Logo Passei Direto
Buscar
Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Prévia do material em texto

Probabilidade
Apresentação
A teoria da probabilidade é o ramo da matemática que estuda experimentos ou fenômenos 
aleatórios. Por meio dela, é possível analisar as chances de um determinado evento ocorrer. A 
inteligência artificial busca métodos e formas de simular a forma de pensar do ser humano. Dessa 
forma, a utilização da probabilidade está fortemente relacionada aos algoritmos inteligentes.
Nesta Unidade de Aprendizagem, você vai conhecer os conceitos básicos de probabilidade, como 
contagem, espaço amostral e evento. Também vai entender o que é probabilidade condicional e o 
teorema de Bayes.
Bons estudos.
Ao final desta Unidade de Aprendizagem, você deve apresentar os seguintes aprendizados:
Definir contagem, evento e espaço amostral.•
Distinguir probabilidade, probabilidade condicional e teorema de Bayes.•
Explicar a utilização da probabilidade na inteligência artificial.•
Desafio
Na análise da probabilidade de ocorrência de um determinado evento, três fatores devem ser 
considerados: contagem, evento e espaço amostral. Em probabilidade, espaço amostral significa o 
conjunto de todos os possíveis resultados de um experimento aleatório. Com relação ao evento, 
não são considerados quaisquer subconjuntos do espaço amostral.
Veja o seguinte caso:
Considerando que você seja um profissional especialista em sistemas inteligentes, responda:
1- Qual a justificativa para a utilização de conceitos da Probabilidade na construção do algoritmo 
desse sistema?
2- Identifique possíveis variáveis a serem consideradas. Justifique a sua proposta relacionando 
conceitos básicos com o universo proposto.
Infográfico
A probabilidade tem por objetivo permitir a identificação de ocorrência de eventos sujeitos a 
incertezas. Sua utilização no planejamento e inferência estatística é bastante conhecida e tem se 
revelado de grande importância para a inteligência artificial.
Veja neste Infográfico conceitos relacionados à probabilidade. Entender seus conceitos básicos é 
fundamental para quem deseja atuar nessa área de pesquisa.
Aponte a câmera para o 
código e acesse o link do 
conteúdo ou clique no 
código para acessar.
https://statics-marketplace.plataforma.grupoa.education/sagah/457ab642-7a52-4fb0-a5af-c35094167a8f/22f23593-d290-429e-9c56-63e05170bcbb.jpg
Conteúdo do livro
A probabilidade permite, por meio de cálculos, identificar a possibilidade de um fato ou condição 
ocorrer. A probabilidade analisa os eventos aleatórios que, alinhados, produzem um resultado 
uníco e repetitivo e que serão repetidos inúmeras vezes, desde que as mesmas condições sejam 
respeitadas. 
No capítulo Probabilidade, do livro Inteligência Artificial, você aprenderá sobre os conceitos básicos 
de probabilidade e entenderá como a probabilidade está relacionada à inteligência artificial.
Boa leitura.
INTELIGÊNCIA 
ARTIFICIAL
Fabricio Machado da Silva
Probabilidade
Objetivos de aprendizagem
Ao final deste texto, você deve apresentar os seguintes aprendizados:
 � Definir contagem, evento e espaço amostral.
 � Distinguir probabilidade, probabilidade condicional e teorema de 
Bayes.
 � Identificar a utilização da probabilidade na inteligência artificial.
Introdução
A história da probabilidade se iniciou com os jogos de cartas, dados e 
roleta, talvez por isso haja uma grande quantidade de exemplos de jogos 
de azar associados ao seu estudo. A teoria da probabilidade é calcular 
a chance de ocorrência de um resultado em um experimento aleatório, 
permitindo prever com certa antecipação essa chance.
Neste capítulo, você estudará as definições básicas de probabilidade, 
contagem, evento, espaço amostral; sua utilização na inteligência artificial; 
bem como a diferença entre probabilidade, probabilidade condicional 
e teorema de Bayes.
Definições básicas de probabilidade
A probabilidade é uma técnica de estudo das chances de ocorrência de cada 
resultado de um experimento aleatório, às quais são atribuídos os números 
reais do intervalo entre 0 e 1 — os resultados mais próximos de 1 têm mais 
chances de ocorrer. Ela também pode ser apresentada na forma de percentual.
