1
1
2
3
1
−=α
−=α
−=α
 B
1
B
11 NHQ −−−γ=π⇒ 
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ] 1
2
24
1
1
LTc
TFL
TFL
LD
T
LTv
FF
−
−
−
−
−
=
=μ
=ρ
=
=ω
=
=
 
 
( ) ( ) 213211321
321
321
321
321
241124
1
4
3
2
1
TLFFLLTTFL
cDv
Dv
DvFDv
α−αα+α+α−+ααα−α−
λλλ
δδδ
βββ
ααα
==π
ρ=π
μρ=π
ωρ=π
ρ=π
 
 
02
04
01
21
321
1
=α−α
=α+α+α−
=+α
 
 
 
É necessário observar que nos outros sistemas de equações a parte das incógnitas será a 
mesma, apenas mudando o símbolo e os coeficientes independentes das incógnitas 
dependerão da contribuição dos expoentes das variáveis independentes de cada adimensional. 
 
 
012
04
0
21
321
1
=−β−β
=β+β+β−
=β
 
 
 
 
012
024
01
21
321
1
=+δ−δ
=−δ+δ+δ−
=+δ
 
 
 
 
 
 
 
 
 
D,v,:Base
437rnm
ρ
=−=−=
 
Vale lembrar que se existir esta base, deverá ser preferida, 
pois, pode conduzir a alguns adimensionais conhecidos. 
deve-se lembrar que no lugar de D, pode ser qualquer grandeza 
de equação dimensional L. 
F 
L 
T 
2
Dv
FEu2
Dv
FFDv1
2
223
22
221
11
−=α
ρ
=⇒−=α
ρ
=ρ=π−=α −−−
 
F 
L 
T 1
1
0
2
3
1
−=β
⇒=β
=β
 
v
D
v
DDv
2
110
2
ω=π
ω=ωρ=π −
 
F 
L 
T 1
1
1
2
3
1
−=δ
⇒−=δ
−=δ
 
μ
ρ=
ρ
μ=μρ=π −−−
vDRe
vD
Dv 1113
 
F 
L 
T 1
0
0
2
3
1
−=λ
⇒=λ
=λ
 
c
vM
v
ccDv 0104
=
=ρ=π −
 
012
014
0
21
321
1
=−λ−λ
=+λ+λ+λ−
=λ
( ) 0MRe,,
v
D,Euf0c,,,D,,v,Ff =⎟⎠
⎞⎜⎝
⎛ ω→=μρω 
 
Exercício 6.10 
 ( )
( )
( )
α=π
μ
ρ=⇒μρ=π
ρ=⇒ρ=π
ρ
αμρ=
βββ
ααα
3
321
2
22
321
1
ynoldsRevLReLv
Euler
Lv
FEuFLv
L,v,:Base
,v,,,LfF
 
 
 
Exercício 6.11 ( ) ( ) 0Eu,Frf0g,,,L,v,Ff =→=μρ 
 
000.1
1
10
1
16,3
11k)2(
h
km1585016,3v16,3v
v
v
16,3
11
10
1kkk)1(
)protótipodoardoespropriedad
masmesascomolaboratóridoaroondo(sup1k;1k;
10
1k
)2(kkkkEuEu
Lv
FEu
)1(kkkFrFr
Lg
vFr
22
F
mp
p
m
gLv
gL
2
L
2
vFpm22
gL
2
vpm
2
=⎟⎠
⎞⎜⎝
⎛×⎟⎠
⎞⎜⎝
⎛×=
=×==
==×==
===
=→=→
ρ
=
=→=→=
ρ
ρ
 
 
Exercício 6.12 
 
μ
Δ
μ
Δ
ρμ
ρΔ =⇒=⇒⎪⎭
⎪⎬
⎫
=
=
μ
ρ=
ρ
Δ=ρ=
ρ
k
kk
k
k
k
k
k
kkkk
kkk
vD
Re
v
p
Dv
F
Eu
:ensionaisdimA
D,v,:Base
Dp
v
D
vp
Dv
2
vp
222
 
s
m9,42,3
4,6
8,9v
4,6
8,9v
v
v
8,9
4,6
104,6
108,9
11k mp
p
m
4
4v
=×==⇒==
×
×
×=
−
− 
 
 
Exercício 6.13 
 
( )
000.1
1
10
1
16,3
11k)3(
rpm37912016,3n
n
n
16,3
10
1
16,3
1
k
k
k)1(
s
m37,2
16,3
5,7v
v
v
16,3
11
10
1kkk)2(
)protótipodoáguaàigualelomoddoáguaaondo(sup1k;1k;
10
1k
)3(kkkkEuEu
Dv
FEu
)2(kkkFrFr
Dg
vFr
)1(kkk
v
Dn
v
Dn
0Eu,Fr,
v
nDf0F,g,n,D,v,f
22
F
m
p
m
D
v
n
m
p
m
gDv
gD
2
D
2
vFpm22
gD
2
vpm
2
Dnv
p
pp
m
mm
=⎟⎠
⎞⎜⎝
⎛×⎟⎠
⎞⎜⎝
⎛×=
=×=→====
==→==×==
===
=→=→
ρ
=
=→=→=
=→=
=⎟⎠
⎞⎜⎝
⎛→=ρ
ρ
ρ
 
 
Exercício 6.14 
 
cm30215b
m325,1
comPlaca
L2L
L
L
5,0
2,0
1,0
k
k
k
2,0
30
6k;1,0
10
10k;
2,1
000.1k
kkkvLvLRe
kkkk
Lv
FEu
L,v,:Base
mp
p
m
v
L
v5
6
Lv2
2
L
2
vF221
=×=
=×=
=⇒====
=====
=⇒ν=μ
ρ==π
=⇒ρ==π
ρ
ν
−
−
νρ
ν
ρ
l
 
 
N8,1
33,8
15
33,8
F
F
F
F
33,85,02,0
2,1
000.1k mp
p
m22
F ===⇒==××= 
 
Exercício 6.15 
 omanométricecoeficient
Dn
gH
vazãodeecoeficient
nD
Q
22
B
3
=Ψ
=φ
 
m79
316,0
25H
H
H
316,0
1
333,1422,0
k
kk
k)2(
rpm844.2
422,0
200.1n
n
n
422,0
333,1
1
k
k
k)1(
1k;333,1
15
20
D
D
k;1k
)2(kkk
)1(kkk
p
p
m
B
B
B
B
B22
g
2
D
2
n
H
p
p
m
33
D
Q
n
g
p
m
DQ
2
D
2
nHpm
3
DnQpm
==→==×==
==→====
=====
=→Ψ=Ψ
=→φ=φ
 
 
Exercício 6.16 
 
s
m106,9
247.1
05,04,2
247.1
Dv
247.1
Dv
247.1Re
8,125,8
8,127,10
000.1500.1
000.1Re
:elinearmentdoInterpolan
7,10
4,2800
102,49
v
p
Eu
2
5pp
p
p
pp
p
p
2
3
2
pp
p
p
−×=×==ν⇒=ν
=⇒−
−=−
−
=×
×=ρ
Δ=
 
 
 
Exercício 6.17 
 
( )
s
m5,735,2v
v
v5,2
4,01
1
kk
k
k)2(
4,0
50
20
D
Dk;1k;1k
)2(kkkkReRe
)1(kkkkEuEu
0vDRe;
Dv
FEuf0,D,v,,Ff
1
2
1
D
v
2
1
D
Dvpm
2
D
2
vFpm
22
=×=→==×==
=====
=→=
=→=
=⎟⎟⎠
⎞
⎜⎜⎝
⎛
μ
ρ=ρ=→=μρ
ρ
μ
μρ
ρμ
ρ
 
 
Para bombas: 
Traçado o gráfico de F1 = f(v1), obtém-se, com v1 = 7,5 m/s, F1=260 N. 
N260FF:Logo
F
F
14,05,21k)1(
12
2
1
F
==
==××=
 
 
Exercício 6.18 
 
( )C90aágua1053,3353,0353,0
2
1707,0k
707,01
2
1kkk
kkkvLRe
kkk
Lg
vFr
ensionaisdimA
L,v:base,L,g,v
o7
m
p
m
gLv
Lv
gL
2
v
2
−
ν
ν
×=ν⇒=ν
ν⇒=×=
=×==
=→ν=
=→=
→ν
 
 
Exercício 6.19 
 
f(N, g, ρ, v, L) = 0 
Aplicando o Teorema π e usando como base ρ, v, L, obtém-se: 
23221 Lv
Ne
v
Lg
ρ
=π=π 
Pela figura: 
23221 Lv
N
v
Lg
ρ
=→π=π 
kW5,2
000.1
12000.1105,0vgLN 33 =××××=ρ= 
 
Exercício 6.20 
 
s
m106
8
108,4
88
1
4
1
2
1k
2
11
4
1kkk
kkk
Lg
vFr
kkkvLRe
2
6
5
p
m
p
m
gLv
gL
2
v
2
Lv
−−
ν
ν
×=×=ν=ν→ν
ν==×=
=×==
=→=
=→ν=
 
 
Exercício 6.21 
 
Q08,5
15,0
60
500.3
Q
nD
Q
33
=
×
==φ 
Ψ=
×⎟⎠
⎞⎜⎝
⎛
×Ψ=×Ψ=
φ=××φ=φ=
=×=====
=
×⎟⎠
⎞⎜⎝
⎛
==Ψ
8125,7
8,9
3,0
60
750.1
g
Dn
H
7875,03,0
60
750.1DnQ
m3,015,02D2Derpm750.1
2
500.3
2
n
n:protótipooPara
H128,0
15,0
60
500.3
H8,9
Dn
gH
2
2
2
p
2
p
pB
33
ppp
mp
m
p
B
2
2
B
22
B
 
Com essas expressões é possível construir a tabela a seguir e, portanto, as curvas da bomba. 
Q(m3/s) 0 5x10-3 10x10-3 15x10-3 20x10-3 
HB(m) 25 24 23 20 14 
φ 0 0,0254 0,0508 0,0762 0,1016 
ψ 3,20 3,07 2,94 2,56 1,79 
Qp(m3/s) 0 20x10-3 40x10-3 60x10-3 80x10-3 
HBp 25 24 23 20 14 
 
 
Exercício 6.22 
 
N700.3
27
10
27
F
F
F
F
27373,11k
s
m2,5
73,1
9
73,1
v
v
v
v
73,113k
kkk
Lg
vFr
kkkk
Lv
FEu
5
1
2
2
122
F
1
2
2
1
v
gL
2
v
2
2
L
2
vF22
===⇒==××=
===⇒==×=
=⇒=
=⇒ρ= ρ
 
 
Exercício 6.23 
Se a perda de carga de (5) a (7) é a mesma nas duas situações, como é função de v2, deve-se 
entender que a vazão nas duas situações deve ser a mesma, logo, kQ = 1. 
( )
( ) m164318HzH
m184338HzH
kkk
k
1kkkkkkk
k
1kkkk
7,1p72B
7,1p71B
4
3
BHn
3
4
n
3
2
n
2
nBHg
2
D
2
nBHg
3
n
D
3
DnQ
=+++=′+=
=+++=+=
=→==→=
=→=
 
rpm158.3
092,1
450.3
092,1
n
n
n
n
092,1
16
18k
1
2
2
1
4
3
n
===
==⎟⎠
⎞⎜⎝
⎛= 
 
Exercício 6.24 
 
( )
768,0
5,101
78
N
N
kW7810100108,91500.8QHN)b
s
L8,914,327Q27Q
Q
Q
2731kkk
s
L5,3Qm1,11
9
100
9
H
H
H
H
9
1
31
k
kk
k)a
B
B
33
B
21
2
133
DnQ
2
1B
2B
2B
1B
22
g
2
D
2
n
BH
===η
=××××=γ=
=×==⇒==×==
=⇒===⇒==×==
−−
 
 
Exercício 6.25 
 
A curva representa Eu = f(Re). Quando o efeito da viscosidade torna-se desprezível, o Eu não 
varia mais com Re e, portanto, Eu = constante. 
Essa situação acontece para 4105Re ×≅ , onde .3Eu ≅ Logo: 
N75,005,01013F3
Dv
F3Eu
s
m10
05,0
10105
D
105v105vD
22
22
544
4
=×××=→=
ρ
→=
=××=ν×=→×=ν
−
 
 
Exercício 6.26 
 ( )
mm9,5m109,510100
2,1
102
102,0
p102
QD
102
pD
Q
pDD
Q
pD
D
Q
ensionaisdimA
D,,:Base
D,,,pfQ
3
32
3
2
2
22
2
2
1
2
2
2
1
=×=××
×=Δ
ρ
×=
×=Δ
ρ=Δ
ρν
ν=π
π
ρν
Δ=π
ν=π
νρ
ρνΔ=
−
−
−
−
−
 
 
 
 
Exercício 6.27 
 
a) 
 
 
 
 
 
1024
1
16
1
4
11kkkk
4
1
16
1kkkk
1k;
16
1k;1k)e
s
N500.151010106vLQ
106105,2
1010
510
v
L
5,0
10
105
v
Lg)c
v
L1
L
vLv
v
LggLv
vL
Q
QLv)b
2
2
LvGQ
vgL
2
v
gL
2442
1G
4
1
7
3
242
3
222
2
3
323
321
3
22
321
2
2
G
1G
321
1
=⎟⎠
⎞⎜⎝
⎛××==
==→=
===
=××××=γπ=
×=π⇒×=×
×=μ
γ=π′
=×==π
μ
γ=π=π′→γ
μ=π→μγ=π
=π→γ=π
γ=π→γ=π
γ
γ
−
−
−
δδδ
βββ
ααα
 
 
Exercício 6.28 
 ( )
( ) kW500.7101075,010NNW75,0
6,3
6,375,0FvN
N
N
10
1
100
1
10
11kkkk)c
h
km6,3
10
36
10
v
v
v
v
10
1
100
1kkk
kkkk
kkk)b
L
A
;
v
Lg;
Lv
NL,v,:Base
A,L,g,v,fN)a
377
mpm
p
m
7
23
2
L
3
vN
p
m
p
m
gLv
2
L
3
vN
gL
2
v
2
fr
322231
fr
=××=×=⇒=×==
==⎟⎠
⎞⎜⎝
⎛×⎟⎠
⎞⎜⎝
⎛×==
===⇒====
=
=
=π=πρ=π⇒ρ
ρ=
−
ρ
ρ 
[ ]
[ ]
[ ] 3
2
1
G
FL
LTg
FTQ
−
−
−
=γ
=
=
 
[ ]
[ ]
[ ] TFL
LL
LTv
2
1
−
−
=μ
=
=
 
Capítulo 7 
 
ESCOAMENTO PERMANENTE DE FLUIDO INCOMPRESSÍVEL EM 
CONDUTOS FORÇADOS 
 
No Capítulo 4 apresentou-se a equação da energia com essas hipóteses, resultando: 
: 
2,1p2M1 HHHH +=+ 
Essa equação permite determinar ao longo do escoamento alguma das variáveis que contém, isto 
é: HM, v, p ou z. Entretanto, esta tarefa somente será viável se for conhecida a perda de carga 
2,1pH ao longo do escoamento. 
Este capítulo dedica-se, fundamentalmente, ao estudo desse termo para condutos forçados, 
estabelecendo as bases do cálculo de instalações hidráulicas. 
A definição das linhas da energia e piezométrica estabelece uma maneira interessante de 
visualização do andamento da energia e da pressão ao longo do escoamento, que pode facilitar a 
solução de problemas voltados à solução de instalações. 
 
