Logo Passei Direto
Buscar
Material
páginas com resultados encontrados.
páginas com resultados encontrados.

Prévia do material em texto

UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO 
CENTRO DE TECNOLOGIA E CIÊNCIAS 
INSTITUTO DE QUÍMICA 
DEPARTAMENTO DE FÍSICO-QUÍMICA 
 
 
 
 
 
 
 
 
Pós Lab 6 – Células Eletrolíticas 
 
 
 
Mel Paiva Mourão (202010403811) 
Matheus Nascimento da Costa Rangel (202210199711) 
Miguel Marcelino Perez (202220391011) 
 
 
 
Orientadoras: Gisele de Freitas Westphalen 
Liliane Maria Magalhães de Souza 
 
 
Turma 1 – Grupo 3 
 
 
Rio de Janeiro 
09 / 11 / 2024 
 
 
 
QUESTÃO 1) 
 
Uma célula eletrolítica é um sistema onde a aplicação de uma corrente elétrica promove 
reações químicas não espontâneas, isto é, reações que não ocorreriam de forma natural. 
Um exemplo prático desse processo é a eletrólise da água, em que uma corrente elétrica 
decompõe a água em hidrogênio e oxigênio. No ânodo da célula eletrolítica, a água sofre 
oxidação, liberando oxigênio, enquanto no cátodo ocorre a redução, formando 
hidrogênio. Esse processo é fundamental para a produção de gases puros para diversas 
indústrias. 
As soluções eletrolíticas são soluções com íons dissolvidos, responsáveis por conduzir 
eletricidade. Elas são amplamente utilizadas em processos industriais e científicos, sendo 
essenciais para várias reações e operações eletroquímicas. Para que uma solução seja 
eletrolítica, as substâncias dissolvidas (como sais, ácidos ou bases) devem ionizar-se em 
íons com cargas positivas e negativas. Um exemplo comum é o cloreto de sódio (NaCl), 
que ao se dissolver em água, separa-se em íons de sódio (Na⁺) e cloreto (Cl⁻), permitindo 
que a solução conduza eletricidade ao ser submetida a um potencial elétrico. 
Essas soluções eletrolíticas conduzem eletricidade porque, na presença de uma diferença 
de potencial, os íons carregados movem-se em direção aos eletrodos, gerando uma 
corrente elétrica. Esse fenômeno é central para o funcionamento de células eletroquímicas 
e processos de eletrólise, como a produção de alumínio e galvanização de metais. 
Exemplos de soluções eletrolíticas incluem ácidos diluídos, como ácido clorídrico (HCl), 
bases, como hidróxido de sódio (NaOH), e sais, como sulfato de cobre (CuSO₄). 
A capacidade de uma solução eletrolítica conduzir eletricidade depende diretamente da 
concentração de íons presentes. Soluções mais concentradas em íons apresentam maior 
condutividade elétrica, enquanto soluções menos concentradas conduzem menos 
eletricidade. Esse princípio é essencial na formulação de soluções para baterias e outros 
dispositivos eletroquímicos. Em contraste, as soluções não eletrolíticas não contêm íons 
livres e, portanto, não conduzem eletricidade; um exemplo é uma solução de açúcar em 
água, onde as moléculas de açúcar permanecem intactas e não geram íons. 
As células galvânicas (ou células eletroquímicas) são dispositivos nos quais reações 
químicas espontâneas geram eletricidade. Um exemplo comum é a bateria de zinco-
carbono, onde o ânodo de zinco oxida-se, enquanto o cátodo de óxido de manganês reduz-
se, liberando energia na forma de uma corrente elétrica. Em uma célula galvânica, os 
elétrons naturalmente fluem do ânodo para o cátodo, permitindo o funcionamento de 
dispositivos como baterias e pilhas. Essas células diferem das eletrolíticas, pois nelas as 
reações ocorrem sem necessidade de corrente externa. 
As células galvânicas e eletrolíticas apresentam diferenças fundamentais. Nas galvânicas, 
as reações são espontâneas, liberando energia, enquanto nas eletrolíticas as reações 
necessitam de energia externa para ocorrer. Além disso, nas galvânicas, os elétrons fluem 
naturalmente do ânodo para o cátodo, enquanto nas eletrolíticas o fluxo de corrente 
elétrica é imposto de fora para dentro. Essas distinções refletem-se em suas aplicações: 
as células galvânicas são usadas para armazenamento de energia, como em baterias, 
enquanto as células eletrolíticas são empregadas em processos industriais que envolvem 
revestimento metálico, obtenção de metais e eletrólise de substâncias. 
Em um sistema eletroquímico, os elétrons movimentam-se externamente através de um 
condutor entre os eletrodos, enquanto os íons fluem internamente pela solução, em 
direção ao estado de equilíbrio eletroquímico. Nesse ponto de equilíbrio, conhecido como 
potencial do eletrodo, a corrente externa deixa de fluir. Os valores dos potenciais dos 
eletrodos podem ser obtidos experimentalmente ou teoricamente e são reunidos em 
tabelas de Potenciais Padrão de Redução, essenciais para prever e analisar o 
comportamento eletroquímico de diferentes substâncias. 
 