A probabilidade associa números às chances de determinado resultado 
acontecer, assim, quanto maior for o número, maior deve ser a chance. Existem 
ainda um menor número que representa a impossibilidade da ocorrência desse 
evento e um maior que mostra a certeza do resultado. Para analisar a probabi-
lidade de sua ocorrência, é necessário entender três fatores envolvidos nela:
Fi
gu
ra
 1
. M
ap
a 
m
en
ta
l d
a 
pr
ob
ab
ili
da
de
.
Fo
nt
e:
 T
ab
or
da
 (2
01
5,
 d
oc
um
en
to
 o
n-
lin
e)
.
Probabilidade2
 � contagem;
 � evento;
 � espaço amostral.
Em probabilidade, o espaço amostral é o conjunto de todos os possíveis re-
sultados de um experimento aleatório e, no evento, são considerados quaisquer 
subconjuntos desse espaço amostral. Na Figura 1, você pode ver um exemplo 
de mapa mental para entender melhor os conceitos de probabilidade. Perceba 
que o espaço está em uma etapa anterior ao evento, simbolizando exatamente 
o que já foi relatado.
Contagem
Em matemática, a definição de contagem é o ato de determinar um número 
de elementos de um conjunto (finito), e existem evidências arqueológicas que 
possibilitam concluir que o processo de contar tenha sido utilizado há mais de 
50 mil anos por culturas primitivas para acompanhar os dados econômicos 
e sociais, como:
 � quantidade de membros do grupo, das presas, etc.;
 � propriedades e dívidas.
O princípio de contagem levou ao desenvolvimento da notação matemática, 
dos sistemas numéricos e da escrita atual. Ela ainda pode ocorrer de várias 
formas, por exemplo, verbalmente, falando cada número em voz alta (ou 
mentalmente) para acompanhar o progresso, utilizado com frequência para 
contar objetos presentes em vez de uma variedade de coisas no decorrer do 
tempo (horas, dias, semanas, etc.). Também pode ser por meio de marcações, 
com base de contagem unitária, registrando uma marca para cada objeto e 
contando seu total, o que é útil quando se deseja contar objetos ao longo de 
períodos, como o número de ocorrências de algo durante um dia. A contagem 
usual é realizada em base decimal, já os computadores usam base binária 
(zeros e uns).
A realização da contagem permite determinar a quantidade de elementos 
de determinado conjunto, por exemplo, o censo demográfico, que, por meio 
dela, sabe o número de elementos dos seguintes conjuntos:
Fi
gu
ra
 1
. M
ap
a 
m
en
ta
l d
a 
pr
ob
ab
ili
da
de
.
Fo
nt
e:
 T
ab
or
da
 (2
01
5,
 d
oc
um
en
to
 o
n-
lin
e)
.
3Probabilidade
 � quantidade de pessoas que vivem em determinado estado ou cidade;
 � quantidade de pessoas do sexo masculino e do feminino que vivem em 
determinado lugar.
No exemplo anterior, o estado ou a cidade podem ser o conjunto da con-
tagem, assim como o sexo.
Evento
O evento é qualquer subconjunto de um espaço amostral e pode conter nenhum 
elemento (conjunto vazio) ou todos os elementos desse espaço. Já seu número 
de elementos é representado da seguinte forma: n(E), sendo E o evento em 
questão. Seus exemplos incluem duas opções.
a) Sair cara em um lançamento de uma moeda.
O evento é sair cara e tem um único elemento. Sua representação também 
pode ser feita com notações de conjuntos, e seu número de elementos se trata 
de n(E) = 1.
E = {cara}
b) Sair um número par no lançamento de um dado.
O evento é sair um número par, e seu número de elementos se trata de 
n(E) = 3.
E = {2, 4, 6}
Os eventos que possuem apenas um elemento (ponto amostral) são cha-
mados de simples. Quando eles forem iguais ao espaço amostral, se chamam 
evento certo e sua probabilidade de ocorrência é 100%. Caso eles sejam iguais 
ao conjunto vazio, se denominam evento impossível e têm 0% de chances de 
ocorrência.
Espaço amostral
O espaço amostral, também chamado de universo, é um conjunto que possui 
todos os pontos amostrais de um evento aleatório, por exemplo, quando se 
referirao experimento lançar uma moeda, ele será formado por cara e co-
roa. Além disso, como se trata de um conjunto, qualquer notação deste pode 
representá-lo.