Exercício 7.1 
 
1,0
1,0
f1
1
2
11
0
0
2
00
p10
hz
p
g2
v
z
p
g2
v
HHH
++γ+
α=+γ+
α
+=
 
Como se trata de um gás, a diferença de cotas pode ser desprezada desde que esta não seja muito 
grande. Considerando a mina como um reservatório de grandes dimensões, v0 ≅ 0 e, na escala 
efetiva p1 = 0, obtêm-se: 
H
1
H
1
p22
H
2
110
D
Lf
pg2
v
D
Lfg2
v
g2
v
D
Lf
g2
vp
+α
γ=
+α
=→+α=γ
γ
 
Como f = f(Re) e Re = f(v), o problema deverá ser resolvido por tentativas. 
.diantepor
assimefeRvfseadotaffse,resolvidoestáffSe
fRevfseAdota
′′→′→′→′−→′≠=′
′→→→−
 
Uma forma de obter rapidamente o resultado, consiste em adotar o f correspondente à parte 
horizontal da curva de 
k
DH calculado para o problema. Observa-se que se o Re for 
relativamente grande, o f estará nessa parte da curva, o que evitará novas tentativas. 
m6,0
6,04
6,06,04A4D
Pa000.22,0000.10hp
H
OHOH0 22
=×
××=σ=
=×=γ=
 
 
Logo:
f3,8331
150.3
6,0
500f1
7,12
000.220
v +=+
×
= 
023,0fseadotaRouseMoodydo600
10
6,0
k
D
:Como
3
H =−−→== − 
5
5
H 105,7
10
6,04,12vDReseverificae
s
m4,12
023,03,8331
150.3v ×=×=ν=−=×+= − 
Ao observar o Moody-Rouse nota-se que o Re é suficientemente alto para que se possa adotar o f 
correspondente à parte horizontal da curva de DH/k (escoamento hidraulicamente rugoso). 
Nesse caso, confirma-se o f e, conseqüentemente, o valor da velocidade. Assim: 
s
m5,46,06,04,12vAQ
3
=××== 
 
Exercício 7.2 
 
m3
20
24,41
03,0
202,01
g2
v
D
L
D
L
f1h
g2
vk
g2
v
D
L
f
g2
vhzHHH
m105,1
000.2
03,0
000.2
D
k000.2
k
D
:RouseMoody
02,0f
1027,1
10
03,024,4vDRe
m3,137,1125hm7,11
20
24,45
03,0
1202,0H
s
m24,4
03,0
1034
D
Q4v
g2
vk
D
LfH
m25
10310
1075,0
Q
NHQHN
HHhzz
HHHH
22
H
2,1
H
2,1
0
2
1s
2
H
2,1
2
002,0p20
5HH
5
6
2
7,0p
2
3
2
2
s
H
7,0p
34
3
BB
7,0pB01
7,0p7B0
=×⎟⎠
⎞⎜⎝
⎛ +×+=⎟⎟⎠
⎞
⎜⎜⎝
⎛ ++=
++==⇒+=
×===⇒=−
⎪⎭
⎪⎬
⎫
=
×=×=ν=
=−=Δ⇒=×⎟⎠
⎞⎜⎝
⎛ +×=
=×π
××=π=
⎟⎟⎠
⎞
⎜⎜⎝
⎛ +=
=××
×=γ=⇒γ=
−=Δ=−
+=+
−−
−
−
∑
 
 
Exercício 7.3 
 
a) Obviamente a máquina é uma bomba, pois .pp entradasaída > 
γ
−=→=+ esBsBe ppHHHH 
( )
m2,25
000.10
1052,2H
Pa1052,2101036,12ppp22p
5
B
545
essO2HHge
=×=
×=−××=−→=×γ−×γ+ 
( )
04,0
2238
2,191,020
Lv
hgD2
f
g2
v
D
Lfh
m2,1962,25hHh
m6
20
25,35,132102h
s
m2
1,0
10164
D
Q4v
g2
vkhehhH
HHHHHH)b
22
fH
2
H
f
spf
2
s
2
3
2
2
sssfp
pBp8B0
8,0
8,0
8,08,0
=
×
××==→=
=−=−=
=+×++×=
=
×π
××=
π
=
=+=
=→+=+
∑
∑
∑∑∑
−
 
 
Exercício 7.4 
 
kPa5,15Pa1055,1pm55,1
20
45,15,1
06,0
2054,015,05,2
p
g2
vk
D
L
f1zz
p
g2
vk
g2
v
D
L
fz
p
g2
v
zHHH)b
s
L1,4
s
m101,4
4
06,045,1
4
DvQ
fdevaloroconfirmaqueo107,8
10
06,045,1vDRe:oVerificaçã
s
m45,1
5,15
06,0
4054,0
220v
054,0f:seadotaRouseMoodydo40
15,0
6
k
DCom
k
D
Lf
gH2
v
g2
vk
D
LfH
m2HH5,05,2HHH)a
4
A
2
A
2A
1
s
A,1
A0
A
A
1
2
s
2
A,1
A
A
2
A
0A,0pA0
3
3
22
4
6
s
8,0p
2
s8,0p
8,0p8,0p8,0p80
=×=⇒=×⎟⎠
⎞⎜⎝
⎛ +×+−−=γ
⎟⎟⎠
⎞
⎜⎜⎝
⎛ ++−−=γ
+++γ+=⇒+=
=×=×π×=π=
×=×=ν=
=
+×
×=
=−−→==
+
=⇒⎟⎠
⎞⎜⎝
⎛ +=
=⇒+=⇒+=
∑
∑
∑∑
−
−
 
 
 
 
Exercício 7.5 
 
4,0
4,0
p4
4
B
p4B0
Hz
p
H
HHHH)a
++γ=
+=+
 
m6,174
10
102424z
p
HH
m24
101010
1038,0
Q
N
H
QH
N
4
3
4
4
Bp
34
3
BB
B
B
B
B
4,0
=−×−=−γ−=
=
××
××=γ
η=→η
γ= −
 
( )
01,0
1,510
6,205,0102
vL
gDh2
f
g2
v
D
L
fh
m6,2156,17h
m15
20
1,55,11
g2
vkkkh
s
m1,5
05,0
10104
D
Q4v
g2
vkh
hHhhh2,1H)b
22
3,1
f23,1
f
f
22
ssss
2
3
2
2
ss
spf
3
1
s3,1fp
3,1
3,1
3,1
321
4,04,0
=
×
×××==→=
=−=
=×=++=
=
×π
××=
π
=
=
−=→+=
∑
∑∑
∑∑
−
 
c) Como os dois tubos têm o mesmo diâmetro e material e o fluido é o mesmo, tem-se o 
mesmo f. 
 
m9,29
20
1,53
05,0
10001,0H
g2
vk
D
L
fhhH
2
p
29
5
s
9,59
5
sfp
10,4
9,510,4
=⎟⎠
⎞⎜⎝
⎛ +×=
⎟⎟⎠
⎞
⎜⎜⎝
⎛ +=+= ∑∑
 
kW1,5
1000
19,05,56101010QHN
m5,569,2984
10
1024H
HHz
p
HHHH)d
34
TTT
4
3
T
pT4
4
p10T4
10,4
10,4
=×××××=ηγ=
=−+×=
=−+γ
+=−
−
 
A vazão é considerada a mesma, pois para p4 = cte, é necessário que o nível se mantenha 
constante. 
 
 
( ) m5,72551210
01,0
05,0k
f
DL
g2
vk
g2
v
D
L
fh)e
seq
2
s
2eq
feq
=×+×+==
==
∑∑
 
 
Exercício 7.6 
 
15,9
6,0
1
1,11
1,61
H
H
Q
Q
HQ
HQ
NN
m61160HHHHH
m1,119,012HHHHH
BTT
B
B
T
TTT
B
BB
TB
Bj,fpjBf
Td,apdTa
=×=ηη=⇒ηγ=η
γ⇒=
=+=⇒+=+
=−=⇒+=−
 
 
 
Exercício 7.7 
 
Como no resto do circuito a perda de carga é desprezível: 
 
s
m01,0
13510
101875,0
H
N
Q
QH
N
m135HH
3
4
3
B
BB
B
B
B
pB A,C
=
×
××=γ
η=→η
γ=
==
 
A velocidademédia no trecho CA será: 
( ) ( )
s
m44,3
1091,2
01,0v
m1091,2015,0281,0
4
d28D
44
d28
4
DA
A
Qv
3
232222
22
=
×
=
×=×−π=−π=π−π=
=
−
− 
Imaginando um tubo equivalente de C até A: 
( )
m108,2
25
101,7
25
D
k25
k
D
RouseMoodyDo
1044,2
10
101,744,3vDRe
0675,0
44,324
135101,720f
vL
hgD2
f
g2
v
D
Lfh
m101,7
015,0281,0
1091,24
d28D
A4A4D
3
3
HH
5
7
3
H
3
2
A,C
fH
2
H
f
3
3
H
−−
−
−
−
−−
×=×==→=−
×=××=ν=
=×
×××=→=→=
×=×+π
××=π+π=σ=
 
 
Exercício 7.8 
 
5,0p50 HHH += 
 
 
 
m1,11
20
83,23,12
15,0
90024,01Hz
s
m83,2
15,0
10504
D
Q4v
s
L47
s
m107,4
4
15,07,2
4
DvQ
foconfirmand108,3
1005,1
15,07,2vDRe:oVerificaçã
s
m7,2
3,12
15,0
90024,01
1020v
024,0fseadotaRouseMoodydo579
109,25
15,0
k
D
k
D
Lf1
gz2
v
g2
vk
D
Lf1z
g2
vk
g2
v
D
Lf
g2
v
z
2
0
2
3
2
3
2
22
5
6
3
s
0
2
s0
2
s
22
5
0
=⎟⎠
⎞⎜⎝
⎛ +×+==′
=×π
××=π
′=′
=×=×π×=π=
×=×
×=ν=
=
++
×=
=−−→=×=
++
=⇒⎟⎠
⎞⎜⎝
⎛ ++=⇒++=
−
−
−
−
∑∑∑
 
 
Exercício 7.9 
 
2,1
fH
f
2
H
f
4
3
2
1
f
f2
2
2
22
1
1
2
11
p21
fL
hgD2
v
.vcasono,iávelvaroutraobterse
pararessãoexpautilizarsepodeconhecidoéhsee
g2
v
D
Lfh,mas
m23
10
1050z
p
h
hz
p
g2
v
z
p
g2
v
HHH
2,1
2,12,1
2,1
2,1
2,1
=
−=
=−×=−γ=
++γ+
α=+γ+
α
+=
 
Observa-se que não se tem f , de modo que não é possível calcular v, bem como Re e, 
conseqüentemente, não se pode obter f do Moody-Rouse. Este exemplo é do tipo: temos hf, 
queremos Q. 
Nesse caso pode-se calcular fRe . 
 
 
2,1
fHH
2
2,1
fHH
L
hgD2D
vL
hgD2vD
fRe 2,12,1 ν=ν= 
Observa-se que fRe pode ser calculado sem que v seja conhecido, desde que se conheça fh , 
que é o caso do exercício. 
( )RouseMoodydoobtidofundidoferrodok386
1059,2
1,0
k
D
1016,8
6
21,020
10
1,0fRe
m6
30sen
3
30sen
z
L
4
H
4
6
oo
2
2,1
−=
×
=
×=××=
===
−
− 
Com esses dois valores obtém-se do Moody-Rouse que f = 0,026 
s
L40
s
m04,0
4
1,006,5
4
DvQ
s
m06,5
6026,0
21,020v
322
==×π×=π=
=×
××=
 
 
Exercício 7.10 
 
s
m27,1
4
162,1
4
DvQ
s
m62,1
000.8019,0
20120v
019,0fRouseMoodydo000.1
10
1
k
D
102,2
000.8
12020
10
1
fL
Dgh2DfRe
fL
gDh2
v
g2
v
D
Lfhm20hhzz
322
3
5
6
f
f
2
fff21
=×π×=π=⇒=×
××=
=−⇒==
×=××=ν=
=⇒=→=⇒=−
−
−
 
 
Exercício 7.11 
 
1,0
2,0
f1
1
2
11
V0
0
2
00
p1V0
hz
p
g2
v
Hz
p
g2
v
HHHH
++γ+
α=++γ+
α
+=+
 
Desprezam-se as perdas singulares e admite-se o reservatório de grandes dimensões. 
 
 
 
 
 
 
 
 
 
 
 
 
 
3000
10
3
k
D
102
105,1
310vDRe
g2
v
D
Lfh
s
m10
3
714
D
Q4vv
Pa20002,0000.10hp
3
H
6
5
H
2
H
f
221
OHOH0
1,0
22
==
×=
×
×=ν=
=
=
×π
×=
π
==
=×=γ=
−
−
016,0f =→ 
 
 
 
 
 
 
 
 
 
 
 
kW4,50
000.175,0
417113
000.1
1QHN
V
V
V =×
××=η
γ= 
 
Exercício 7.12 
 
kW1,1810
75,0
6,351082,310QHN
s
m1082,3
4
1,087,4
4
D
vQ
m6,3515
20
87,45,0
1,0
150026,0
20
66,8H
026,0f
386
1059,2
1,0
k
D
109,4
10
1,087,4DvRe
g2
v
k
D
Lf
g2
v
HzHHHH
s
m87,4
10
5,766,8
D
D
vv
s
m66,8
152
1015v
y2
gxv
v
xg
2
1y
gt
2
1y
vtx
3
24
B
B
B
3
2
22
2
2
22
B
4
5
6
2
2
2
1s
2
s
B0s,0psB0
22
s
s2s
2
2
2
=××××=η
γ=
×=×π×=π=
=−×⎟⎠
⎞⎜⎝
⎛ +×+=
=⇒
⎪⎪⎭
⎪⎪⎬
⎫
=×=
×=×=ν=
⎟⎠
⎞⎜⎝
⎛ ++=+⇒+=+
=⎟⎠
⎞⎜⎝
⎛×=⎟⎠
⎞⎜⎝
⎛=⇒=×=
=⇒=⇒
⎪⎭
⎪⎬
⎫
=
=
−−
−
−
−
 
 
Exercício 7.13 
 
 
7,3p3,2p7,3p3,2p1,0p7,0p
7,0p7,0p7B
7,0p7
7
2
77
B0
0
2
00
7,0p7B0
HHHHHH
H8HzH
Hz
p
g2
v
Hz
p
g2
v
HHHH
+=++=
+=+=
++γ+
α=++γ+
α
+=+
 
m41
13
20033,150
20
10H
p
hz
g2
v
H
m33,1
20
10
3
50016,0h
2
V
0
1,0f1
2
11
V
2
2,1f
=−++=
γ−++
α=
=××=
0195,0f
600.1
105
08,0
k
d
1091,1
10
08,039,2dvRe
019,0f
000.2
105
1,0
k
D
1053,1
10
1,053,1DvRe
s
m39,2
08,0
10124
d
Q4v
s
m53,1
1,0
10124
D
Q4v
g2
v
kkkk
d
L
f
g2
v
D
L
fH
g2
v
k
g2
v
k
g2
v
k
g2
v
k
g2
v
d
L
f
g2
v
D
L
fH
6,3
5
5
6
6,3
6,3
3,2
3
5
3
3,2
3,2
2
3
27,3
2
3
23,2
2
7,3
6s5s4s3s
7,3
3,2
2
3,23,2
3,27,0p
2
7,3
6s
2
7,3
5s
2
7,3
4s
2
7,3
3s
2
7,37,3
7,3
2
3,23,2
3,27,0p
=→
⎪⎪⎭
⎪⎪⎬
⎫
=×=
×=×=ν=
=→
⎪⎪⎭
⎪⎪⎬
⎫
=×=
×=×=ν=
=×π
××=π=
=×π
××=π=
⎟⎟⎠
⎞
⎜⎜⎝
⎛ +++++=
+++++=
−
−
−
−
−
−
 
CV2CV9,1
82,075
73,91012000.1
75
QH
N
m73,973,18H
m73,1
20
39,215,05,01,0
08,0
150195,0
20
53,1
1,0
4019,0H
3
B
B
B
B
22
p 7,0
⇒=×
×××=η
γ=
=+=
=⎟⎠
⎞⎜⎝
⎛ +++++××=
−
 
 
Exercício 7.14 
 
kW1,110
7,0
3,12108000.8QHN)b
m3,12
20
188,1
1,0
70064,010H
064,0
000.1
64
Re
64f000.1
10
1,01vDRe
s
m1
1,0
1084
D
Q4v
g2
vk
D
LfzHHHHH)a
3
3
B
B
B
2
B
4
2
3
2
2
s0BC,ApCBA
=××××=η
γ=
=×⎟⎠
⎞⎜⎝
⎛ +×+=
===→=×=ν=
=×π
××=π=
⎟⎠
⎞⎜⎝
⎛ ++=⇒+=+
−−
−
−
∑
 
 
Exercício 7.15 
 
E,0pE0 HHH += 
 
 
 
 
 
m5,75,12
10
1050p
m5,12
10610
000.175,01
Q
N
H
H
pp
m4,4
20
06,35,06,4
g2
vk
pp
m6,4
20
06,3
05,0
5002,014
g2
v
D
L
f
pp
m14
20
06,35,0
20
06,32
10
10127
g2
vk
g2
vh
pp
kPa127
000.1
1107,12p
m7,122
20
06,35,05,0
05,0
50202,0
10
1050
20
06,3p
s
m06,3
05,0
1064
D
Q4vv
g2
vkk
D
L
f
p
g2
v
h
p
4
3
F
34
BB
B
B
EF
22
D,C
CD
22
C,BBC
22
4
32
Bs
2
0B
4
0
2
4
32
0
2
3
2E
2
D,CsBs
E,BE
2
EE0
=+×−=γ
=××
××=γ
η=
+γ=γ
=−=−γ=γ
=××−=−γ=γ
=×−−+×=−−+γ=γ
=××=
=−⎟⎠
⎞⎜⎝
⎛ ++××+×−+=γ
=×π
××
π==
⎟⎟⎠
⎞
⎜⎜⎝
⎛ +++γ+
α=+γ
−
−
 
 Para obter a linha da energia , basta somar m45,0
g2
v2 = em cada γ
p . 
 
