Prévia do material em texto
DINÂMICA Quando se fala em dinâmica de corpos, a imagem que vem à cabeça é a clássica e mitológica de Isaac Newton, lendo seu livro sob uma macieira. Repentinamente, uma maçã cai sobre a sua cabeça. Segundo consta, este foi o primeiro passo para o entendimento da gravidade, que atraia a maçã. Com o entendimento da gravidade, vieram o entendimento de Força, e as três Leis de Newton. Na cinemática, estuda-se o movimento sem compreender sua causa. Na dinâmica, estudamos a relação entre a força e movimento. Força: É uma interação entre dois corpos. O conceito de força é algo intuitivo, mas para compreendê-lo, pode-se basear em efeitos causados por ela, como: Aceleração: faz com que o corpo altere a sua velocidade, quando uma força é aplicada. Deformação: faz com que o corpo mude seu formato, quando sofre a ação de uma força. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo. Dadas várias forças aplicadas a um corpo qualquer: A força resultante será igual a soma vetorial de todas as forças aplicadas 1) Nos esquemas de I a IV, é representada uma partícula e todas as forças que agem sobre ela. As forças têm a mesma intensidade F e estão contidas em um mesmo plano. Em que caso (ou casos) a força resultante na partícula é nula? 2) (ESPCEX-SP – mod.) Com base no sistema de forças coplanares de mesma intensidade, representado abaixo, indique a alternativa correta: 2)(PUC-SP) Os esquemas seguintes mostram um barco sendo retirado de um rio por dois homens. Em (a), são usadas cordas que transmitem ao barco forças paralelas de intensidades F1 e F2. Em (b), são usadas cordas inclinadas de 90° que transmitem ao barco forças de intensidades iguais às anteriores. Leis de Newton As leis de Newton constituem os três pilares fundamentais do que chamamos Mecânica Clássica, que justamente por isso também é conhecida por Mecânica Newtoniana. 1ª Lei de Newton - Princípio da Inércia Quando estamos dentro de um carro, e este contorna uma curva, nosso corpo tende a permanecer com a mesma velocidade vetorial a que estava submetido antes da curva, isto dá a impressão que se está sendo "jogado" para o lado contrário à curva. Isso porque a velocidade vetorial é tangente a trajetória. Quando estamos em um carro em movimento e este freia repentinamente, nos sentimos como se fôssemos atirados para frente, pois nosso corpo tende a continuar em movimento. Estes e vários outros efeitos semelhantes são explicados pelo princípio da inércia, cujo enunciado é: "Um corpo em repouso tende a permanecer em repouso, e um corpo em movimento tende a permanecer em movimento." Então, conclui-se que um corpo só altera seu estado de inércia, se alguém, ou alguma coisa aplicar nele uma força resultante diferente se zero. 1) Em relação a um referencial inercial, tem-se que a resultante de todas as forças que agem em uma partícula é nula. Então, é correto afirmar que: a) a partícula está, necessariamente, em repouso; b) a partícula está, necessariamente, em movimento retilíneo e uniforme; c) a partícula está, necessariamente, em equilíbrio estático; d) a partícula está, necessariamente, em equilíbrio dinâmico; e) a partícula, em movimento, estará descrevendo trajetória retilínea com velocidade constante. Resposta: e 2) Indique a alternativa que está em desacordo com o Princípio da Inércia. a) A velocidade vetorial de uma partícula só pode ser variada se esta estiver sob a ação de uma força resultante não-nula. b) Se a resultante das forças que agem em uma partícula é nula, dois estados cinemáticos são possíveis: repouso ou movimento retilíneo e uniforme. c) Uma partícula livre da ação de uma força externa resultante é incapaz de vencer suas tendências inerciais. d) Numa partícula em movimento circular e uniforme, a resultante das forças externas não pode ser nula. e) Uma partícula pode ter movimento acelerado sob força resultante nula. 2ª Lei de Newton - Princípio Fundamental da Dinâmica Quando aplicamos uma mesma força em dois corpos de massas diferentes observamos que elas não produzem aceleração igual. A 2ª lei de Newton diz que a Força é sempre diretamente proporcional ao produto da aceleração de um corpo pela sua massa, ou seja ou em módulo: F = ma Onde: F é a resultante de todas as forças que agem sobre o corpo (em N); m é a massa do corpo a qual as forças atuam (em kg); a é a aceleração adquirida (em m/s²) A unidade de força, no sistema internacional, é o N (Newton), que equivale a kg m/s² (quilograma metro por segundo ao quadrado). Exemplo: Quando um força de 12N é aplicada em um corpo de 2kg, qual é a aceleração adquirida por ele? F= ma 12 = 2a a = 6m/s² 2) O bloco