∆𝑛𝑖
𝑓𝑎𝑟𝑎𝑑
=
𝑉𝑖
𝑉𝑒 × ℱ
 
 
𝑚 =
𝑀 × 𝐼 × 𝑡
𝑧 × ℱ
=
𝑀 × 𝐼 × 𝑡
𝑧 × 𝑁𝐴 × 𝑒
 
 
𝑁𝐴 =
𝑀 × 𝐼 × 𝑡
𝑧 × 𝑚 × 𝑒
 
 
A corrente em um sistema eletroquímico possui duas naturezas: uma corrente capacitiva, 
relacionada à formação da dupla camada elétrica na interface eletrodo/solução, e uma 
corrente resistiva, chamada de corrente faradaica. Esta corrente está associada ao 
movimento das espécies iônicas, enquanto a corrente capacitiva refere-se ao acúmulo de 
carga nas interfaces. A corrente faradaica, em geral, tem magnitude superior à capacitiva 
e é fundamental para a realização das reações químicas no sistema. 
A polarização da célula eletroquímica ocorre quando há uma diferença entre a quantidade 
de substância depositada experimentalmente e a quantidade prevista teoricamente pela 
Lei de Faraday. Esse desvio é descrito pelo rendimento faradatico, que representa a fração 
de corrente efetivamente utilizada na reação. O rendimento faradatico é importante para 
avaliar a eficiência das reações eletroquímicas, especialmente em processos industriais 
onde a precisão e o controle da reação são cruciais. 
 
𝑟𝑓𝑎𝑟𝑎𝑑 =
∆𝑛𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒
∆𝑛𝑓𝑎𝑟𝑎𝑑
 
 
𝑜𝑛𝑑𝑒: ∆𝑛𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 : 𝑛ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑚𝑜𝑙𝑠 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 
∆𝑛𝑓𝑎𝑟𝑎𝑑 : 𝑛ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑚𝑜𝑙𝑠 𝑡𝑒ó𝑟𝑖𝑐𝑜 
 
 
 
 
 
 
 
 
 
 
QUESTÃO 2) 
Eletrodo 
Peso 
antes (g) 
Peso 
depois 
(g) Corrente(A) 
tempo 
(s) 
1 6,737 6,715 0,1 600 
2 8,685 8,71 0,1 600 
3 7,157 7,116 0,2 600 
4 7,618 7,648 0,2 600 
5 7,76 7,719 0,1 1200 
6 7,593 7,632 0,1 1200 
Eletrodo 
Peso 
antes (g) 
Peso 
depois 
(g) Corrente(A) 
tempo 
(s) 
massa depositada 
experimental (g) 
1 6,737 6,715 0,1 600 0,022 
2 8,685 8,71 0,1 600 0,025 
3 7,157 7,116 0,2 600 0,041 
4 7,618 7,648 0,2 600 0,03 
5 7,76 7,719 0,1 1200 0,041 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
QUESTÃO 3) 
 
Reações no cátodo (Redução) 
 
𝐶𝑢2+  +  2𝑒−  →  𝐶𝑢(𝑠) (𝐸0  =   + 0,34 𝑉) 
 
Aqui, observamos que os íons 𝐶𝑢2+ da solução são reduzidos e depositados como cobre 
metálico. Dessa forma, esse processo é favorecido pelos valores da corrente e pelo tempo 
de eletrólise que nós aplicamos, levando a esse depósito de cobre. Esse aumento é 
diretamente proporcional à carga fornecida (corrente X tempo), seguindo a Primeira Lei 
de Faraday. 
 