Exercício 7.16 
 
026,0f
1059,2
1,0
k
D
1055,2
10
1,055,2vDRe
s
m27,1
2
55,2
2
vv
s
m55,2
1,0
10204
D
Q4v
g2
v
D
L
4
ffh0h
g24
v
D
Lf
g2
v
D
Lfh
g24
v
D
Lfh
g2
v
D
Lfz
g2
v
D
Lfz
4
5
6
2
3
2
2
ss
22
s
2
s
2
2
=→
⎪⎪⎭
⎪⎪⎬
⎫
×=
×=×=ν=
===′⇒=×π
××=π=
⎟⎠
⎞⎜⎝
⎛ ′−=⇒=−×′−⇒+×′=+
′′=Δ
=Δ
−
−
−
 
 
m6,62
20
55,2
1,0
000.1
4
027,0026,0h
027,0f1027,1DveR
2
s
5
=××⎟⎠
⎞⎜⎝
⎛ −=
=′⇒×=ν
′=′
 
 
Exercício 7.17 
 
330
1052,1
05,0
k
D
s
m10
10
1010g
4
2
6
4
3
=
×
=
=×=γ
μ=ρ
μ=ν
−
−−
 
Para esse valor de 
k
D o escoamento torna-se hidraulicamente rugoso para 5104Re ×≅ e nesse 
caso f = 0,026. 
kPa500Pa105
20
8
05,0
30026,010
g2
v
D
Lfp
s
m8
05,0
10410
D
RevvDRe
5
2
4
2
56
=×=×××=γ=Δ
=××=ν=→ν=
−
 
 
Exercício 7.18s
m26,3
0625,0
10104
D
Q4v
g2
v
k
D
L
fH
m47,0
20
27,1
1,0
300195,0H
0195,0f
174.2
106,4
1,0
k
D
1027,1
10
1,027,1DvRe
s
m27,1
1,0
10104
D
Q4v
g2
v
D
L
fH
HHz
p
H
3
2
cRe
cRe
2
cRe
cRe
s
cRe
cRetot
cRecRep
2
Sucp
Suc
5
Suc
5
6
SucSuc
Suc
2
3
2
Suc
Suc
2
Suc
Suc
Suctot
SucSucp
cRepSucp9
9
B
=×π
××=π=
⎟⎟⎠
⎞
⎜⎜⎝
⎛ +=
=××=
=→
⎪⎪⎭
⎪⎪⎬
⎫
=×=
×=×=ν=
=×π
××=π=
=
+++γ=
−
−
−
−
∑
 
 
 
 
 
kW1,710
7,0
50101010QHN
m501713
10
102,0H
m1756,1647,0H
m56,16
20
26,311
0625,0
6302,0H
02,0f
1359
106,4
0625,0
k
D
102
10
0625,026,3DvRe
3
34
B
B
B
4
6
B
9,0p
2
cRep
cRe
5
cRe
5
6
cRecRe
cRe
=××××=η
γ=
=++×=
≅+=
=⎟⎠
⎞⎜⎝
⎛ +×=
=→
⎪⎪⎭
⎪⎪⎬
⎫
=×=
×=×=ν=
−−
−
−
 
 
 
Exercício 7.19 
 
m45,0
20
3
04,0
202,0
g2
v
D
L
fh)c
m6021880LLLL
m80
302,0
1804,020L
s
m3
04,0
108,34
D
Q4v
m183856HHH
fv
gDH2
L
g2
v
D
L
fH)b
02,0
18
04,09
L
Dk
f
g2
vk
g2
v
D
L
f)a
22eq
s
eqeqtot4,1
2tot
2
3
2
41p
2
p
tot
2
tot
p
eq
s
2
s
2eq
3
3
3
4,1
4,1
4,1
2
2
2
2
=××==
=−−=−−=
=
×
××=
=
×π
××=
π
=
=−=−=
=→=
=×==
=
−
 
 
Exercício 7.20 
 
kPa84,912,9436,2ppp
s
m27,1
1,0
10104
D
Q4v
g2
vk
g2
v
D
Lf
p
g2
vz0
HHH
atmabseefe
2
3
2
2
s
2
e
2
3,0p30
−=−=−=
=×π
××=π=
++γ++=
+=
−
∑
 
 
m6,7z
20
27,116
20
27,1
1,0
6z02,0
10
840.91
20
27,1z0
02,0f
174.2
106,4
1,0
k
D
1027,1
10
1,027,1vDRe
22
4
2
5
5
6
=⇒×+×⎟⎠
⎞⎜⎝
⎛ +×+−+=
=
⎪⎪⎭
⎪⎪⎬
⎫
=×=
×=×=ν=
−
−
 
 
Exercício 7.21 
 
Pelo andamento da linha da energia o escoamento é de (B) para (A). 
A,B
A,B
pAMB
pAMB
HzHz
HHHH)a
+=+
+=+
 
Pela diferença da linha da energia para a linha piezométrica: 
s
m22,020v2,0
g2
v2 =×=→= 
 
386
1059,2
1,0
k
D
102
10
1,02vDRe
4
5
6
=
×
=
×=×=ν=
−
−
 
)turbina(m8,82,515HzzH
m2,5
20
2
1,0
100026,0
g2
v
D
LfH
A,B
A,B
pBAM
22
p
−=+−=+−=
=××==
 
kW04,1
000.1
175,08,8107,1510QHN
s
L7,15
s
m107,15
4
1,02
4
DvQ)b
34
TTT
3
3
22
=×××××=ηγ=
=×=×π×=π=
−
−
 
 
 
m135
20
2
1,0
25026,0115
p
g2
v
D
Lf1z
p
g2
v
D
Lf
p
g2
v
z
HHH)c
2
C
2
B
C
2
C
2
C
B
pCB C,B
=⎟⎠
⎞⎜⎝
⎛ ×+−=γ
⎟⎠
⎞⎜⎝
⎛ +−=γ
+γ+=
+=
 
Exercício 7.22 
g2
v
D
1f
L
h
45tg)a
2
fo == 
f = 0,026 
kW26,110
59,0
8,33102,210QHN
m8,338,2913H
m8,2912128,05H
m1245LtgH
Hm121
10
103,111h
pp
phhp
pp
H
m8,0
20
47,4
025,0
8,0025,0
g2
v
D
LfH
m5HHHHHH
H
g2
v
zHHHHH)b
s
m102,2
4
025,047,4
4
DvQ
s
m47,4
025,0
1025,020
f
45gDtg2v
3
34
B
B
B
B
5,0p
o
5,4p
4,3p4
5
O2H
Hg43
4HgO2H3
43
4,3p
22
3,2p
105,0p1,0p10
5,0p
2
5
5B5,0p5B0
3
3
22
o
=××××=η
γ=
=++=
=+++=
==
==⎟⎟⎠
⎞
⎜⎜⎝
⎛ −××=⎟⎟⎠
⎞
⎜⎜⎝
⎛ −γ
γ=γ
−⇒=γ−γ+
γ
−=
=××==
=−=⇒+=
++=⇒+=+
×=×π=π=
=××==
−−
−
 
 
Exercício 7.23 
 
s
m109,7
4
01,01,0
4
DvQ
s
m1,0
1032
0032,001,010
32
tggD
v
tg
gD
v32tg
g2
v
vD
64
vD
64
Re
64farminla
tg
gD2
fvtgL
g2
v
D
Lf
tgLh
L
h
tg
3
6
22
6
22
2
2
22
f
f
−
−
×=×π×=π=
=
×
××=ν
α=
α=ν→α=ν
ν==→
α=→α=
α=→=α
 
 
Exercício 7.24 
 
gD
v32
g2D
v
vD
64
g2D
fv
L
h
tg 2
22
f ν=×
ν=×==α 
 
280.1
125,0
120
v
gh2
k
g2
vkh
m1
1002,0
125,010010322h
gD
vL322
g2
v
D
L
Dv
642
g2
v
D
Lf2h
m2hh
s
m125,0v
s
m25,0
1032
100
202,010
32
tggDv
22
s
s
2
ss
2
5
s
2
22
s
fs
5
2
2
=×=′=⇒
′=
=×
×××−=
′ν−=′′
ν−=′′−=
=+
=′⇒=×
××
=ν
α=
−
−
 
 
Exercício 7.25 
 
m8,1296,32,0H
m98,1
1,0
5001,0
g2
v
D
Lfh
m6,38,12
g2
vkh
energiadalinhadam2,0h
hhhH)b
s
L1,47
s
m0471,0
4
1,06
4
DvQ
s
m68,120vm8,1
g2
v)a
1,0
22
1
211,0
p
2
f
2
ss
s
fssp
322
2
=++=
=××==
=×==
→=
++=
==×π×=π=
=×=→=
 
 
kW5,1
000.1
19,06,30471,010QHN
m6,36,36,128,16,14hH
g2
vpH
hH
g2
v
H
p
)d
m6,148,128,1
p
x
H
g2
vp
)c
4
TTT
sp
2
0
T
sp
2
1
T
0
0
p
2
10
21,0
21,0
1,0
=××××=ηγ=
=+−−=+−−γ=
−+=−γ
=+=γ=
+=γ
 
 
Exercício 7.26 
 
Sentido de (5) para(0) 
 
m8,40
000.8
103244
20
4pH
g2
v
h
H
g2
v
h
p
HHH
m44
20
4
1,0
220025,0
g2
v
d
L
fH
025,0
4200
401,020f
g2
v
d
L
fh
s
m4
1,0
104,314
d
Q4v
m402,0200h
L
h
tg)a
32
5
3,5p
2
2
3,5p
2
25
3,5p35
22
tot
3,43,5p
23,4
2
tot
3,43,4f
2
3
2
3,4f
3,4
3,4f
=×−+=γ−+=
+=+γ⇒+=
=××==
=×
××=⇒=
=×π
××=π=
=×=⇒=β
−
 
b) A máquina é uma bomba, pois precisa elevar a pressão. 
( )
kW1010
7,0
28104,31000.8QHN
m28
20
48,820H
HzH
g2
v
HHHH
m8,88,08hhH
m8,0
20
116
g2
v
kh
m8
20
1
2,0
000.1032,0
g2
v
D
Lfh
032,0
000.2
64
Re
64f
arminla000.2
10
2,01DvRe
s
m1
20
104
D
dvv)c
3
3
B
B
B
2
B
0,2p0M
2
3
0,2p0M3
1,2f1,2f0,2p
22
1,2
1s1s
22
1,2
1,21,2f
1,2
4
1,2
1,2
22
1,2
=××××=η
γ=
=−+=
+=+⇒+=+
=+=+=
=×==
=××==
===
=×=ν=
=⎟⎠
⎞⎜⎝
⎛×=⎟⎠
⎞⎜⎝
⎛=
−−
−
 
 
 
Exercício 7.27 
 
 
m04,0004,010tgLh
zH
g2
vpH
g2
vzp
HHH
4,1f
14,1p
2
1
4,1p
2
4
1
1
4,1p41
=×=α=
−+=γ→+=+γ
+=
 
m75
004,0
1,02,0
tg
hh
LtgLhhh
m2000
004,0
8Lm8tgLh
m8
0157,010
8,01057,1H
s
m0157,0
4
1,02
4
DvQ
s
m22,020v2,0
g2
v
Q
N
H
QH
N
hHHHHHH
Pa1046,1pm46,1234,02,0
p
m34,01,02,004,0H
m1,02,05,0
g2
vkh
m2,02,01
g2
vkh
3s2s
eqeqeqf3s2s
6,5f
4
3
B
322
2
BB
B
B
B
B
6,5f6,5pB6,5p6B4
4
1
1
4,1p
2
3s3s
2
2s2s
=+=α
+=→α==+
==→=α=
=×
××=
=×π×=π=
=×=→=
γ
η=→η
γ=
==→+=+
×−=→−=−+=γ
=++=
=×==
=×==
 
 
Exercício 7.28 
 
( ) ( )
75,0k8,0
20
47,4k
20
47,4049,08,0
g2
v
k
g2
v
049,0
g2
v
k
g2
vpp
8,0
pp
g2
v
k
p
g2
vp
g2
v
s
m47,4120v18,02,0
g2
v
2,0
pp
:caPiezométriLinha
8,0
pp
g2
v
)1(na)2(
)2(8,0
pp
oup108,0p:Manômetro
p101028,0pp8,0pp8,08,0p
)1(
pp
g2
v
:Pitot
v222,0vv5,4
10
45v
A
A
vvAvAv
s
2
s
22
1
s
2
1
2
1
s
2
22112
2
1
s
2
2
21
2
1
1
2
112
12
2
1
20
2
4
0
2
44
02m02m0
01
2
1
1222
1
2
212211
=⇒=+×⇒=+
+=γ−γ++γ−γ⇒+γ+=γ+
=×=⇒=+=⇒=γ−γ
+γ−γ=
+γ=γ+×=
+−×=⇒+γ−γ=⇒=×γ−×γ+
γ=γ+
=⇒===⇒=
 
Capítulo 8 
NOÇÕES DE INSTRUMENTAÇÃO PARA A MEDIDA DAS 
PROPRIEDADES DOS FLUIDOS 
 
 
Neste capítulo estabelecem-se apenas princípios para a medida de propriedades dos fluidos e dos 
escoamentos, baseados em seus conceitos, não sendo abordados instrumentos sofisticados de 
última geração.O objetivo é melhorar a compreensão das definições e das equações apresentadas 
nos capítulos anteriores. 
 
Exercício 8.1 
 
823,0
10
8235
m
kg840
8,9
8235
g
m
N8235
10170
4,1
V
EVE
N4,16,46EGGE
GEG
4OH
fl
fl
3
fl
fl
36flfl
ap
ap
2
r
==γ
γ=γ
==γ=ρ
=
×
==γ→γ=
=−=→−=
=−
− 
 
Exercício 8.2 
 
( )
( )
mm13347360hmm347m347,0h10181,8h1096,1
10
15,0
h1096,1G
m10181,8
6
025,0
6
D
V
h1096,1h
4
105,0h
4
D
V
EG
emersub
6
sub
5
4
sub
5
36
33
e
esf
sub
5
sub
22
sub
2
c
subcil
=−=⇒==⇒×+×=
+×γ=
×=×π=π=
×=×××π=π=
=
−−
−
−
−−
 
Exercício 8.3 
 
22
2
2
2
m
s.N1,13
101,025,00476,0
51005,02
s
m0476,0101,0
60
9Dnvcm05,0
2
101,10
vLD
M2
2
vLD
2
DDLv
2
DAM
=
×××π
×××=μ
=××π=π==−=ε
π
ε=μ
ε
πμ=πεμ=τ=
−
 
 
Exercício 8.4 
 
( ) ( )
( ) ( )
2
522
oe
2
oe
2
m
s.N93,2
05,018
600.81014,1105,0
v18
D
L18
tD
=×
−×××=μ
γ−γ=γ−γ=μ
− 
 
Exercício 8.5 
 
)2(9kk2025
45
k
45.k20,0
)1(7,43kk9025
95
k
95.k46,0
t
k
tk
21
2
1
21
2
1
2
1
=−→−=
=−→−=
−=ν
 
Fazendo-se (1) – (2) obtém-se: 00496,0k7,34k7000 11 =→= 
Da (1): 064,1k7,43k00496,09025 22 =→=−× 
 
t
04,1t00496,0 −=ν 
 
 
Exercício 8.6 
 
s
L2,23
s
m0232,0105061,86,09,0AvCCQ
kPa9,121029,1pm29,15
20
61,8p
s
m61,8
9,0
75,7
C
v
v
s
m75,7320vp
g2
v
g2
v
z
p
3
4
otcv
4
1
2
1
v
r
t
r
2
r
2
t
1
1
==××××==
−=×−=⇒−=−=γ
===
=×=⇒γ=
=+γ
−
 
Exercício 8.7 
 
g2
v
zp
HH
:eriorsupservatórioRe
2
1t
0
0
10
=+γ
= 
semt
St
s
cmem
2
=ν 
81,0
1,042,13
0853,04C
s
m42,13920gz2v
Dv
Q4
C
4
D
vCQ
Q
s
m0853,01422,06,0QCQ
s
m1422,0
4
09,036,22
4
D
vQ
s
m36,2215
10
101,020z
p
g2v
22D
22t
2
2o2t
2r
2D
2
2o
2t2D2r
2r
3
1t1D1r
322
1o
1t1t
4
6
0
0
1t
=×π×
×=
=×==
π=→
π=
==×==
=×π=π=
=⎟⎟⎠
⎞
⎜⎜⎝
⎛ +×=⎟⎟⎠
⎞⎜⎜⎝
⎛ +γ=
 
 
Exercício 8.8 
 
( )
( )
s
L40
s
m104AvQ
s
m438,320
pp
g2v
Pa000.30101062,0000.20p
p2,02,0p
8,3
p
g2
vp
3
2
1
10
1
44
1
2m1
0
2
11
=×==
=−×=⎟⎟⎠
⎞
⎜⎜⎝
⎛
γ−γ=
=−×+=
=×γ−×γ+
=γ=+γ
−
 
 
Exercício 8.9 
 
97,0
6,0
582,0
C
C
C;582,0
111,0
64,0
vA
QC
s
m1105,620gh2v
vACQ
s
m64,0
20
8,12
t
VQ
m8,128,044V
m8,0
000.10
000.81hhhAhA
VV
GE
c
D
v
to
D
t
toD
3
3
O2H
mad
subbasemadsubbaseO2H
cubomadsubO2H
====×==
=×==
=
===
=××=
=×=γ
γ=→γ=γ
γ=γ
=
 