da figura tem massa igual a 4,0 kg e está sujeito à ação exclusiva das forças horizontais F1 e F2 : Sabendo que as intensidades de F1 e de F2 valem, respectivamente, 30 N e 20 N, determine o módulo da aceleração do bloco. Como |F1| > |F2|, o bloco é acelerado horizontalmente para a direita por uma força resultante F , cuja intensidade é dada por: F = F1 – F2 F = (30 – 20) N ⇒ F = 10 N Fundamental da Dinâmica: F = m a ⇒ a = F/m ⇒ a = 10 N/4,0 kg ⇒ a = 2,5 m/s2 3) O gráfico a seguir mostra a variação do módulo da aceleração (a) de duas partículas A e B com a intensidade (F) da força resultante que atua sobre elas. Determine a relação mA/mB entre as massas de A e de B. Partícula A: 3 F0 = mAa0 (1) Partícula B: F0 = mB a0 (2) (1) ÷ (2) : Partícula A: 3 F0 = mAa0 (1) Partícula B: F0 = mB a0 (2) 3 = mA / mB 2) Superman, famoso herói das histórias em quadrinhos e do cinema, acelera seu próprio corpo, freia e faz curvas sem utilizar sistemas propulsores, tais como asas e foguetes, dentre outros. É possível a existência de um herói como o Superman? Fundamente sua resposta em leis físicas. Resposta: Não, pois ele contraria o Princípio da Inércia. Para realizar suas manobras radicais é necessária a atuação de uma força resultante e externa. 3) Analise as proposições a seguir: I. O cinto de segurança, item de uso obrigatório no trânsito brasileiro, visa aplicar aos corpos do motorista e dos passageiros forças que contribuam para vencer sua inércia de movimento. II. Um cachorro pode ser acelerado simplesmente puxando com a boca a guia presa à coleira atada em seu pescoço. III. O movimento orbital da Lua ao redor da Terra ocorre por inércia. Estão corretas: a) I, II e III; c) Somente II e III; e) Somente I. b) Somente I e II; d) Somente I e III; (I) Correta. (II) Incorreta. Para que o cachorro seja acelerado é necessário que atue em seu corpo uma força resultante externa. Quando o animal puxa com a boca a guia presa à coleira atada em seu pescoço, surgem forças na sua boca e no seu pescoço, além de trações na guia e na coleira. Essas forças, internas ao sistema, equilibram-se duas a duas, não modificando a velocidade do cachorro. (III) Incorreta. As únicas situações possíveis por inércia são o repouso e o movimento retilíneo e uniforme. A Lua mantém-se em órbita ao redor da Terra devido à força gravitacional que esta aplica sobre ela. É devido a essa força que a velocidade da Lua se altera em direção de ponto para ponto da trajetória.. Força de Tração Dado um sistema onde um corpo é puxado por um fio ideal, ou seja, que seja inextensível, flexível e tem massa desprezível. Podemos considerar que a força é aplicada no fio, que por sua vez, aplica uma força no corpo, a qual chamamos Força de Tração 3ª Lei de Newton - Princípio da Ação e Reação Quando uma pessoa empurra um caixa com um força F, podemos dizer que esta é uma força de ação. mas conforme a 3ª lei de Newton, sempre que isso ocorre, há uma outra força com módulo e direção iguais, e sentido oposto a força de ação, esta é chamada força de reação. Esta é o princípio da ação e reação, cujo enunciado é: "As forças atuamsempre em pares, para toda força de ação, existe uma força de reação." Força Peso Quando falamos em movimento vertical, introduzimos um conceito de aceleração da gravidade, que sempre atua no sentido a aproximar os corpos em relação à superficie. Relacionando com a 2ª Lei de Newton, se um corpo de massa m, sofre a aceleração da gravidade, quando aplicada a ele o principio fundamental da dinâmica poderemos dizer que: A esta força, chamamos Força Peso, e podemos expressá-la como: Além da Força Peso, existe outra que normalmente atua na direção vertical, chamada Força Normal. Esta é exercida pela superfície sobre o corpo, podendo ser interpretada como a sua resistência em sofrer deformação devido ao peso do corpo. Esta força sempre atua no sentido perpendicular à superfície, diferentemente da Força Peso que atua sempre no sentido vertical. Analisando um corpo que encontra-se sob uma superfície plana verificamos a atuação das duas forças. 1)Um homem empurra um bloco sobre uma mesa horizontal perfeitamente sem atrito, aplicando-lhe uma força paralela à mesa, conforme ilustra a figura: Faça um esquema representando todas as forças que agem no bloco, bem como as que, com elas, formam pares ação-reação. Para que este corpo esteja em equilíbrio na direção vertical, ou seja, não se movimente ou não altere sua velocidade, é necessário que os módulos das forças Normal e Peso sejam iguais, assim, atuando em sentidos opostos elas se anularão. Por exemplo: Qual o peso de um corpo de massa igual a 10kg: (a) Na superfície da Terra (g=9,8m/s²); (b) Na superfície de Marte (g=3,724m/s²). 