Reações no ânodo (Oxidação) 
 
𝐶𝑢(𝑠)  →  𝐶𝑢2+  +  2𝑒−  (𝐸0  =   − 0,34 𝑉) 
 
6 7,593 7,632 0,1 1200 0,039 
Eletrodo 
massa 
depositada 
experimental (g) 
Natureza 
do 
eletrodo 
1 0,022 CATODO 
2 0,025 ANODO 
3 0,041 CATODO 
4 0,03 ANODO 
5 0,041 CATODO 
6 0,039 ANODO 
Aqui, observamos que no ânodo, o cobre metálico se oxida para formar esses íons de 
𝐶𝑢2+. Dessa maneira, esse processo de oxidação explica a perda de massa observada nos 
eletrodos que atuaram como ânodo em cada par. Esses íons acabam migrando para o 
cátodo, onde eles são reduzidos e depositados como cobre metálicos, completando o ciclo 
de transferência de massa entre os eletrodos. 
 
Pequena curiosidade! → O ácido sulfúrico e o ácido nítrico ajudam a manter a 
condutividade da solução (ou seja, acaba permitindo uma passagem mais eficiente de 
corrente, podemos assim dizer). 
Além disso, a ureia atua como um estabilizante da solução, evitando precipitações 
indesejadas decobre. 
 
Questão 4) 
 
a) Escrever a Semi-Reação Catódica 
 
A semi-reação catódica (onde ocorre a deposição do cobre) é: 
 
𝐶𝑢2+  +  2𝑒−  →  𝐶𝑢(𝑠) 
 
Aqui, o íon 𝐶𝑢2+ recebe 2 elétrons (o valor estequiométrico para os elétrons é 2) 
 
b) Cálculo da Massa Teórica de Cobre Depositada 
 
Organizando os nossos dados experimentais, temos que: 
 
Par de 
eletrodos 
Corrente 
(I) 
Tempo 
(t) 
Massa 
Inicial 
(Ânodo) 
Massa 
Final 
(Ânodo) 
Massa 
Inicial 
(Cátodo) 
Massa 
Final 
(Cátodo) 
Δ Massa 
Experime
ntal (g) 
1 
(Eletrodos 
1 e 2) 
100 mA 
(0,1 A) 
10 min 
(600 s) 
6,737 g 6,715 g 8,685 g 8,710 g 0,025 g 
2 
(Eletrodos 
3 e 4) 
200 mA 
(0,2 A) 
10 min 
(600 s) 
7,157 g 7,116 g 7,618 g 7,648 g 0,030 g 
3 
(Eletrodos 
5 e 6 
100 mA 
(0,1 A) 
20 min 
(1200 
s) 
7,760 g 7,719 g 7,593 g 7,632 g 0,039 g 
 
Vale ressaltar que a massa experimental de cobre depositada no cátodo foi calculada pela 
diferença entre a massa final e a massa inicial do cátodo (Δ Massa Experimental). 
Calculando a massa teórica de cobre depositada, teremos: 
 
𝑚  =  
𝑀 .  𝐼 .  𝑡 
𝑧 .  𝐹
 
 
Onde: 
𝑀 = 63,55 g/mol (massa molar do cobre), 
𝐼 é a corrente (em amperes), 
𝑡 é o tempo (em segundos), 
𝑧 = 2 (número de elétrons na semi-reação de deposição do cobre), 
𝐹 = 96485 C/mol (constante de Faraday) 
 
Assim, calcularemos para cada par de eletrodos: 
 
Par de Eletrodos I (100mA, 10 minutos): 
𝑚  =
 63,55×0,1×600
2×96485
 = 0,198g 
 
Par de Eletrodos II (200mA, 10 minutos): 
𝑚  =
 63,55×0,2×600
2×96485
 = 0,0395g 
 
Par de eletrodos III (100mA, 20 minutos): 
𝑚  =
 63,55×0,1×1200
2×96485
 = 0,0395g 
 
Comparando com os resultados experimentais obtidos, temos que: 
 
Par de Eletrodos Massa Teórica (g) Massa 
Experimental (g) 
Diferença 
1 (Eletrodos 1 e 2) 0,0198 g 0,025 g +0,0052 g 
2 (Eletrodos 3 e 4) 0,0395 g 0,030 g -0,0095 g 
3 (Eletrodos 5 e 6) 0,0395 g 0,039 g -0,0005 g 
 
Assim, percebemos no Par I que a massa experimental é um pouco maior que a massa 
teórica, indicando possivelmente uma pequena contaminação ou erro experimental. 
Já no Par II, a massa experimental foi menor que a teórica, o que pode ter sido causado 
por perda de material ou reação secundária não controlada. 
Por fim, no Par 3, A massa experimental foi próxima à teórica, sugerindo que o 
procedimento foi mais preciso. 
Assim, podemos concluir que a diferença nos valores pode resultar de ineficiências no 
sistema como perda de material durante o manuseio ou fenômenos de polarização. Estes 
fatores fazem com que o valor experimental não corresponda exatamente ao teórico, 
refletindo um rendimento faradaico menor que 100%. 
 