Exercício 8.10 
 
( )
( ) Pa638201042,497,0
9375,010510p
9375,0
15
5,71
D
D
1
m1042,4
4
075,0
4
D
A
g2AC
D
D
1Q
p
pp
g2
D
D
1
AC
Q
232
234
44
1
2
23
22
2
2
2
2
2
D
4
1
22
21
4
1
2
2D
=
×××
×××=Δ
=⎟⎠
⎞⎜⎝
⎛−=⎟⎟⎠
⎞
⎜⎜⎝
⎛−
×=×π=π=
×
⎥⎥⎦
⎤
⎢⎢⎣
⎡
⎟⎟⎠
⎞
⎜⎜⎝
⎛−γ
=Δ⇒⎟⎟⎠
⎞⎜⎜⎝
⎛
γ
−
⎟⎟⎠
⎞
⎜⎜⎝
⎛−
=
−
−
− 
 
 
Exercício 8.11 
 
66,0
96,0
634,0
C
C
C
634,0
0442,0
1028
Q
Q
C
s
m0442,0
4
075,010AvQ
96,0
10
6,9
v
v
C
s
m10520gh2v
s
m6,9
2,12
107,4
y2
gxv
v
D
c
3
t
r
D
32
ott
t
r
v
t
r
===
=×==
=×π×==
===
=×==
=××==
−
 
 
Exercício 8.12 
 
( )kconfirma106,5
10
15,074,3DvRe
s
m74,3
15,0
10664
D
Q4v
s
m106615,320
4
1,006,1Q
m15,31
10
106,1325,0
pp
p25,025,0p
06,1kseadota14.8figurada67,0
15
10
D
D
Com
pp
g2kAQ
5
6
11
1
2
3
2
1
1
3
3
2
4
4
21
2Hg1
1
2
21
2
×=×=ν=
=×π
××=π=
×=×××π×=
=⎟⎟⎠
⎞
⎜⎜⎝
⎛ −××=γ
−⇒=×γ−×γ+
=−==
⎟⎟⎠
⎞
⎜⎜⎝
⎛
γ
−=
−
−
−
 
 
 
Exercício 8.13 
 
s
m069,025,03084,1LH84,1Q
3
2
3
2
3 =××== 
 
Exercício 8.14 
 
467,0
06,0
028,0
Q
QC
s
m06,001,06AvQ
s
m68,120gh2v
s
m028,0
605
4,8
t
VQm4,81,222V
m1,2
210
1063
b
M3h
2
bhh
3
2hb
2
hh
3
2ApM
t
D
3
ottt
3
3
3
4
4
3
3
===
=×==⇒=×==
=×==⇒=××=
=×
××=γ=⇒
γ=×γ=×=
 
 
Exercício 8.15 
 
966,0
1210
10112
h
p
gh2
pg2
v
v
C
pg2v
g2
vp
gh2v
4
3
t
r
v
r
2
r
t
=
×
×=γ=
γ==
γ=→=γ
=
 
 
 
 
 
Exercício 8.16 
 
( )
2
2
8
v
v
d
d
4
d
v
4
d
v
s
m83202
gp2
vv
gp2
vv
g2
vp
g2
v
s
m232,320
pp
g2v
pp
g2
v
2
1
1
2
2
1
1
2
2
2
222
21
22
2
2
1
2
12
2
2
20
2
02
2
2
===⇒π=π
=×+=γ+=⇒γ+=⇒=γ+
=−×=⎟⎟⎠
⎞
⎜⎜⎝
⎛
γ
−=⇒γ=γ+
 
 
Exercício 8.17 
 
( )
s
m27,17,0
20
4
04,01
1058,120p
g2AC
Qg2v
g2
vp
g2ACQ
g2
vp
g2ACQ
2
42
2
23
2
o
2
D
2
1
2
112
o
2
D
2
2
1
oD
1
=
⎥⎥
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢⎢
⎢
⎣
⎡
−
××π×
π
×=⎟⎟⎠
⎞
⎜⎜⎝
⎛
γ−=
⎟⎟⎠
⎞
⎜⎜⎝
⎛
+γ=
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜
⎝
⎛
+γ=
−
 
 
Exercício 8.18 
 
( ) ( )
4,0
8,075,7
2
D
D
75,7
2
4
D
75,7
4
D2
Q
QC
4
D
75,7
4
D
320
4
Dphg2Q
4
D2
4
DvQ
s
m22,020v2,0
g2
v)c
m5,32,15,02,05HHHH)b
kPa100Pa101051025p
kPa24Pa104,22,11022,1p)a
2
2
0
2
0
2
0t
D
2
0
2
0
2
0
0t
22
2
0,sp0s0,sp
44
s
44
0
=×=⎟⎟⎠
⎞
⎜⎜⎝
⎛=π×
π×
==
π×=π××=π×⎟⎟⎠
⎞
⎜⎜⎝
⎛
γ+=
π×=π=
=×=⇒=
=+−+=⇒−=
=×=××=×γ=
=×=××=×γ=
 
Capítulo 9 
 
FLUIDODINÂMICA 
 
Neste capítulo são apresentados os conceitos que levam ao cálculo das forças de arrasto e 
sustentação, que agem num corpo em movimento relativo com um fluido. 
Essas forças, que dependem da distribuição das pressões e das tensões de cisalhamento, sobre a 
superfície do corpo, são de difícil determinação através de modelos matemáticos, salvo em 
alguns casos particulares. A sua obtenção depende, portanto, da determinação experimental dos 
coeficientes de arrasto e sustentação, que, por serem adimensionais, valem para qualquer 
protótipo de um dado modelo testado em laboratório. 
O leitor deve se familiarizar com os conceitos apresentados, para que possa raciocinar sobre 
fenômenos referentes a este assunto, mesmo que, para a obtenção de resultados mais confiáveis 
tenha que recorrer posteriormente a alguma análise experimental. 
 
Exercício 9.1 
 
( ) ( )
N88,0
42
061,0044,01290240
2
4
DvC
F
mm61m061,0
044,0
1,0107,2
v
ReD
s
cm4,4
s
m044,0
12902403
129020401,0107,2104
C3
Reg4v
vC3
v
Reg4
v
Reg4
v
ReDvDRe
240
1,0
24
Re
24C1Re
vC3gD4gD4
2
4
DvC
6
Dg
6
Dg
2
AvCVV
FEG
22
2
2
fa
a
2
3
2
3
fa
fe
2
fafe
a
2
fafe
2
2
fa3
f
3
e
frontal
2
fa
ffee
a
=×
×π×××=
πρ
=
==××=ν=
==××
−×××××=ρ
ρ−ρν=
ρ+νρ=νρ
ν=→ν=
===→<
ρ+ρ=ρ
πρ
+πρ=πρ
ρ+γ=γ
+=
−
−
 
 
Exercício 9.2 
( )
45,0C105,3Re10Para
.adotadoserprecisará,vfCComo
42
DvC
F
a
53
a
22
a
a
=→×<<
=→×
πρ=
 
.Cconfirmaqueo103,2
10
15,05,15vDRe
s
m5,15
15,02,145,0
14,18
DC
F8
v
a
5
5
22
a
a
×=×=ν=
=×π××
×=ρπ=
−
 
 
 
Exercício 9.3 
 
 
0120D2DD4240D2
8
D102,1266,0240
6
D102,1
4
D
2
vCG6
Dg
FGE
2323
223
22
ara
3
ar
a
=−−→+=
×π×××+π=×π××
πρ+=πρ
+=
 
D 
(m) 4,8 5,2 5,6 
6,0 
 
y -55,5 -33,5 -7,10 24,0 
 
m4,9
6,52,1266,0
240
6
6,5102,18
DC
G
6
Dg8
v
4
D
2
vCG
6
Dg:casoNeste
2
3
2
ara
3
ar
22
ara
3
ar
=×π××
⎟⎟⎠
⎞
⎜⎜⎝
⎛ π×−×π××
=πρ
⎟⎟⎠
⎞
⎜⎜⎝
⎛ −πρ
=
πρ+=πρ
 
 
 
 
 
 α=⇒α= cos
FTcosTF aa 
αα=−⇒α=− sencos
FGEsenTGE a 
o
22
3
22
ara
3
ar
a
6,41
889,0
8
6,5102,1266,0
240
6
6,5102,1
8
DvC
G
6
Dg
F
GEtg
=α
=×π×××
π−×π××
=πρ
−πρ
=−=α
 
 
Exercício 9.4 
3
3
fr
3
a
a 102
52,2
6,3
v2,195,0
2
AvCN −×
×⎟⎠
⎞⎜⎝
⎛××
=ρ= 
E 
Fa G 
O valor mais próximo é D = 5,6 m 
T G 
Fa 
E v = 10m/s 
α 
( ) .desejadográficooobtersepodevfNdetabelaaoConstruind
kWemN
h
kmemv
v10079,3N
a
a
35
a
−=
×= −
 
 
Exercício 9.5 
 
 
 
 
Pelo gráfico da Figura 9.17, observa-se que o escoamento é lento, logo: 
Stou
s
cm43,2
s
m1043,2
0822,0
10102,0
Re
vDvDRe
0822,0
292
24
C
24Re
Re
24C
22
4
3
a
a
=×=××==ν⇒ν=
===⇒=
−−
 
 
Exercício 9.6 
 
44,0
28,28,272,1
109,122C
m28,22,015,025,1172,0A
s
m8,27
6,3
1
h
km100vkW9,12736,0CV5,17N:exemploPor
.gráficodoqualquerpontoumadotarsepode,tetanconséCComo
Av
N2C
2
AvCN
3
3
a
2
fr
a
fr
2
ar
a
fr
2
ara
=××
××=
=××+×+=
=×=→=×=
−
ρ=⇒
ρ=
 
 
 
Exercício 9.7 
 
 
 
 
 
 
( ) ( ) 292
02,08003
8007800101104
v3
gD4C
vC3gD4gD4
4
D
2
vC
6
Dg
6
Dg
FEG
2
3
2
f
fe
a
2
fafe
22
fa
3
f
3
e
a
=××
−××××=ρ
ρ−ρ=
ρ+ρ=ρ
πρ+πρ=πρ
+=
−
G 
Fs 
Fa 
Desprezam-se a parte do contato que 
não seja da asa e a reação no apoio, 
no ponto de contato da embarcação 
kW17110
2
714,020000.106,0
2
AvCvFN
m714,0
20000.17,0
102
vC
G2A
s
m20
6,3
1
h
km72vG
2
AvC
GF)a
3
33
a
a
2
2
5
2
s
2
s
s
=××××=ρ==
=××
×=ρ=
===ρ
=
−
 
 
Exercício 9.8 
 
.Cconfirmaqueo1009,1
108,1
0025,09,7vDRe
s
m9,7
2,145,03
0025,010000.14v
105,3Re000.1para45,0CseAdota
C3
gD4
vgD4vC3
6
Dg
8
DvC
GF)pequeno(empuxoooDesprezand
a
5
6
5
a
ara
O2H
O2H
2
ara
3
O2H
22
ara
aar
×=×
×=ν=
=××
×××=
×<<=−
ρ
ρ=⇒ρ=ρ⇒πρ=πρ
=⇒ρ
−
 
 
Exercício 9.9 
 
 
 
 
 
 
 
 
 
 
 
 
m5
1,0
10105
v
105x
105xv105ReAdmitindo
65
0
5
cr
5cr05
cr
=××=ν××=
×=ν→×=
− 
 Conclui-se que a camada limite é totalmente laminar, logo: 
 
 
dina133N1033,1
2
1,02,01,0000.110328,1F
10328,1
10
328,1
Re
328,1C
3
22
a
2
4L
a
=×=×××××=
×===
−−
−
 
 
 
s
m1,0v0 =
L=10cm 
b=20cm 
4
6L
2
a
a
10
10
1,01,0vLRe
2
AvCF
=×=ν=
ρ=
−
 
Exercício 9.10 
 
( )
kW55,6W550.61550.6vFN
N550.6250300.6FFF
N250
2
2075,15,11000.1105,2F
105,2
102
072,0C102
10
201vLRe
Re
072,0CReReSupondo
2
AvC
F
N300.6
2
5,171000.12,1
2
AvC
F
a
sapaa
23
sa
3
5 7a
7
6L
5
L
sacrL
2
sa
sa
22
pa
pa
==×==
=+=+=
=×++××××=
×=
×
=⇒×=×=ν=
=⇒>>
ρ=
=××××=ρ=
−
−
− 
 
Exercício 9.11 
 
 
 
cevC
2
A2vCF 2a
2
a
a ρ=×ρ= 
 Admitindo turbulento desde o bordo de ataque: 
ν=→=
cvRe
Re
074,0C 0L5 L
a 
s
m100
6,3
1
h
km360v0 == 
7
5L 101,210
1,2100Re ×=×= − 
( ) %6,88100
40
4056,4100
N
NN%N
kW56,4101006,45vFN
kW4010100400vFN
N6,455,71,21001109,2F
109,2
101,2
328,1
Re
328,1C:arminlaSomente
N4005,71,210011054,2F
1054,2
101,2
074,0C
3
a
3
a
24
a
4
7L
a
23
a
3
5 7a
=×−=×−′=Δ
=××=′=′
=××==
=×××××=′
×=
×
==′
=×××××=
×=
×
=
−
−
−
−
−
−
 
 
 
 
e = 7,5m 
c = 2,1m 
Exercício 9.12 
 
6,31
1
000.1
v
v
v
v
1:Dividindo
8
DvC
6
Dg
8
DvC
6
Dg
pesooseDesprezaFE:ardeBolha
empuxooseDesprezaFG:águadeGota
ar
O2H
ar
O2H
2
arO2H
2
O2Har
22
arO2HO2H
a3
O2H
22
O2Harara
3
O2H
O2Ha
araO2H
==ρ
ρ
=⇒ρ
ρ=
πρ
=πρ
πρ=πρ
−→=
−→=
 
 
 
 
Exercício 9.13 
 
 
 
 
 
 
 
 
 
kW25,0102,132,19vFN)c
N9,112cos2,1978cos3,8112cosF78cosFF)b
3
0a
ooo
a
o
s
=××==
=+−=+=
−
τ 
 
Exercício 9.14 
 ( )
( ) m.N097,025,0
8
1,010134,033,1M
8
DvCC
42
DvC
42
DvC
M
22
22
2a1a
22
2a
22
1a
=××π×××−=
×πρ−=××
πρ−××
πρ= lll
 
 
 
Exercício 9.15 
 
o
2
3
2
0
a
2
0a
s
5,2:doInterpolan
56,0
274,442,1
10182
Av
G2C
2
AvCG
s
m4,44
6,3
1
h
km160vFG
=α
=××
××=ρ=⇒
ρ=
=×==
 
 
 
Fa 
Fs 
F α 
N4,833,812,19FFF
N3,81
2
2,12,132,172,0
2
AvCF
N2,19
2
2,12,132,117,0
2
AvCF)a
222
s
2
a
22
0s
s
22
0a
a
=+=+=
=×××=ρ=
=×××=ρ=
Exercício 9.16 
 
 
 
 
 
 
 
 
 
( ) ( ) 1
60cos104,74102,1
145cos302
60cosAv
G45cosT2C
G45cosT
2
60cosAvCG45cosTF
95,0
60cos104,74102,1
45cos302
60cosAv
45cosT2C
45cosT
2
60cosAvC45cosTF
o22
o
o2
o
s
o
o2
s
o
s
o22
o
o2
o
a
o
o2
a
o
a
=×××
+=ρ
+=
+=ρ⇒+=
=×××
×=ρ=
=ρ⇒=
−
−
 
Fa 
Fs 
45o
T=30N G=1N 
30o
CAPÍTULO 10 
GENERALIZAÇÃO DAS EQUAÇÕES INTEGRAIS PARA REGIME 
VARIADO 
 
Nos capítulos 3, 4 e 5 foram estudados problemas nos quais o regime foi admitido permanente. 
Isso eliminou a variável tempo, facilitando a compreensão dos fenômenos e das soluções. Apesar 
de essa hipótese ser restritiva em termos gerais, é importante ressaltar que na prática muitos 
problemas podem ser abordados dessa forma, com grande aproximação, chegando a resultados 
satisfatórios para as aplicações. 
Quando as variáveis são função do tempo e das coordenadas, os problemas tornam-se, 
normalmente, muito complexos e às vezes permitem somente soluções aproximadas. 
Neste capítulo são desenvolvidas as equações gerais para volume de controle, para as quais não 
se faz nenhuma hipótese simplificadora quanto a possíveis variações das grandezas no espaço e 
no tempo; entretanto, devido à finalidade puramente didática do livro, o leitor observará que as 
aplicações restringem-se a casos de solução relativamente simples. 
Observe-se que todos os exercícios dos capítulos citados anteriormente podem ser resolvidos 
com as equações deste capítulo, adotando-se as hipóteses simplificadoras adequadas. Aliás, este 
é modo mais apropriado para adquirir uma grande intimidade com a matéria 
 