Probabilidade4
Assim, o espaço amostral, seus subconjuntos e as operações que o envol-
vem herdam as propriedades e operações dos conjuntos numéricos, por isso, 
pode-se dizer que os possíveis resultados do lançamento de duas moedas são:
S = {(x, y) naturais | x A) é equivalente a (]B->]A), assim não 
permite que a causalidade seja modelada.
As redes bayesianas são compostas de duas partescomplementares: uma 
qualitativa e outra quantitativa (GAAG, 1996). A parte qualitativa é um 
modelo gráfico (grafo acíclico direcionado), em que as variáveis incluem 
os nodos e as regras, relações de dependência entre elas, chamadas de arcos 
direcionados. Assim, um arco ligando as variáveis A e B (na forma A->B) 
indica que a variável B é a consequência e a variável A se trata da causa, 
apresentando uma relação de dependência resumida na regra “se A então 
B”. Porém, se não houver um arco ligando duas variáveis, assume-se que 
elas são independentes.
Veja na Figura 3 um exemplo de rede bayesiana.
9Probabilidade
Fi
gu
ra
 3
. E
xe
m
pl
o 
de
 u
m
a 
re
de
 b
ay
es
ia
na
.
Fo
nt
e:
 D
an
ta
s (
20
08
).
Probabilidade10
Nos sistemas especialistas probabilísticos, os valores de probabilidade 
refletem a crença do especialista sobre o que espera que ocorra em situações 
similares às que têm experiência e aprendeu ao longo de sua vivência. Assim, 
ele tenta extrapolar com base em experiência e aprendizado no domínio de 
aplicação.
Conheça um instituto brasileiro de inteligência artificial, que usa probabilidade e 
estatística, no link a seguir.
https://qrgo.page.link/QeSBj
Administrado pelo Centro de Estudos do Risco da Universidade Federal da Bahia 
(CER-UFBA), o site Previsão Esportiva tem o objetivo de agregar pesquisadores, alunos 
de graduação e pós-graduação interessados no desenvolvimento metodológico 
estatístico para dados esportivos. As previsões divulgadas são obtidas a partir de um 
modelo estatístico para os resultados dos jogos, que considera os fatores: mando de 
campo, poder de ataque e poder de defesa de cada equipe do campeonato. Saiba 
mais sobre esse assunto no link a seguir.
https://qrgo.page.link/T2hWE
BRITO, R. Probabilidade condicional: o que é, exemplos e exercícios! Stoodi, 22 jul. 
2018. Disponível em: https://www.stoodi.com.br/blog/2018/07/11/probabilidade-
-condicional/. Acesso em: 14 maio 2019.
DANTAS, C. A. B. Probabilidade: um curso introdutório. 3. ed. São Paulo: EDUSP, 2008.
11Probabilidade
MURTEIRA, B. J. F. Probabilidades e estatística. 2. ed. Lisboa: McGraw-Hill, 1990. 2 v.
TABORDA, A. Mapa mental: probabilidade. Desconversa, 13 ago. 2015. Disponível em: 
https://descomplica.com.br/blog/matematica/mapa-mental-probabilidade/. Acesso 
em: 14 maio 2019.
Leituras recomendadas
BUSSAB, W. O.; MORETTIN, P. A. Estatística básica. 5. ed. São Paulo: Saraiva, 2006.
MURTEIRA, B. J. et al. Introdução à estatística. 2. ed. Lisboa: McGraw Hill, 2002.
WALPOLE, R. E. et al. Probabilidade e estatística para engenharia e ciências. 8. ed. São 
Paulo: Pearson Prentice Hall, 2014.
Probabilidade12
Dica do professor
Um dos grandes problemas em inteligência artificial é o tratamento dos dados incertos, isto é, como 
tomar uma decisão sem ter as informações necessárias. A necessidade de tratar a incerteza em 
sistemas levou à construção de sistemas inteligentes probabilísticos.
Nesta Dica do Professor, será apresentado um pouco do conceito de computação probabilistica e 
sua ligação com a área de Inteligência Artificial.
Aponte a câmera para o código e acesse o link do conteúdo ou clique no código para acessar.
https://fast.player.liquidplatform.com/pApiv2/embed/cee29914fad5b594d8f5918df1e801fd/782158e7be4eaa7b97c94c01487e55cd
Exercícios
1) Um morador de uma região metropolitana tem 50% de probabilidade de atrasar-se para o 
trabalho quando chove na região; caso não chova, sua probabilidade de atraso é de 25%. 