1)(ESPCEX-SP) Na superfície da Terra, uma pessoa lança uma pedra verticalmente para cima. Considerando-se que a resistência do ar não é desprezível, indique a alternativa que representa as forças que atuam na pedra, no instante em que ela está passando pelo ponto médio de sua trajetória durante a subida. Despreze o empuxo do ar. Resolução: A pedra está sob a ação de duas forças verticais e dirigidas para baixo: seu peso ( A ) e a força de resistência do ar ( FAr ) 2)(Fuvest-SP) Um homem tenta levantar uma caixa de 5 kg, que está sobre uma mesa, aplicando uma força vertical de 10 N. Nesta situação, o valor da força que a mesa aplica na caixa é de: a) 0 N. b) 5 N. c) 10 N. d) 40 N. e) 50 N. Resolução: Na figura a seguir, estão representadas as forças que agem na caixa: Condições de equilíbrio: Fn + T = P Fn = m g – T Fn = 5 · 10 – 10 (N) Fn = 40 N Resposta: Força de Atrito Até agora, para calcularmos a força, ou aceleração de um corpo, consideramos que as superfícies por onde este se deslocava, não exercia nenhuma força contra o movimento, ou seja, quando aplicada uma força, este se deslocaria sem parar. Mas sabemos que este é um caso idealizado. Por mais lisa que uma superfície seja, ela nunca será totalmente livre de atrito. Sempre que aplicarmos uma força a um corpo, sobre uma superfície, este acabará parando. É isto que caracteriza a força de atrito: Se opõe ao movimento; Depende da natureza e da rugosidade da superfície (coeficiente de atrito); É proporcional à força normal de cada corpo; Transforma a energia cinética do corpo em outro tipo de energia que é liberada ao meio. A força de atrito é calculada pela seguinte relação: Onde: μ: coeficiente de atrito (adimensional) N: Força normal (N) Atrito Estático e Dinâmico Quando empurramos um carro, é fácil observar que até o carro entrar em movimento é necessário que se aplique uma força maior do que a força necessária quando o carro já está se movimentando. Isto acontece pois existem dois tipo de atrito: o estático e o dinâmico 1) Na situação esquematizada na figura abaixo, um trator arrasta uma tora cilíndrica de 4,0 · 103 N de peso sobre o solo plano e horizontal. Se a velocidade vetorial do trator é constante e a força de tração exercida sobre a tora vale 2,0 · 103 N, qual é o coeficiente de atrito cinético entre a tora e o solo? μc = 0,50 10 3 𝑃 𝑇 = Resolução: MRU: Fatc = T ⇒ μc Fn = T μc P = T ⇒ μc =T/P 2) Na figura, o esquiador parte do repouso do ponto A, passa por B com velocidade de 20 m/s e para no ponto C: O trecho BC é plano, reto e horizontal e oferece aos esquis um coeficiente de atrito cinético de valor 0,20. Admitindo desprezível a influência do ar e adotando g = 10 m/s2 , determine: a) a intensidade da aceleração de retardamento do esquiador no trecho BC; b) a distância percorrida por ele de B até C e o intervalo de tempo gasto nesse percurso. a) 2ª Lei de Newton: Fatc = m a ⇒ μc Fn = m a μc m g = m a ⇒ a = μc g a = 0,20 · 10 (m/s2) ⇒ a = 2,0 m/s2 2) Na figura, representa-se um caminhão inicialmente em repouso sobre uma pista plana e horizontal. Na sua carroceria, apoia--se um bloco de massa M. Sendo μ o coeficiente de atrito estático entre o bloco e a carroceria e g o valor da aceleração da gravidade local, determine a máxima intensidade da aceleração que o caminhão pode adquirir sem que o bloco escorregue. 3) Considere duas caixas, A e B, de massas respectivamente iguais a 10 kg e 40 kg, apoiadas sobre a carroceria de um caminhão que trafega em uma estrada reta, plana e horizontal. No local, a influência do ar é desprezível. Os coeficientes de atrito estático entre A e B e a carroceria valem μA = 0,35 e μB = 0,30 e, no local, g = 10 m/s2. Para que nenhuma das caixas escorregue, a maior aceleração (ou desaceleração) permitida ao caminhão tem intensidade igual a: a) 3,5 m/s2; c) 2,5 m/s2; e) 1,5 m/s2. b) 3,0 m/s2; d) 2,0 m/s2 Resolução: A máxima aceleração (ou desaceleração) permitida para que não haja escorregamento de qualquer caixa é dada por: Optamos pelo menor valor, 3,0 m/s2, uma vez que, quando a caixa B estiver na iminência de escorregar, a caixa A ainda não estará nessa situação. Resposta: b amáx = μ g Caixa A: aA = μA g = 0,35 · 10 ⇒ aA = 3,5 m/s 2 Caixa B: aB = μB g = 0,30 · 10 ⇒ aB = 3,0 m/s 2 Slide 1: DINÂMICA Slide 2 Slide 3 Slide 4 Slide 5 Slide 6 Slide 7 Slide 8 Slide 9 Slide 10 Slide 11 Slide 12 Slide 13 Slide 14 Slide 15 Slide 16 Slide 17 Slide 18 Slide 19 Slide 20 Slide 21 Slide 22 Slide 23 Slide 24 Slide 25 Slide 26 Slide 27 Slide 28 Slide 29 Slide 30 Slide 31 Slide 32 Slide 33 Slide 34