Exercício 10.1 
 
 0dAnvdV
t
)a
SCVC
=×ρ+ρ∂
∂ ∫∫ rr 
 Adotando um VC que envolva todo o fluido, tem-se fluxo apenas na seção de saída, onde 
nv rr × é positivo. Além disso, nota-se que o volume do VC é constante, ao passo que, com o 
passar do tempo tem-se a variação da massa específica do gás dentro do VC. Dessa forma: ( ) 0vA
t
V =ρ+∂
ρ∂ 
Como ρ varia somente com o tempo, supondo que se mantenha homogêneo dentro do 
tanque, a derivada parcial pode ser substituída pela total. 
( )
s
kg510005,01052tV2Q
t2
dt
d
t1
p
ppp
Q
dt
dV
0m
0
2
000
0
m
=××××=αρ=
αρ−=ρ
α−==ρ
ρ→ρ=ρ
−=ρ
 
( )
s
m2
5,2
5Q
m
kg5,210005,015s10ttetaninsNo
QQ)b
3
3
2
m
==
=×−×=ρ→=
ρ=
 
 
 
kg25105,2Vm)d
s
m4
5,02
A
Qv)c
=×=ρ=
===
 
Obviamente, a vazão na saída será interrompida quando a pressão interna se igualar com a 
externa. Supondo que a pressão externa é igual à pressão atmosférica de 2cm
kgf1 
( )
( ) ( )
kg1,51051,0Vm
m
kg51,04,13005,015t1)f
s4,13
10
11
005,0
1
p
p11t
t1pp
finalfinal
3
22
0final
0
final
2
0final
=×=ρ=
=×−×=α−ρ=ρ
=⎟⎠
⎞⎜⎝
⎛ −×=⎟⎟⎠
⎞
⎜⎜⎝
⎛ −α=
α−=
 
 
Exercício 10.3 
( )
( ) ( )
%2,3ou032,0
62,0
061,0
25,0
251
D
D
v
v1
L
4
D
v
L
4
Dv
1
V
V
L
4
DV;
v
Lt;
4
DvQ
V
tQ1
V
V
tQVVtQVtQ
tQQVdtQQdV
dtQQdV:tempodofunçãoésóVComo
0QQ
t
V
0dAnvdV
t
2
2
c
2
a
e
a
2
c
e
2
a
a
i
.perd
2
c
i
e
2
a
aa
i
a
i
.perd
ai.perdaialgfo
aalgfoi
t
0aalgfo
0
v
aalgfo
aalgfo
VC SC
i
=⎟⎠
⎞⎜⎝
⎛−=−=π
×π
−=
π==π=
−=→−=→−=
+=→+−=
+−=
=++∂
∂
=×ρ+ρ∂
∂
∫∫
∫ ∫ rr
 
 
Exercício 10.5 
 
0dAnvdV
t SCVC
=×ρ+ρ∂
∂ ∫∫ rr 
Sendo o regime permanente: 0dAnv0dV
t SCVC
=×ρ⇒=ρ∂
∂ ∫∫ rr 
Sendo o fluido incompressível: 0dAnv
SC
=×∫ rr 
 
 
3214
4321
QQQQ
0QQQQ
−+=
=++−−
 
Representando por q a vazão por unidade de largura: dxbqQ
L
0 222 ∫= 
( )
s
L8,29225,114300Q
s
m01125,05,015,0
2
5,03,03,0Q
x15,0
2
x3,03,0dx3,015,0x3,0Q
3,0a15,0a5,000qm5,0LxPara
15,0b15,0q0xPara
bxaq
dxbqQ
s
m004,0
3
5,0096,0
3
x096,0dx3,0x32,0Q:totanPor
x32,0q32,0a:Logo
0bbax2
dx
dq0
dx
dq0xPara
b5,0a25,008,0
m.s
m08,0qm5,0LxPara
0c0q0xPara
cbxaxq
4
32
3
5,0
0
5,0
0
25,0
03
3
3
3
3
L
0 33
33
5,0
0
35,0
0
2
2
2
2
22
3
2
2
2
2
=−+=
=⎟⎟⎠
⎞
⎜⎜⎝
⎛ ×+×−×=
⎟⎟⎠
⎞
⎜⎜⎝
⎛ +−×=+−=
−=′⇒+′=⇒=→==
=′⇒=→=
′+′=
=
===××=
=⇒=
=⇒+=⇒=→=
+=⇒=→==
=⇒=→=
++=
∫
∫
∫
 
 
Exercício 10.7 
 
dAnvgzp
2
vdVgz
2
v
t
NN:18.10equaçãoPela
SC
2
VC
2
diss
rr ×⎟⎟⎠
⎞
⎜⎜⎝
⎛ +ρ+ρ+⎟
⎟
⎠
⎞
⎜⎜⎝
⎛ +ρ∂
∂=− ∫∫ 
Sendo o fluido ideal: .1e0Ndiss =α= 
Não havendo máquina: 0N = 
Sendo um líquido, o fluido é incompressível. 
⎥⎥⎦
⎤
⎢⎢⎣
⎡
⎟⎟⎠
⎞
⎜⎜⎝
⎛ +γ+−⎟
⎟
⎠
⎞
⎜⎜⎝
⎛ +γ+ρ+⎟
⎟
⎠
⎞
⎜⎜⎝
⎛ +ρ∂
∂ ∫ 11212222
VC
2
zp
g2
vzp
g2
vQgdVgz
2
v
t
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
2
2
2
1
VC
2
atm21
zz
g2
vvdVgz
2
v
tQ
1
efetivaescalanappp
−+−=⎟⎟⎠
⎞
⎜⎜⎝
⎛ +ρ∂
∂
γ
==
∫ 
Sendo o fluido incompressível, 21 vv = e zzz 12 =−= 
z2dVgz
2
v
tQ
1
VC
2
−=⎟⎟⎠
⎞
⎜⎜⎝
⎛ +ρ∂
∂
γ ∫ 
A variação da energia potencial com o tempo é nula, pois, a toda subida de um lado, corresponde 
uma mesma descida do outro. 
z2
t
v
gQ2
V
z2dV
t
v
2Q
1
2
VC
2
−=∂
∂
−=∂
∂ρ
γ ∫
 
A velocidade é função somente do tempo e V = LA 
z2
dt
dv
g
Lz2
dt
dvv2
gv2
Lz2
dt
dv
gvA2
LA 2 −=→−=⇒−= 
Mas, 
dt
dz
dz
dv
dt
dv = 
( )22máx2máx22
2
máx
máx
2222
zz
L
g2v
L
gz
L
gz
2
v
L
gzC0vzzPara
C
L
gz
2
vC
2
z
L
g2
2
vIntegrando]
zdz
L
g2vdvouz2
dt
dz
dz
dv
g
L
−=⇒+−=
=⇒=→=
+−=→+−=
−=−=
 
dt
L
g2
zz
dz
dt
dzv
2
máx
=
−
→= 
 
z 
PHR Posição 
inicial de 
equilíbrio Configuração num 
instante t qualquer 
-z 
+z 
(1) 
(2) 
g2
L2T
4
T
L
g2
2
4
T
L
g21senarczzperíodooéTonde
4
TtPara
0C0z0tPara
Ct
L
g2
z
zsenarc
máx
máx
π=⇒=π
=⇒=→=
=′⇒=→=
′+=⎟⎟⎠
⎞
⎜⎜⎝
⎛
 
Exercício 10.9 
( )
( ) ( ) m.N250.15,05,125
2
10100000.1rrv
2
QM
s
m25
1022
10100
A2
Qvve
2
QQQ
QvrQvrM
0dVvr
t
:permanenteregimeoSendo
dAnvvrdVvr
t
M:28.10equaçãoPela
3
232
1
z
3
3
2
1
32
1
32
333222z
VC
o
SC
o
VC
oz
=−××××=−ρ=
=××
×=====
ρ+ρ−=
=ρ∂
∂
×ρ+ρ∂
∂=
−
−
−
θ
θθ
∫
∫∫ rr
 
 
Exercício 10.11 
 
a) Sendo: vabs = v; vrel = w; varr = u 
 
Na entrada 
 
 
 
 
 
Na saída 
 
 
 
 
 
 
 
 
 
 
 
b) 
v1 = vr1 
w1 
u1 
α1 
s
m32,9
15cos
9
cos
uw
s
m41,215tg9tguv
s
m91,0
60
1720ndu
o1
1
1
o
11r
11
1
==α=
=×=α=
=××π=π=
 
v2 w2 
vu2 
vr2 
u2 
α2 
s
m51,1741,234,17vvv
s
m70,5
25sen
41,2
sen
v
w
s
m34,17
25tg
41,251,22
tg
v
uvvv
s
m51,2225,0
60
1720ndu
22
ru2
o2
r
2
o2
r
2urr
22
22
2
2
212
=+=+=
==α=
=−=α−=→=
=××π=π=
 
m8,39
8,9
51,2234,17
g
uv
H 2ut 2 =×==∞ 
CAPÍTULO 11 
ANÁLISE DIFERENCIAL 
 
Neste capítulo estuda-se o comportamento individual de uma partícula de fluido. Para isso, 
estabelecem-se equações que permitam acompanhar o seu movimento e a variação de suas 
propriedades, de acordo com a posição e do tempo. 
 
Exercício 11.1 
 
Trajetórias 
t
0
0
200
t
0
0
100
0z
2y
1x
eyyt
y
ylnCylnyy
exxt
x
xlnCxlnxx0tPara
zz0dtvdz
Ctylndt
y
dydtytdvdy
Ctxlndt
x
dxdtxdtvdx
β
α
=→β=→=→=
=→α=→=→=→=
=→==
+β=→β=→β=→=
+α=→α=→α==
 
Linhas de corrente 
2
zx
11
yx
Cz0dz
v
dz
v
dx
yCxClnylnxln
y
dy
x
dx
y
dy
x
dx
v
dy
v
dx
=→=→=
=→+β
α=→β
α=→β=α→=
βα
 
 
Exercício 11.3 
 
2z2C2zPara
Cz0dz
v
dz
v
dx
y2x2C1ye2xPara
yCxClnylnxln
t
y
dy
t
x
dx
v
dy
v
dx)a
2
2
zx
1
11
yx
=⇒=→=
=→=→=
=⇒=→==
=→+=→=→=
 
2zCz
y2x:Logo
ty1C1ye1tPara
tCyClntlnyln
t
dt
y
dydt
t
ydydtvdy
t2x2C2xe1tPara
tCxClntlnxln
t
dt
x
dxdt
t
xdxdtvdx)b
3
2
22y
1
11x
=⇒=
=
=⇒=→==
=⇒+=→=→=→=
=⇒=→==
=⇒+=→=→=→=
 
( )yx2
2
y
yy
2
x
xx
ee2
t
1a
t
1
t
v
a
t
1
t
yv
t
2
t
v
a
t
2
t
xv)c
vrr +−=
−=∂
∂=→==
−=∂
∂=→==
 
 
Exercício 11.5 
0
y
v
x
v
0vdiv:ívelIncompress yx =∂
∂+∂
∂⇒=r 
( ) ( ) ( )
( ) ( ) ( ) possível0xy6xy6
y
xxy3
x
yx3yB
possível0x2x2
y
xy2x
x
yxA)a
3223
32
=+−=∂
−∂+∂
−∂
=−=∂
−∂+∂
−∂
 
z
xy
y
zx
x
yz e
y
v
x
v
e
x
v
z
v
e
z
v
y
v
vrot)b rrrr ⎟⎟⎠
⎞
⎜⎜⎝
⎛
∂
∂−∂
∂+⎟⎠
⎞⎜⎝
⎛
∂
∂−∂
∂+⎟⎟⎠
⎞
⎜⎜⎝
⎛
∂
∂−∂
∂= 
Para ser irrotacional: 0vrot =r 
Sendo o campo de velocidades no plano xy: 
y
v
x
v
0
y
v
x
v xyxy
∂
∂=∂
∂→=⎟⎟⎠
⎞
⎜⎜⎝
⎛
∂
∂−∂
∂
 
( ) ( )
( ) 1
y
yx
y
v
y2x3
x
xy2x
x
v
A
2
x
2
3y
−=∂
−∂=∂
∂
−=∂
−∂=∂
∂
 
( ) ( )
( ) 2223x
22
32y
x3y3
y
yx3y
y
v
x3y3
x
xxy3
x
v
B
−=∂
−∂=∂
∂
−=∂
−∂=∂
∂
 
0y2x311y2x3:Logo
e
2
1e
y
v
x
v
2
1vrot
2
1)c
22
zz
xy
=−⇒=+−
=⎟⎟⎠
⎞
⎜⎜⎝
⎛
∂
∂−∂
∂==Ω rrrr
 
 
Exercício 11.7 
 
120
1a0Qs120tPara
1b
s
m1Q0tPara
batQ)a
3
−=⇒=→=
=⇒=→=
+=
 
 
rotacional 
irrotacional 
( )
⎥⎥⎦
⎤
⎢⎢⎣
⎡
⎟⎠
⎞⎜⎝
⎛ −
π
−π−=⎟⎠
⎞⎜⎝
⎛ −
π
−π−=
⎟⎠
⎞⎜⎝
⎛ −
π
−=⎥⎦
⎤⎢⎣
⎡ ⎟⎠
⎞⎜⎝
⎛ −
π
−×⎟⎠
⎞⎜⎝
⎛ −π=∂
∂
π−=∂
∂
∂
∂+∂
∂=∂
∂+θ∂
∂+∂
∂+∂
∂=
∇×+∂
∂==
==θ⇒==
+⎟⎟⎠
⎞
⎜⎜⎝
⎛ −π=⇒=→=→=
+⎟⎟⎠
⎞
⎜⎜⎝
⎛ −π=⇒+
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
−π=
⎟⎠
⎞⎜⎝
⎛ −π=→⎟⎠
⎞⎜⎝
⎛ −π=→=⎟⎠
⎞⎜⎝
⎛ −π→=
⎟⎠
⎞⎜⎝
⎛ −π=
π
−=⇒π=θ=⇒θ==
=×=
−=
θ
θ
∫ ∫
∫
∫∫
π
2322
2
322r
2
3222
r
r
r
r
r
rr
z
rr
r
r
r
r
rr
r
32z
2
0
2
2
010
1
2
1
2
2
r
r
rr0 rrn
A
n
A
1
120
t
rL
9
Lr40
1
120
t1
rL
9
Lr40
1a
120
t1
rL
9
120
t1
Lr
3
120
t1
Lr
3
r
v
v;
Lr40
1
t
v
r
v
v
t
v
z
v
v
v
r
v
r
v
v
t
v
a
vv
t
v
dt
dv
a4.11equaçãoPela)c
CzeC0ve0vComo
r
240
tt
L
6rrCrr0tPara
C
240
tt
L
6rCdt
120
2
t
t
L
3
2
r
dt
120
t1
L
3rdrdt
120
t1
L
3rdr
dt
dr
120
t1
Lr
3
dt
drv
Trajetória)b
e
120
t1
Lr
3v
Lr40
t120v
3
LrvdLrvQdLrdAvv
dAvdAnvQ:decontinuidadaequaçãoPela
120
t1Q:Logo
3
r
rr
rr
 
 
Exercício 11.9 
 
( ) ( ) ( )[ ]
( )
.ívelincompresséNão0
z
v
y
v
x
v
vdiv)b
e
2
1e2e
2
1e
2
22;3;6:Ponto
e
2
1e
2
ze10e00e0z
2
1
e
y
v
x
v
e
x
v
z
v
e
z
v
y
v
2
1vrot
2
1)a
zyx
zxzx
2
zx
2
zyx
2
xy
y
zx
x
yz
z
≠∂
∂+∂
∂+∂
∂=
−=−=Ω→
−=−+−+−=Ω
⎥⎥⎦
⎤
⎢⎢⎣
⎡
⎟⎟⎠
⎞
⎜⎜⎝
⎛
∂
∂−∂
∂+⎟⎠
⎞⎜⎝
⎛
∂
∂−∂
∂+⎟⎟⎠
⎞
⎜⎜⎝
⎛
∂
∂−∂
∂==Ω
r
rrrrr
rrrrrr
rrrrr
 
 
Exercício 11.11 
 
2
2
2222222
yx
1
yx
a4
vyxya4xa4v
eay2eax2v)b
CxyCylnxln
ay2
dy
ax2
dx
v
dy
v
dx)a
=+⇒+=
−=
=→=→−=→=
−
rrr 
c) Fluido ideal, incompressível, movimento no plano horizontal: 
( )
( ) ( ) ( )
( )
22
0
22
0
222
0
22
2
00
10
22
22
11
2
xa4ppyxbissetrizNa)d
xa2pp0yOxeixoNo
yxa2pp
yx
g2
a4pppCpp0,0y,xPara
yx
g2
a4
g2
vCpCp
g2
v
ρ−=⇒=
ρ−=⇒=→
+ρ−=
+−γ=γ⇒γ=→=→≡
+=−=γ→=γ+
 
 
Exercício 1.13 
 
 Aplicando Bernoulli entre (1) e (2) obtém-se: 
 ( )
g2
RhRvComo
hzz
g2
v
z
p
g2
v
z
p
g2
v
2
1
12
2
1
2
1
2
2
1
1
2
1
ω−=⇒ω=
−=−=→+γ+=+γ+ 
A equação de Bernoulli não é aplicável, pois, o movimento não é irrotacional. 
Aplicando a equação de Euler: 
( )
( )
g2
Rhz:Logo
0C0p0z0rPara
)r(C
2
rgzp
gzp
r
r:ededireçãonaSomente
centrípetaaceleraçãoera
gzpgrada0pgrad1ag
2
1
22
22
2
r
r
2
ω==
=⇒=→=→=
+ω=+ρ
⎟⎟⎠
⎞⎜⎜⎝
⎛ −ρ−∂
∂=ω−
ω−=
⎟⎟⎠
⎞⎜⎜⎝
⎛ −ρ−=→=ρ−−
r
rr
rrr
 