Para um determinado dia, o serviço de meteorologia estima em 30% a probabilidade da 
ocorrência de chuva nessa região.
Qual é a probabilidade desse morador se atrasar para o serviço no dia para o qual foi dada a 
estimativa de chuva?
A) 0,075
B) 0,150
C) 0,325
D) 0,600
E) 0,800
2) Em Matemática, a definição de contagem é o ato de determinar um número n de elementos 
de um conjunto (finito). Sebre esse conceito, é correto afirmar que:
A) Em todo conjunto com um número de elementos finitos, é possível aplicar a contagem, pois é 
um conjunto possível de determinar sua quantidade.
B) A contagem não faz sentido para sistemas de I.A.
C) A contagem é um recurso da Matemática e não tem relação com I.A.
D) Não é possível usar a contagem para saber a população de um país.
E) A contagem pode ser aplicada para saber, por exemplo, a quantidade de planetas na galáxia.
3) Os eventos que possuem apenas um elemento (ponto amostral) são chamados de simples. 
Quando o evento é igual ao espaço amostral, ele é chamado de evento certo e sua 
probabilidade de ocorrência é de 100%. 
Sobre eventos é correto afirmar:
A) Eventos simples são subconjuntos de um espaço amostral.
B) O evento é um subconjunto de um espaço amostral.
C) Não é possível ter um evento certo quando se tem somente um elemento no espaço 
amostral.
D) Não é possível ter evento simples quando espaço amostral é maior que um elemento.
E) Não existe espaço amostral maior que um.
4) Há diversas formas possíveis para ilustrar a probabilidade condicional. Por exemplo: as 
chances de um bebê nascer menina é um evento A. Agora, a probabilidade dessa criança 
apresentar doença celíaca, que é intolerância ao glúten, é um evento B. Baseado nesse 
exemplo, assinale a alternativa correta:
A) O exemplo não está relacionado com probabilidade condicional.
B) O exemplo está relacionado a um único espaço amostral.
C) O exemplo está relacionado à probabilidade condicional.
D) O exemplo não tem qualquer relação com probabilidade.
E) O exemplo não pode ser resolvido por meio de um sistema inteligente.
5) Nos sistemas especialistas probabilísticos, os valores de probabilidade refletem a crença do 
especialista sobre o que ele espera que ocorra em situações similares àquelas que têm 
experiência e que aprendeu ao longo de sua vivência. A utilização dos conceitos de 
probabilidade está diretamente relacionada:
A) Apenas com os cálculos de fatores envolvidos com problemas matemáticos
B) Sistemas especialistas não se baseiam em crenças e por isso não têm relação alguma com 
probabilidade.
C) Apesar de se chamarem sistemas especialistas probalísticos, não têm relação com 
probabilidade e sim com aprendizado de máquina.
D) Sistemas especialistas utilizam a probabilidade para ter um grau de crença na ocorrência de 
determinado evento.
E) Uso de probabilidade em sistemas especialistas está diretamente ligado a sua aplicação em 
campos de pesquisa.
Na prática
A probabilidade faz parte do dia a dia dos indivíduos e está presente nas mais rotineiras tarefas 
do cotidiano. Todos os dias as pessoas se deparam com situações que as obrigam a tomar decisões 
sobre as quais não têm certeza, mas apenas indicações que as permitem decidir com alguma 
probabilidade de acerto.
Veja, neste Na Prática, que você está rodeado de eventos probabilísticos.
Aponte a câmera para o código e acesse o link do conteúdo ou clique no código para acessar.
https://statics-marketplace.plataforma.grupoa.education/sagah/236936e0-d466-43a2-950f-d8dede23dfeb/531f7fe3-0ebd-44fb-820c-a27ce6be5259.jpg
Saiba +
Para ampliar o seu conhecimento a respeito desse assunto, veja abaixo as sugestões do professor:
Dicas de PROBABILIDADE - Questão matemática Comentada 
com Dica de RLM
Veja algumas dicas de probabilidade com questões comentadas que ajudarão a assimilar o tema.
Aponte a câmera para o código e acesse o link do conteúdo ou clique no código para acessar.
https://www.youtube.com/embed/6e0s6YvS1sw

Mais conteúdos dessa disciplina