QUESTÃO 5) 
 
Ajustando a equação utilizada no item 4.2, é possível encontrar o número de Avogadro 
experimental utilizando os valores das massas dos catodos obtidos (Equação 2). Logo, 
utiliza-se a massa depositada experimentalmente dos eletrodos 1,3,5. 
 
𝑁𝐴 =
𝑀 × 𝐼 × 𝑡
𝑧 × 𝑚 × 𝑒
 ( 𝐸𝑞𝑢𝑎çã𝑜 2 ) 
 
Catodos Na experimental 
1 5,40909E+23 
3 5,80488E+23 
5 5,80488E+23 
Média 5,67295E+23 
 
 
QUESTÃO 6) 
 
O erro percentual pode ser calculado pela equação abaixo: 
 
𝑒𝑟𝑟𝑜 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑢𝑎𝑙 = 
[ 𝑁𝐴 (𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙) − 𝑁𝐴 (𝑡𝑒ó𝑟𝑖𝑐𝑜) ]
𝑁𝐴 (𝑡𝑒ó𝑟𝑖𝑐𝑜)
 𝑥 100% 
 
Onde, 𝑁𝐴 (𝑡𝑒ó𝑟𝑖𝑐𝑜) = 6,02214076 𝑥 10²³; Na experimental: 
 
a) Valor encontrado em cada 𝑁𝐴 experimental obtido no número 5 
b) Média aritmética dos valores de 𝑁𝐴 experimental obtidos no número 5 
 
Erro percentual % 
a)1 10,17992 
a)3 3,60772 
a)5 3,60772 
b) 5,798454 
 
6.1- Comparar os resultados obtidos 
 
Comparando os erros percentuais obtidos acima com a constante de Avogadro da 
literatura (𝑁𝐴 = 6,022𝑥1023), é possível concluir que o método mais apropriado para a 
determinação do Na é o utilizado na letra (b). Esse resultado apresentou um erro 
percentual de apenas 5,798454%, ou seja, relativamente próximo do valor teórico 
esperado, enquanto o método utilizado na letra (a) teve uma flutuação dos resultados, 
variando desde erros percentuais aceitáveis (como no caso dos eletrodos 3 e 5) até erros 
percentuais mais altos (como o eletrodo 1). Isso se deve ao fato de que o método utilizado 
na letra (b) permite trabalhar com a média dos dados, o que faz com que dados que 
destoem muito do padrão esperado não afetem tanto o resultado final, já o método da letra 
(a) está muito sujeito a erros pontuais, como instrumental, em determinado eletrodo. 
 
Referências Bibliográficas 
 
[1] Atkins, P., & Jones, L. (2016). Princípios de Química: Questionando a Vida 
Moderna e o Meio Ambiente. 6ª edição. Porto Alegre: Bookman 
 
[2] Brown, T. L., LeMay, H. E., Bursten, B. E., Murphy, C., & Woodward, P. (2013). 
Química - A Ciência Central. 12ª edição. São Paulo: Pearson. 
 
[3] Skoog, D. A., West, D. M., Holler, F. J., & Crouch, S. R. (2014). Fundamentos de 
Química Analítica (9ª ed.). São Paulo: Cengage Learning 
 
[4]https://ava.pr1.uerj.br/pluginfile.php/648211/mod_resource/content/1/ROTEIROS%20
DE%20PR%C3%81TICAS.pdf 
[5]https://edisciplinas.usp.br/pluginfile.php/8043772/mod_resource/content/1/Eletroqui
mica.pdf 
 
https://ava.pr1.uerj.br/pluginfile.php/648211/mod_resource/content/1/ROTEIROS%20DE%20PR%C3%81TICAS.pdf
https://ava.pr1.uerj.br/pluginfile.php/648211/mod_resource/content/1/ROTEIROS%20DE%20PR%C3%81TICAS.pdf