 
 
 
 
 
Exercício 1.15 
( )
m.s
m000.22000.1q01000.1
12
qv
m1r:ApontoNo)c
senvcosrvrln
2
q
r
1
r
1v
cosv
r2
qcosrvrln
2
q
rr
v)b
cosrvrln
2
q
senrv
2
q
senrvyv
cosrvxv:polaresscoordenadaemuniformeEscoamento
2
q
rln
2
qFonte)a
3
r
AA
00
00r
021
021
002
002
1
1
A
π=π×=→=−×+×π=
π=θ=
θ−=⎟⎠
⎞⎜⎝
⎛ θ+πθ∂
∂=θ∂
φ∂=
θ+π=⎟⎠
⎞⎜⎝
⎛ θ+π∂
∂=∂
φ∂=
θ+π=φ+φ=φ
θ+θπ=Ψ+Ψ=Ψ
θ==Ψ
θ==φ
θπ=Ψ
π=φ→
θ
 
 
Exercício 11.17 
 
( )
( )
( )
( ) ( ) ( ) ( ) ( ) ( )
L
2
2yLy2yLy
2
y
2
ydyyb
L
v
dyby
L
v
dAvdAv
vL
L
v
v;y
L
v
v;00
L
v
v
QQ)e
rotacionale
L
v
e
y
y
L
v
0e
y
v
x
v
vrot)d
Permanente)c
possível0
y
v
x
v
vdiv)b
0
x
v
lineardiagramay
L
v
y
L2
v
yy
v)a
22222
L
y
2y
0
2L
y
0y
0
0A
C
C
B
0
0
x
0
x
0
x
B,AC,A
z
0
z
0
z
xy
yx
y
020
x
ACB
=⇒=→−=
=→=→=
=====
=
−=
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
∂
⎟⎠
⎞⎜⎝
⎛∂
−=⎟⎟⎠
⎞
⎜⎜⎝
⎛
∂
∂−∂
∂=
=∂
∂+∂
∂=
=∂
Ψ∂−=
=⎟⎠
⎞⎜⎝
⎛
∂
∂=∂
Ψ∂=
∫∫∫∫
rrrr
r
 
Exercício 11.19 
 
r2r
v
r2
q
r
v
rln
22
q
2
q
r2
q
rrr
)a
r
21
1
111
π
Γ=∂
Ψ∂−=
π−=θ∂
Ψ∂=
π
Γ−θπ−=Ψ+Ψ=Ψ
θπ−=Ψ⇒π−=θ∂
Ψ∂⇒θ∂
Ψ∂=∂
φ∂
θ
 
m500400300yxrPPonto 2222 =+=+=→ 
s
m50
5002
105v
s
m20
5002
102v
4
4
r
π=×π
×=
π−=×π
×−=
θ
 
θπ+π−= e
50e20v r
rrr 
( ) 2222
22
2
22
2
22
2
22
r
2
1
2
0
2
0
2
q
v2
1rq
v4
1r
r4r4
qvvv
C
g2
vtetanconspdePontos
C
p
g2
vp
g2
v)b
Γ+π=→Γ+π
=
π
Γ+
π
=+=
=→=
=γ+=γ+
θ
 
 
Exercício 11.21 
 
( ) ( )
( )
( )
m.s
m9
2
x2Q0ydyyx2dxbvQ
m.s
m6,9y16Q0xdy16x2dybvQ
yx2y2x2
x
v
16x2
y
v
y16xy2xs2tPara
yt4xy2x
33
0
2
C,A
3
0
3
0 yC,A
36,0
0B,A
6,0
0
6,0
0 xB,A
y
x
2
22
−=−=⇒=→+−==
==⇒=→+==
+−=+−=∂
Ψ∂−=
+=∂
Ψ∂=
++=Ψ→=
++=Ψ
∫∫
∫∫
 
 
 
Exercício 11.23 
 
( )
6
Chh1
6
ChbhvQ
3
2
4
Ch
6
Ch
v
v
6
Ch
3
h
2
h
h
C
3
Cy
2
hCy
h
1dyCyCyh
h
1dybv
bh
1v
4
Ch
2
hh
2
hCv
2
hy0Cy2Ch
dy
dv
:máximoévondePonto
32
m
2
2
máx
m
233h
0
32h
0
2h
0 xm
2
máx
x
x
=××==
==
=⎟⎟⎠
⎞
⎜⎜⎝
⎛ −=⎟⎟⎠
⎞
⎜⎜⎝
⎛ −=−==
=⎟⎠
⎞⎜⎝
⎛ −=
=→=−=→
∫∫ 
 
 
Exercício 11.25 
 
a) Supondo que o eixo dos tubos seja horizontal a velocidade terá componente somente na 
direção de x e variará somente na direção radial. Logo: ( )rfve0v;0v xr ===θ 
Sendo o regime permanente: 0
t
vx =∂
∂
 e as equações 11.41 reduzem-se a: 
⎟⎟⎠
⎞
⎜⎜⎝
⎛
∂
∂+
∂
∂μ=∂
∂
r
v
r
1
r
v
x
p x
2
x
2*
 como no Exemplo 4 da página 317. 
De forma semelhante, como p* é função apenas de x e vx é função apenas de r conclui-se que: 
r
C
2
r
dr
dv
C
2
r
dr
dv
r
r
dr
dv
r
dr
d
dr
dv
r
dr
d
r
1
dr
dv
r
1
dr
vd
1x
1
2
x
xxx
2
x
2
+β=→+β=
β=⎟⎠
⎞⎜⎝
⎛→β=⎟⎠
⎞⎜⎝
⎛→β=+
 
Chamando de rmáx o raio para o qual acontece a velocidade máxima, tem-se: 
Para 
2
r
C
r
C
2
r
00
dr
dv
rr
2
máx
1
máx
1máxx
máx
β−=⇒+β=⇒=→= 
 
2
2
máx
2
x
2
máxx Crln
2
rrv
r2
r
2
r
dr
dv:Logo +β−β=→β−β=
 
( )
( )
( ) ( )
( )[ ]
( )
( )[ ]2máx2122
22
máx
22
2
m
x
2
máx
2
1
2
2m
R
R
22
máx
22
22
1
2
2A
xm
1
2
2
1
2
2
máx
1
22
máx
2
1
2
2x1
22
máx
22
2
2
2
2
2
máx
2
máx
2
x
2
2
2
2
máx
222
2
máx
2
2
x2
r2RR
r
R
lnr2rR
2
v
v
r2RR
8
v
rdr2
r
R
lnr2rR
4RR
1dAv
A
1v
R
R
ln2
RR
r
R
R
lnr2RR
4
00vRrPara
r
R
lnr2rR
44
R
Rln
2
r
rln
2
r
4
rv
4
R
Rln
2
r
CCRln
2
r
4
R
00vRrPara
2
1
−+
⎥⎦
⎤⎢⎣
⎡ −−
=
−+β−=
π⎥⎦
⎤⎢⎣
⎡ −−β−
−π
==
−=
⎥⎦
⎤⎢⎣
⎡ −−β−=⇒=→=
⎥⎦
⎤⎢⎣
⎡ −−β−=β−β+β−β=
β−β=→+β−β=⇒=→=
∫∫
 
 
( ) ( )
s
m156,0
101,021,0102,0
101,0
102,0ln101,02101,0102,0
2079,0v
r2RR
r
R
lnr2rR
2vv
cm1,10
10
2,10ln2
1,02,10
R
R
ln2
RR
r
s
m079,0
1,0102,0
101,0
RR
Qv)b
222
222
máx
2
máx
2
1
2
2
máx
22
máx
2
máx
2
2
mmáx
22
1
2
2
1
2
2
máx
22
3
2
1
2
2
m
=
×−+
××−−
××=
−+
−−
×=
=
×
−=−=
=
−π
×=
−π
=
−
 
 
 
Exercício 11.27 
 
Pelas equações 11.40, com: vx = 0; vy = 0, numa seção da película ascendente, tem-se vz = f (x). 
Sendo o regime permanente: .0
t
vz =∂
∂
 
z
v
(x) f v:Como
x
v
z
p1g
z
v
v:Logo
z
z
2
z
2
z
z
∂
∂⇒=
∂
∂ν+∂
∂
ρ−−=∂
∂
 
Como a espessura é constante e na superfície da película p = patm, para qualquer z 0
z
p =∂
∂⇒ 
0v
2
gh
6
gh0xv
2
ghx
6
gx
0dxbvxgh
2
gxdAvQ
v1h2
xxghvouvxgh
2
gxv:Logo
ghC0
dx
dv
0
dx
dv
hxPara
vC)chapadavelocidade(vv)chapadaerfíciesupna(0xPara
CxC
2
gxvCxg
dx
dv
g
dx
vd
oug
x
v
:Logo
0
22h
0
0
23
h
0 0
2
A
z
0z0
2
z
1
zz
020z
21
2
z1
z
2
z
2
2
z
2
=+ν−ν→=⎟
⎟
⎠
⎞
⎜⎜⎝
⎛ +ν−ν
=⎟⎟⎠
⎞
⎜⎜⎝
⎛ +ν−ν==
+⎟⎠
⎞⎜⎝
⎛ −ν=+ν−ν=
ν−=⇒=⇒=μ=τ→=
=⇒=→=
++ν=⇒+ν=
ν=ν=∂
∂
∫∫
 
( )
s
mm6
s
m106
1053
103,010
3
ghv 3
5
232
0 =×=××
××=ν=
−
−
−
 
 
 
 
 
 
 
 
Capítulo 12 
 
ESCOAMENTO COMPRESSÍVEL 
 
 
Neste capítulo a Mecânica dos Fluidos funde-se com a Termodinâmica, devido à importância 
que os fenômenos térmicos adquirem. Por causa disso, a primeira parte do capítulo destina-se 
a uma compatibilização da nomenclatura e à introdução de conceitos que não haviam sido 
utilizados até este momento por estarem ligados aos efeitos térmicos. 
Nas aplicações é mais fácil trabalhar com energias por unidade de massa e não por unidade de 
peso, fazendo-se as devidas transformações. 
Esse assunto é extremamente vasto e complexo e o leitor que desejar um maior 
aprofundamento de seus conhecimentos deverá consultar livros dedicados apenas a ele. 
O objetivo deste capítulo consiste em alertar o leitor sobre as complicações advindas da 
variação da massa específica ao longo do escoamento e chamar a atenção para os fenômenos 
provocados por essa característica. Destacam-se ainda as mudanças de comportamento no 
escoamento supersônico, a existência de uma vazão em massa máxima nos condutos e o 
aparecimento da onda de choque. Todos esses fenômenos, abordados dentro de hipóteses 
simplificadoras, poderão orientar o leitor quando estiver lidando com algum problema prático 
sobre o assunto. 
 
Exercício 12.1 
 
( )
( )
( ) 3
5
2
2
2
p
v
p
v
pp
m
kg226,5
27395260
105
RT
p
)e
kJ627J688.62610956,9218TmcH)d
kJ450J888.44910956,6618TmcI)c
K.kg
J6,661
393,1
6,921
k
c
c)b
K.kg
J260
393,1
1393,16,921
k
1kcR
1k
kRc)a
=+×
×==ρ
==−××=Δ=Δ
==−××=Δ=Δ
===
=−×=−=→−=
 
 
Exercício 12.2 
 
( )
MJ21154,1UkTmcH)d
MJ151020460717568,47TmcU
kg568,47
293287
2102
RT
Vp
m)c
C460K733
2
5293T
T
T
p
p
mRTVp
mRTVp
)b
K.kg
J717
14,1
287
1k
Rc)a
K.kg
J287
29
315.8R
p
6
v
6
1
11
o
2
1
2
1
2
11
22
v
=×=Δ=Δ=Δ
=×−××=Δ=Δ
=×
××==
==×=⇒=→
⎭⎬
⎫
=
=
=−=−=
==
−
 
 
Exercício 12.3 
 
( )
( )
kg
kJ3,93
s
m275.93201505,717Tcu
K.s
m5,717
14,1
287
1k
Rc
K.s
m287
29
315.8
M
RR)b
C150K423
4,0
27320
4,0
T
T4,0
T
T
)abs(kPa371
4,0
103p
4,0
p
pV4,0V
V
V
p
p
)a
2
2
v
2
2
v
2
2
mol
o
4,01k
1
2
1k
2
1
4,12k
1
212
k
1
2
2
1
==−×=Δ=Δ
=−=−=
===
==+==→=
==→=→=→⎟⎟⎠
⎞
⎜⎜⎝
⎛=
−
−
 
 
( )
kg
kJ6,130
000.1
1201505,004.1h
K.kg
kJ5,004.1
14,1
2874,1
1k
kRc
Tch)c
p
p
=×−×=Δ
=−
×=−=
Δ=Δ
 
 
Exercício 12.4 
 
K.kg
J562
500
500ln3,461
573
423ln872.1
p
p
lnR
T
T
lncs
1
2
1
2
p −=×−×=−=Δ 
 
Exercício 12.5 
 
29,0
342
100
c
v
s
m3422932864,1kRTc
s
m100
6,3
360v
===Μ
=××==
==
 
 
Exercício 12.6 
 
kPa9,5)abs(kPa1,94
6,0
2
14,11
120
2
1k1
p
p
2
1k1
p
p
14,1
4,1
21k
k
2
0
1k
k
20
−==
⎟⎠
⎞⎜⎝
⎛ ×−+
=
⎟⎠
⎞⎜⎝
⎛ Μ−+
=
⎟⎠
⎞⎜⎝
⎛ Μ−+=
−−
−
 
 
s
m2093,3012874,16,0kRTv
m
kg088,1
3,301287
101,94
RT
p
C3,28K3,301
6,0
2
14,11
323
2
1k1
T
T
3
3
o
22
0
=×××=Μ=
=×
×==ρ
===−+
=
Μ−+
=
 
 
Exercício 12.7 
 
( )
%45,0100
3,67
6,673,67êrro
6,6702,0000.136
19,1
2v
m
kg19,1
293287
10100
RT
p
h2
hg2
ppg2v
pp
g2
v
ívelIncompress
s
m3,672932874,1196,0kRTMv
196,01
100
72,102
14,1
2M
1
p
p
1k
2MM
k
1k1
p
p
)abs(kPa72,10210072,2p
kPa72,2Pa272002,0000.136hp
1
3
3
Hg
Hg
121
21
2
1
4,1
14,1
k
1k
01k
k
20
0
Hg0
abs
=×−=
=××=
=×
×==ρ
γρ=γ
γ=−γ=→γ=γ+→
=××==
=
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
−⎟⎠
⎞⎜⎝
⎛
−=
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
−⎟⎟⎠
⎞
⎜⎜⎝
⎛
−=⇒⎟⎠
⎞⎜⎝
⎛ −+=
=+=
==×=γ=
−
−
−
 
 
Exercício 12.8 
 
mm970m97,011
293287
400
4,12
14,1
000.136
10100h
11
RT
v
k2
1kph1
p
h
1RT
1k
k2v
14,1
4,1
23
1k
k
2
m
k
1k
m2
==
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
−⎟⎟⎠
⎞
⎜⎜⎝
⎛ +×××
−×=
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
−⎟⎟⎠
⎞
⎜⎜⎝
⎛ +−γ=⇒⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
−⎟⎟⎠
⎞
⎜⎜⎝
⎛ γ+−=
−
−
−
 
 
 
%8,27100
970
970700
mm700m7,0
000.136
120.95
g
pp
h
Pa120.95
2
400189,1
2
vpp
Hg
0
22
0
=×−=ε
===ρ
−=
=×=ρ=−
 
 
 
Exercício 12.9 
 
)abs(Pa102,35,0000.13610hpp)a 45Hg12 ×=×−=γ−= 
[ ] [ ][ ] [ ]
( )
%113100
47,0
1111
Q
Q
1
Q
QQ
êrro
Q
Q)c
s
kg518,0
5,01
32,012
293287
1047,095,0
A
A
1
p
p
12
A
RT
pCQ)b
47,0
32,0132,05,01
5,0132,015,332,0
5,0
50
25
A
A
e32,0
10
102,3
p
p
p
p
1
p
p
A
A
1
A
A
1
p
p
1
1k
k
p
p
m
invm
m
incmmm
incm
2
5
2
1
2
1
2
2
1
Dm
429,12
2286,0
714,0
1
2
5
4
1
2
1
2k
2
1
2
2
1
2
2
1
2k
1k
1
2
k
1
1
2
=×⎟⎠
⎞⎜⎝
⎛ −=φ−=−=
−=⇒φ=
=−
−×
×××=
⎟⎟⎠
⎞
⎜⎜⎝
⎛−
⎟⎟⎠
⎞
⎜⎜⎝
⎛ −
φ=
=−××−
−×−×=φ
===×=
⎟⎟⎠
⎞
⎜⎜⎝
⎛ −
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
⎟⎟⎠
⎞
⎜⎜⎝
⎛
⎟⎟⎠
⎞
⎜⎜⎝
⎛−
⎥⎥⎦
⎤
⎢⎢⎣
⎡
⎟⎟⎠
⎞
⎜⎜⎝
⎛−
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
⎟⎟⎠
⎞
⎜⎜⎝
⎛−−
⎟⎟⎠
⎞
⎜⎜⎝
⎛=φ
−
 
 
Exercício 12.10 
 
⎟⎟⎠
⎞
⎜⎜⎝
⎛ −
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
⎟⎟⎠
⎞
⎜⎜⎝
⎛
⎟⎟⎠
⎞
⎜⎜⎝
⎛−
⎥⎥⎦
⎤
⎢⎢⎣
⎡
⎟⎟⎠
⎞
⎜⎜⎝
⎛−
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
⎟⎟⎠
⎞
⎜⎜⎝
⎛−−
⎟⎟⎠
⎞
⎜⎜⎝
⎛=φ
−
1
2k
2
1
2
2
1
2
2
1
2k
1k
1
2
k
1
1
2
p
p
1
p
p
A
A
1
A
A
1
p
p
1
1k
k
p
p
 
kPa149101,5000.10200hpp 3Hg12 =××−=γ−= − 
 
( )
( )
( )
s
kg151,1
444,01
745,012
4
1,0
3662077
10200844,095,0Q
A
A
1
p
p
12
A
RT
pCQ
K.kg
J2077200.5
665,1
1665,1c
k
1kR
1k
kRc
844,0
745,01745,0444,01
444,01745,01
1665,1
665,1
745,0
444,0
15
10
D
D
A
A
;745,0
200
149
p
p
2
23
m
2
1
2
1
2
2
1
Dm
pp
665,1
2
2
2665,1
1665,1
665,1
1
22
1
2
1
2
1
2
=−
−×××π××
×××=
⎟⎟⎠
⎞
⎜⎜⎝
⎛−
⎟⎟⎠
⎞
⎜⎜⎝
⎛ −
φ=
=×−=−=⇒−=
=
−×⎟⎟⎠
⎞
⎜⎜⎝
⎛
×−
−×⎟⎟⎠
⎞
⎜⎜⎝
⎛
−×−
×=φ
=⎟⎠
⎞⎜⎝
⎛=⎟⎟⎠
⎞
⎜⎜⎝
⎛===
−
 
 
 
Exercício 12.11 
 
( )
( )
( )
( )
%4,5100
1310
12391310êrro)c
s
m1310
5,1
15,1
405,12
111015,1
0651.0
2v
p
pp
k2
11pp2v)b
s
m12391015,1
0651,0
2v
m
kg0651,0
5504189
105,1
K.s
m4189532.14
405,1
1405,1c
k
1kR
RT
p
pp2v)a
5
c
0
c0
c0
0
c
5
c
3
5
0
2
2
p
0
0
0
c0c
=×−=
=⎟⎠
⎞⎜⎝
⎛ −
×+××−×=
−+−ρ=
=×−=
=×
×=ρ
=×−=−=→=ρ
−ρ=
 
 
 
 
 
Exercício 12.12 
 
s10
2,1477,591
440.7
vv
st)c
m440.7502,147800.14s
s50
296
800.14
c
Rt
5,0
296
2,147
c
v
s
m2,147
6,3
530v
2
296
7,591
c
v
s
m7,5916,3
130.2v
s
m2962182874,1kRTc)b
21
1
2
22
1
11
=+=+
Δ=
=×−=Δ
===
===Μ⇒==
===Μ⇒==
=××==
 
 
 
Exercício 12.13 
 
s
m8162952574,137,2kRTMv
37,2
25sen
1M
M
1
2
sen
o
=×××==
==→=α
 
 
Exercício 12.14 
 
3*
*
*
133,1
33,1
5
1k
k
0*1k
k
*
0
**
0*2
*
0
m
kg338,0
346462
036.54
RT
p
)abs(kPa54)abs(Pa036.54
2
133,11
10
2
1k1
p
p
2
1k1
p
p
s
m46134646233,1kRTv
K346
2
133,11
403
2
1k1
T
T
2
1k1
T
T
=×==ρ
==
⎟⎠
⎞⎜⎝
⎛ −+
=
⎟⎠
⎞⎜⎝
⎛ −+
=→⎟⎠
⎞⎜⎝
⎛ −+=
=××==
=−+
=−+
=→Μ−+=
−−
−
 
 
Exercício 12.15 
 
 
1.Tab1Ms →= 
 
 
 
K5,4775738333,0T8333,0
T
T
)abs(MPa5283,015283,0p5283,0
p
p
s
0
s
s
0
s
=×=→=
=×=→=
 
s
kg338,0102438856,3Q
s
m4385,4772874,11kRTMv
AvQ
m
kg856,3
5,477287
105283,0
RT
p
4
m
sss
sssm
3
6
s
s
s
=×××=
=×××==
ρ=
=×
×==ρ
−
 
 
Exercício 12.16 
 
2
1*
1
5
0
1
5
1atmHg1
cm1,2015340,1A340,1
A
A
8434,0
102
680.168
p
p
)abs(Pa680.168505,0000.13610pphp
=×=⇒=→=×=
=×+=⇒=γ−
 
 
Exercício 12.17 
 
a) T0 = 373 K = 100 oC 
bloqueadoestánão833,0
102,1
10
p
p
)b
5
5
0
s →=
×
=
 
1.Tab8333,0
p
p
0
s →= 
 
 
s
kg183,010196984,0AvQ
s
m1963542874,152,0kRTMv
m
kg984,0
354287
10
RT
p
3
sssm
sss
3
5
s
s
s
=××=ρ=
=×××==
=×==ρ
−
 
c) A mesma 
 
1.Tab3,0M)d →= 
 
 
23m
5
cm6,151056,1
073,1115
193,0
v
Q
A
s
m1153662874,13,0kRTMv
073,1
366287
10127,1
RT
p
=×=×=ρ=
=×××==
=×
×==ρ
−
 
K3543739487,0T9487,0
T
T
52,0M
s
0
s
s
=×=→=
=
 
)abs(Pa10127,1102,19395,0p9395,0
p
p
K3663739823,0T9823,0
T
T
55
0
0
×=××=→=
=×=→=
 
e) Ms=1 1.Tab→
⎪⎪⎩
⎪⎪⎨
⎧
=×=→=
×==→=
K3113738333,0T8333,0
T
T
)abs(Pa10893,1
5283,0
10p5283,0
p
p
s
0
s
5
5
0
0
s
 
 
 
s
kg396,0105,35312,1AvQ
s
,m5,3533112874,11kRTMv
m
kg12,1
311287
10
RT
p
3
sssm
sss
3
5
s
s
s
=××=ρ=
=×××==
=×==ρ
−
 
 
Exercício 12.18 
 
( ) mm64m064,0
000.136
1029564,01h
9564,0
p
p
erpolandoint38,2
1026,1
103
A
A
p
p
p
1
hphp)e
m1026,1
59,1
102
59,1
A
A)d
s
m7,1367,2902874,14,0kRTv
59,1
A
A
4,0
969,0
300
7,290
T
T
)c
)abs(Pa102p)b
)abs(Pa102pp
K300TT)a
5
0
A
3
3
*
A
Hg
0
0
A
AHg0
23
3
B*
2BB
*
B
B
0
2
5
A2M
5
2M0
10
==××−=
⎩⎨
⎧ =→→=×
×=
γ
⎟⎟⎠
⎞
⎜⎜⎝
⎛ −
=⇒=γ−
×=×==
=×××=Μ=
⎪⎩
⎪⎨
⎧
=
=Μ
→==
×=
×==
==
−
−
−−
 
 
Exercício 12.19 
 
Fixando o sistema de referência no conduto, isto é, no avião: v1 = 180 m/s 
→→===
=××==
1.Tab55,0
5,327
180
c
v
M
s
m5,3272672874,1kRTc
1
1
1
1
 
 
 
 
 
1.Tab8,0M 2 →= 
 
 
 
s
m2542512874,18,0kRTMv 222 =×××== 
 
Exercício 12.20 
 
s
m1,933452874,125,0kRTv
)abs(MPa55,0575,0957,0p957,0
p
p
K345349988,0T988,0
T
T
25,0
39,2009,137,2
A
A
A
A
A
A
009,1
A
A
)abs(MPa575,0
5913,0
34,0p5913,0
p
p
K349
8606,0
300T8606,0
T
T
9,0
3002874,1
312
kRT
v
222
2
0
2
2
0
2
2
*
1
1
2
*
2
*
1
0
0
1
0
0
1
1
1
1
=×××=Μ=
⎪⎪
⎪⎪
⎩
⎪⎪
⎪⎪
⎨
⎧
=×=→=
=×=→=
=Μ
→=×=×=
⎪⎪
⎪
⎩
⎪⎪
⎪
⎨
⎧
=
==→=
==→=
→=××==Μ
 
 
 
 
Exercício 12.21 
 
→== 2
10
20
A
A
*
e 
 
rpm49260
22
103
R2
v
n
s
m1032932874,13,0kRTMv
'
e''
e
'
e =××π×=π=→=××== 
rpm360460
22
755
R2
v
n
s
m7552932874,12,2kRTMv
''
e''''
e
''
e =××π×=π=→=××== 
K283
9449,0
267T9449,0
T
T
)abs(kPa128
8201,0
100p8201,0
p
p
0
0
1
0
0
1
==→=
==→=
 
K2518865,0283T8865,0
T
T
)abs(kPa80656,0128p656,0
p
p
2
0
2
2
0
2
=×=→=
=×=→=
 
2,2M
3,0M
''
e
'
e
=
=
 
 
 
 
 
 
 
Exercício 12.22 
 
22
ss
m
s
3
5
s
s
s
sss
s
0
s
s
6
5
0
s
2
G
G
22
GG
m
G
GGG
3
5
G
G
G
G
0
G
56
G
0
G
G
cm413m0413,0
794037,1
34
v
Q
A
m
kg037,1
336287
10
RT
p
)d
s
m7943362874,116,2kRTv
K3366505173,0T5173,0
T
T
16,2
1,0
10
10
p
p
)c
m165,010147,24
A4
Dm10147,2
467394,3
34
v
Q
A
s
m4675422874,11kRTv)b
m
kg394,3
542287
1028,5
RT
p
K5426508333,0T8333,0
T
T
)abs(Pa1028,5105283,0p5283,0
p
p
1)a
==×=ρ=
=×==ρ
=×××=Μ=
⎪⎩
⎪⎨
⎧
=×=→=
=Μ
==
=π
××=π=⇒×=×=ρ=
=×××=Μ=
=×
×==ρ
⎪⎪⎩
⎪⎪⎨
⎧
=×=→=
×=×=→=
=Μ
−−
 
 
Exercício 12.23 
 
→=
=
1M
K310T)a
G
0
 
 
 
8333,0
T
T
5283,0
p
p
0
G
0
G
=
=
 
.mesmoO)c
K2583108333,0T08333T
)abs(kPa6,1067,2015283,0p5283,0p)b
m
kg27,2
310287
107,201
RT
p
)abs(kPa7,201)abs(kPa695.201p
200.95p5283,0p200.95pp
200.95pp
7,0000.136phpp
0G
0G
3
3
0
0
0
0
00G0
G0
GHgG0
=×==
=×==
=×
×==ρ
==
=−→=−
+=
×+=γ+=
 
 
Exercício 12.24 
 
2s*
223
ss
m
s
3
3
s
s
s
xSsss
*
s
s
0
s
s
0
s
smxS
smemsmiiiS
cm3,17
999,3
3,69
999,3
A
A)c
cm3,69m1093,6
864.1348,0
5,4
v
Q
A
m
kg348,0
000.1287
10100
RT
p
)b
N838818645,4F
s
m1864000.12874,194,2kRTv
999,3
A
A
K000.1730.23665,0T3665,0
T
T
94,2
0294,0
400.3
100
p
p
vQF
vQvQvQnApF)a
===
=×=×=ρ=
=×
×==ρ
=×−=⇒=×××=Μ=
⎪⎪
⎪
⎩
⎪⎪
⎪
⎨
⎧
=
=×=→=
=Μ
==
−=
−=+−=
−
∑ rrrrr
 
 
Exercício 12.25 
 
→== 76,1
1,0
176,0
A
A
*
3
 
 
 
 
 
)abs(MPa08,068,01164,0p1164,0
p
p
06,2M
)abs(MPa622,068,09143,0p9143,0
p
p
36,0M
''
3
0
''
3
''
3
'
3
0
'
3
'
3
=×=→=
=
=×=→=
=
s
kg1621,05,31021,5Q
s
m5,3102402874,11kRTMv
m
kg21,5
240287
10359,0
RT
p
)abs(MPa359,068,05283,0p5283,0p
K2402888333,0T8333,0T
vAQ
m
GGG
3
6
G
G
G
0G
0G
m
=××=
=×××==
=×
×==ρ
=×==
=×==
ρ=
 
 
 
 
 
 
Exercício 12.26 
 
⎪⎪
⎪
⎩
⎪⎪
⎪
⎨
⎧
=×=⇒=
=×=⇒=
=×=⇒=
→=Μ
=×=×=ρ=
=×××=Μ=
=×
×==ρ
⎪⎪⎩
⎪⎪⎨
⎧
=×=⇒=
=×=⇒=
→=Μ
−
2
s*
s
s
0
s
s
0
s
s
222
GG
m
G
GGG
3
6
G
G
G
G
0
G
G
0
G
G
cm419251668,1A668,1
A
A
)abs(MPa0128,01,01278,0p1278,0
p
p
K1442605556,0T5556,0
T
T
2
cm251m1051,2
295815,0
3,6
v
Q
A
s
m2952172874,11kRTv
m
kg815,0
217287
10053,0
RT
p
K2172608333,0T8333,0
T
T
)abs(MPa053,01,05283,0p5283,0
p
p
1
 
 
 
Exercício 12.27 
 
→== 089,1
293
319
A
A
*
s
 
 
 
 
 
)abs(MPa516,051,13417,0p3417,0
p
p
7358,0
T
T
34,1M
s
0
s
0
s
s
=×=→=
=
=
 
 
Na realidade, existe também a solução subsônica, entretanto, com essa velocidade de 
saída, a temperatura seria um valor prático impossível. 
N342.4110319000.2324,0AvF
m
kg324,0
544.5287
10516,0
RT
p
AvF
K544.5
2874,134,1
000.2
kRM
v
TkRTMv
42
s
2
ssS
3
6
s
s
s
s
2
ssS
2
2
2
s
2
s
ssss
x
x
=×××=ρ=
=×
×==ρ
ρ=
=
××
==→=
−
 
 
 
 
 
Exercício 12.28 
 
⎪⎪
⎪⎪
⎩
⎪⎪
⎪⎪
⎨
⎧
===⇒==
=Μ
→=
=××=××=
=⇒=×=×=
=××=××==
⎪⎪
⎪⎪
⎩
⎪⎪
⎪⎪
⎨
⎧
=
=
=
→=Μ
⎪⎪
⎪⎪
⎪
⎩
⎪⎪
⎪⎪
⎪
⎨
⎧
=
=
===⇒=
=Μ
→=Μ
⎪⎪
⎪⎪
⎩
⎪⎪
⎪⎪
⎨
⎧
=
=
=Μ
→=
)abs(kPa1,121
8259,0
100
8259,0
p
p8259,0
p
p
9468,0
T
T
53,0
256,1
A
A
256,1
176,1
1094,135,1
A
A
A
A
A
A
A
A
)c
A075,1A93,0094,1
176,1
1
A
A
A
A
A
A
)b
46,2
272,0
19298,07209,0
p
p
p
p
p
p
p
p
Int)a
094,1
A
A
7209,0
p
p
9108,0
T
T
7011,0
458,2
p
p
32,1
T
T
)abs(kPa130
9298,0
1,121
9298,0
p
p9298,0
p
p
7011,0
5,1
176,1
A
A
6897,0
T
T
5,1
272,0
p
p
s
y0
y0
s
0
s
s
*
y
s
x
*
x
*
y
y
*
x
s
*
y
s
*
x
*
y*
y
y
x
*
x
*
y
*
x
x
x0
x0
y0
y0
y
x
y
OC
*
y
y
y0
y
0
y
y
x
y
x
y
y0
x0
x0
y0
y
x
*
x
x
0
x
x
x0
x
 
K317
9468,0
300
9468,0
T
T)e
)abs(kPa130p)d
s
0
x0
===
=
 
 
K.kg
J8,20
458,2
32,1ln004.1
p
p
T
T
lncss)g
A6,213A184161,1Q
s
m1843002874,153,0kRTv
m
kg161,1
300287
10
RT
p
AvQ)f
41,1
14,1
k
1k
x
y
x
y
pxy
ssm
sss
3
5
s
s
s
sssm
=×=
⎟⎠
⎞⎜⎝
⎛
=−
=××=
=×××=Μ=
=×==ρ
ρ=
−−
 
Exercício 12.29 
 
→= 1278,0
p
p
x0
x 
 
 
 
 
 
 
 
→= 2M x 
 
 
 
 
 
 
 
 
 
→= 58,0M y 
 
 
 
 
437,1213,1
688,1
12
A
A
A
A
A
A
A
A
*
y
y
x
*
x
*
x
s
*
y
s =××=××= 
 
 
 
→= 437,1
A
A
*
y
s 
688,1
A
A
5556,0
T
T
2M
*
x
x
0
x
x
=
=
=
 
5,4
p
p
687,1
T
T
7209,0
p
p
5774,0M
x
y
x
y
0
0
y
x
y
=
=
=
=
 
213,1
A
A
7962,0
p
p
9370,0
T
T
*
y
y
0
y
0
y
y
=
=
=
 
)abs(Pa1004,1
8650,0
109,0p8650,0
p
p
9594,0
T
T
46,0M
5
5
0
0
s
0
s
s
y
y
×=×=→=
=
=
 
 
m47,0
1036,1
1084,11028,8pph
)abs(Pa1028,81084,15,4p5,4p
)abs(Pa1084,11044,11278,0p1278,0p
php)b
K313
9594,0
300
9594,0
T
T
)abs(kPa144)abs(Pa1044,1
7209,0
1004,1
7209,0
p
p)a
5
44
Hg
xy
44
xy
45
0x
yHgx
s
0
5
50
0
x
y
x
=
×
×−×=γ
−=
×=××==
×=××==
=γ=
===
=×=×==
 
8650,0
p
p
x
7962,0
p
p
x
5283,0
p
p
x)c
y0
s
s
y0
y
yOC
x0
G
G
=→
=→
=→
 
 
Exercício 12.30 
 
⎩⎨
⎧
=Μ ′′
=Μ′→=×=
=Μ→=×=
−
−
2,2
3,0
2
10
102
A
A
76,0756,0
10
1056,7
p
p
s
3
3
*
s
s6
5
0
s
 
Sim. Para ser totalmente subsônico Ms ≤ 0,3. Como Ms = 0,76, o escoamento passou para 
supersônico e posteriormente para subsônico através de uma onda de choque. 
 
Exercício 12.31 
 
→=×= −
−
4,1
10
104,1
A
A
)a
3
3
*
x
c 
 
 
 
 
 
 
 
 
 
 
 
 
1850,0
p
p
6175,0
T
T
76,1M
x0
x
0
x
x
=
=
=
 
447,3
p
p
502,1
T
T
8302,0
p
p
6257,0M
x
y
x
y
x0
y0
y
=
=
=
=
 →= 76,1M x
 
 
 
 
 
→= 6257,0M y 
 
 
 
 
 
 
 
→=
×
×= −
−
667,1
102,1
102
A
A
3
3
*
y
s 
 
 
 ( )
( )
s
kg78,110217122,5AvQ
s
m1715052874,138,0kRTMv
m
kg22,5
505287
1056,7
T
p
)c
s
m4224836257,032176,12874,1v
K4835209286,0T9286,0T
K3215206175,0T6175,0T
TMTMkRkRTMkRTMvvv)b
3
sssm
sss
3
5
ss
s
s
0y
0x
yyxxyyxxyx
=×××=ρ=
=×××==
=×
×=ρ=ρ
=×−×××=Δ
=×==
=×==
−=−=−=Δ
−
 
Exercício 12.32 
 
Ver o exercício 12.31 
 
 
 
Exercício 12.33 
 
 
 
 
 
 
 
 
 
 
23
3y*
y*
y
y
0
y
0
y
m102,1
166,1
104,1
166,1
A
A166,1
A
A
7716,0
p
p
9286,0
T
T
y
−− ×=×==→=
=
=
 
)abs(Pa1035,8
9052,0
1052,7
9052,0
p
p9052,0
p
p
K520
9719,0
505
9719,0
T
T)a9719,0
T
T
38,0M
5
5
s
y0
y0
s
s
0
0
s
s
×=×==→=
===→=
=
 
24
4
s*
y*
y
s
y0
s
s
m107,33
188,1
1040
188,1
A
A188,1
A
A
784,0
p
p
6,0M
−− ×=×==→=
=
=
 
→== 9324,0
429
400
T
T
y0
s
 
→=
×
×= −
−
128,1
107,33
1038
A
A
4
4
*
y
1 
 
 
 
 
000.136p5283,0p7465,0
)abs(Pa000.136pp
php
xy 00
Gy
yHgG
=−
=−
=γ+
 
→= 66,0M y 
 
 
( )absPa109,010013,18876,0p
)abs(Pa10013,1p
000.136p5283,0p8876,07465,0
66
0
6
0
00
y
x
xx
×=××=
×=
=−×
 
 
Exercício 12.34 
 
⎪⎪
⎪⎪
⎪
⎩
⎪⎪
⎪⎪
⎪
⎨
⎧
=
=
=
=Μ
→=Μ
=×=×=ρ=
=×××=Μ=
=×
×==ρ
⎪⎪⎩
⎪⎪⎨
⎧
=×=⇒=
=×=⇒=
→=Μ
−
783,3
p
p
562,1
T
T
7947,0
p
p
84,1
606,0)b
cm924m1024,9
422818,2
110
v
Q
A
s
m4224442874,11kRTv
m
kg818,2
444287
10359
RT
p
K4445338333,0T8333,0
T
T
)abs(kPa3596805283,0p5283,0
p
p
1)a
x
y
x
y
x0
y0
x
y
222
GG
m
G
GGG
3
3
G
G
G
G
0
G
G
x0
G
G
 
7465,0
p
p
9199,0
T
T
66,0M
y0
y
0
y
y
=
=
=
 
x
x
y
0y0
0
0
p8876,0p8876,0
p
p
=→=
 
2*
ys*
y
s
s
2y*
y*
y
y
y
2
x*
x
x
x0
x
0
x
x
cm835.1154.159,1A59,1A59,1
A
A
4,0
cm154.1
188,1
1371
188,1
A
A188,1
A
A
606,0)c
cm371.1484,1924A484,1
A
A
1537,0
p
p
5963,0
T
T
84,1
=×=⎪⎩
⎪⎨
⎧ =⇒=→=Μ
===⎪⎩
⎪⎨
⎧ ⇒=→=Μ
⎪⎪
⎪⎪
⎩
⎪⎪
⎪⎪
⎨
⎧
=×=⇒=
=
=
→=Μ
 
 
Exercício 12.35 
 
9325,0
400
373
T
T
0
1 == 
 
 
Na segunda situação 
*
1
A
A
 não muda, mas o escoamento é supersônico. 
 
 
188,1
A
A
*
1 = 
 
 
 
52,1M x = 
 
 
 
CouK91274365TTT oxy =−=−=Δ 
 
Exercício 12.36 
 
24,1
A
A
857,0
429,1
225,1
m
kg429,1
400287
10164
RT
p
)a
*
x
0
3
3
0
0
0
=⎩⎨
⎧→==ρ
ρ
=×
×==ρ
 
 
 
 
188,1
A
A
6,0M
*
1
1
=
=
 
K274400684,0T684,0T684,0
T
T
52,1M
0x
0
x
x
=×==→=
=
 
K365274334,1T334,1T333,1
T
T
6941,0M
xy
x
y
y
=×==→=
=
 
s
m3663332874,11kRTv
K3334008333,0T8333,0
T
T
1)c
s
kg29,410160517519,0AvQ
s
m5172672874,158,1kRTv
m
kg519,0
267287
1040
RT
p
)b
)abs(kPa401642423,0p2423,0p2423,0
p
p
K2674006670,0T6670,0T6670,0
T
T
58,1
24,1
A
A
GGG
G
0
G
G
4
xxxm
xxx
3
3
x
x
x
0x
0
x
0x
0
x
x
*
x
=×××=Μ=
=×=⇒=
⎩⎨
⎧→=Μ
=×××=ρ=
=×××=Μ=
=×
×==ρ
⎪⎪
⎪⎪
⎩
⎪⎪
⎪⎪
⎨
⎧
=×=×=⇒=
=×=×=⇒=
=Μ
→=
−
 
 
 
Exercício 12.37 
 
1,0
101
100
p
p
)a
30
s =
×
= 
 
b) Se a onda de choque está na seção de saída, a montante tem-se a segunda solução 
isoentrópica, que corresponde à solução do item anterior. 
 
 
 
16,2M x = 
 
 
 
Exercício 12.38 
 
⎪⎪
⎪⎪
⎩
⎪⎪
⎪⎪
⎨
⎧
=
=
=Μ
=Μ
→==
=
666,6
p
p
059,2
T
T
521,0
42,2
5283,0
p
p
p
p
pp
x
y
x
y
y
x
x0
y0
x0
G
y0G
 
 
 
K2,1553005173,0T5173,0T5173,0
T
T
16,2M
0s
0
s
s
=×==→=
=
 
K2832,155822,1T822,1T822,1
T
T
5525,0M
xy
x
y
y
=×==→=
=
 
s
m1853162874,1521,0kRTv
K3163339487,0T9487,0
T
T521,0
yyy
y
0
y
y
=×××=Μ=
=×=⇒=
⎩⎨
⎧→=Μ
 
 
Exercício 12.39 
 
 
 
 
 
 
 
 
2
máx
1
máx
2
máx
1
máx
D
L
f
D
Lf
D
L
f
D
L
f
D
L
f
D
Lf ⎟⎠
⎞⎜⎝
⎛+=⎟⎠
⎞⎜⎝
⎛→⎟⎠
⎞⎜⎝
⎛−⎟⎠
⎞⎜⎝
⎛= 
 
 
 
 
 
M2 = 0,9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32,0M1 = 
 
 
 
 
 
 
 
L=15m (1) (2) 
p2 = 105 Pa(abs) 
T2 = 294 K 
M2 = 0,9
D = 7,5cm 
f = 0,02 
T0 ? 
 p0 ? 
01451,0
D
L
f
)abs(Pa1086,8
129,1
10
129,1
p
p129,1
p
p
K6,284
033,1
294
033,1
T
T033,1
T
T
2
máx
4
5
2*
*
2
2*
*
2
=⎟⎠
⎞⎜⎝
⎛
×===→=
===→=
 
0145,401451,0
075,0
1502,0
D
L
f
1
máx =+×=⎟⎠
⎞⎜⎝
⎛ 
)abs(Pa1031086,8389,3p389,3
p
p
K7,3346,284176,1T176,1
T
T
32,0M
54
1*
1
1*
1
1
×=××=→=
=×=→=
=
 
)abs(Pa1022,3
9315,0
103p9315,0
p
p
K342
9799,0
7,334T9799,0
T
T
5
5
0
0
1
0
0
1
×=×=→=
==→=
 
Exercício 12.40 
 
)abs(MPa011,0259,027,0ppp
176,1
T
T
)abs(MPa259,00764,0389,3p389,3
p
p
32,0
224,4
D
L
f
224,4
025,0
2,13008,0299,5
D
L
f
D
L
f
D
L
f
299,5
D
L
f
)abs(MPa0764,0
619,3
27,0
619,3
p
p619,3
p
p
179,1
T
T
3,0
21
*
2
2*
2
2
H
máx
H
máx
1H
máx
2H
máx
H
máx
1*
*
1
*
1
1
=−=−=Δ
⎪⎪
⎪
⎩
⎪⎪
⎪
⎨
⎧
=
=×=⇒=
=Μ
→=⎟⎟⎠
⎞
⎜⎜⎝
⎛
=×−=⎟⎟⎠
⎞
⎜⎜⎝
⎛−⎟⎟⎠
⎞
⎜⎜⎝
⎛=⎟⎟⎠
⎞
⎜⎜⎝
⎛
⎪⎪
⎪⎪
⎩
⎪⎪
⎪⎪
⎨
⎧
=
===⇒=
=
→=Μ
 
 
Exercício 12.41 
 
5,0M1 = 
 
 
5,0M1 = 
 
 
 
 
1M2 = 
 
 
 
s
m3342772874,11kRTMv 222 =×××== 
 
Exercício 12.42 
 
⎪⎩
⎪⎨
⎧ =⎟⎟⎠
⎞
⎜⎜⎝
⎛→=Μ
=⎪⎩
⎪⎨⎧ ⎟⎟⎠
⎞
⎜⎜⎝
⎛→=Μ
3050,0
D
Lf
2
5222,0
D
Lf
3
2H
máx
2
1H
máx
1
 
 
( )absMPa166,0
843,0
14,0
843,0
p
p843,0
p
p 1
0
0
1
1
1
===→= 
( )absMPa124,0
34,1
166,0
34,1
p
p34,1
p
p
11 0*
0*
0
0 ===→= 
( )
K2773338333,0T8333,0T8333,0
T
T
absMPa065,0124,05283,0p5283,0p5283,0
p
p
02
0
2
*
02*
0
2
=×==→=
=×==→=
 
8,1
012,0
1,02172,0
f
D2172,0
L
2172,03050,05222,0
D
Lf
H
H
máx
=×=×=
=−=⎟⎟⎠
⎞
⎜⎜⎝
⎛
 
 
Exercício 12.43 
 
 
 
 
3M1 = 
 
 
 
 
s
m4204392874,11kRTMv *** =×××== 
 
 
 
 
 
2M2 = 
 
 
 
 
s
m6852922874,12kRTMv 222 =×××== 
 
m17,2
01,0
1,02172,0
f
D2172,0L
2172,03050,0522,0
D
Lf
D
Lf
D
Lf
2,1
2
máx
1
máx2,1
=×==
=−=⎟⎟⎠
⎞
⎜⎜⎝
⎛−⎟⎟⎠
⎞
⎜⎜⎝
⎛=
 
 
Exercício 12.44 
 
K245
504,3
p
p
1775,1
5,288
1775,1
T
T1775,1
T
T
31,0
8,4
025,0
602,0
D
Lf
*
1
1*
*
1
1
1
máx =
⎪⎪
⎪⎪
⎩
⎪⎪
⎪⎪
⎨
⎧
=
==⇒=
=Μ
→=×=⎟⎟⎠
⎞
⎜⎜⎝
⎛
 
 
( )
m22,5
01,0
1,05222,0
f
D5222,0L5222,0
D
Lf
absMPa46,0
2182,0
1,0
2182,0
p
p2182,0
p
p
K439
4286,0
188
4286,0
T
T4286,0
T
T
1máx
1
máx
1*
*
1
1*
*
1
=×==→=⎟⎟⎠
⎞
⎜⎜⎝
⎛
===→=
===→=
 
( )
3050,0
D
Lf
absMPa19,046,04083,0p4083,0p4083,0
p
p
K2924396667,0T6667,0T6667,0
T
T
2
máx
*
2*
2
*
2*
2
=⎟⎟⎠
⎞
⎜⎜⎝
⎛
=×==→=
=×==→=
 
s
kg219,0
4
025,0314422,1
4
DvQ
s
m3142452874,11kRTv
m
kg422,1
245287
10100
RT
p
22
**
máx
***
3
3
*
*
*
=×π××=πρ=
=×××=Μ=
=×
×==ρ
 
 
Exercício 12.45 
 
A leitura do termômetro é 600 K, uma vez que a temperatura de estagnação não se altera. 
 
 
 
→== 2
20
40
A
A
*
3 
 
 
 
 
 
 
→= 2,2M x 
 
 
 
→= 5471,0M y 
 
 
 
→== 59,1
5,31
50
A
A
*
y
4 
 
 
 
 
→= 4,0M 4 
 
 
 
cm8504
A4
D 44 =π
×=π= 
 
 
059,1
08,0
502,0309,2
D
Lf
D
Lf
D
Lf
4
máx
5
máx =×−=−⎟⎟⎠
⎞
⎜⎜⎝
⎛=⎟⎟⎠
⎞
⎜⎜⎝
⎛
 
 
( )absMPa0468,05,009352,0p09352,0p09352,0
p
p
K3056005081,0T5081,0T5081,0
T
T
2,2M
x
x
0x
0
x
0x
0
x
x
=×==→=
=×==→=
=
 
( )absMPa314,05,06281,0p6281,0p6281,0
p
p
5471,0M
xy
x
y
00
0
0
y
=×==→=
=
 
23*
y*
y
3 cm5,31
27,1
40
27,1
A
A27,1
A
A ===→= 
( )absMPa281,0314,08956,0p8956,0p8956,0
p
p
4,0M
y
y
04
0
4
4
=×==→=
=
 
( )
309,2
D
Lf
absMPa197,0
59,1
314,0
59,1
p
p59,1
p
p
4
máx
0*
0*
0
0 yy
=⎟⎟⎠
⎞
⎜⎜⎝
⎛
===→=
 
 
 
 
 
→=⎟⎟⎠
⎞
⎜⎜⎝
⎛
059,1
D
Lf
5
máx 
 
 
s
kg68,110501987,1AvQ
s
m1985802874,141,0kRTv
m
kg7,1
580287
10283,0
RT
p
4
555m
555
3
6
s
5
5
=×××=ρ=
=×××=Μ=
=×
×==ρ
−
 
MPa13,01,023,0p
)abs(MPa23,0108,0158,2p38,2
p
p
5,0M
ef5
5*
5
5
=−=
=×=→=
=

Mais conteúdos dessa disciplina