Logo Passei Direto
Buscar
Material
páginas com resultados encontrados.
páginas com resultados encontrados.

Prévia do material em texto

Resistência dos Materiais
� Prof : Rodolfo Suanno
� E-mail: rsuanno@gmail.com
� Site: https://sites.google.com/site/resistenciadosmateriaisuerj/
Horários: 1 Período 2 Período
3/7/2012 Resistência dos Materiais 1
�Horários: 1 Período 2 Período
Quarta - M1-M3 Quarta – N1-N3 
Quinta - M1-M3 Sexta – T6-N2 
Objetivos desta Aula
Após esta aula os estudantes serão capazes de:
� Explicar a importância da Resistência dos Materiais no 
estudo da engenharia civil/mecânica.
� Listar os conceitos fundamentais da Resistência dos 
3/7/2012 Resistência dos Materiais 2
� Listar os conceitos fundamentais da Resistência dos 
Materiais.
� Distinguir entre problemas de concepção e de análise.
� Reconhecer considerações de Resistência e Rigidez.
� Desenhar Diagramas de Corpo Livre (D.C.L.).
� Resolver problemas de equilíbrio estático.
� Calcular resultantes internas em um ponto específico.
Mecânica
Ramo da Ciência que se preocupa com 
o estado de repouso ou movimento 
3/7/2012 Resistência dos Materiais 3
o estado de repouso ou movimento 
de corpos submetidos à forças.
Mecânica
Mecânica dos Sólidos Mecânica dos Fluídos
Mecânica
3/7/2012 Resistência dos Materiais 4
Estática Cinemática Dinâmica
Corpos Rígidos Corpos Deformáveis
Mecânica dos Sólidos Mecânica dos Fluídos
Nomes Para a Disciplina
�Resistência dos Materiais
�Mecânica dos Materiais
�Introdução à Mecânica dos Sólidos
3/7/2012 Resistência dos Materiais 5
�Introdução à Mecânica dos Sólidos
�Mecânica dos Corpos Deformáveis
Equilíbrio de Um Corpo Rígido
Objetivos
� Desenvolver equações de equilíbrio para um 
corpo rígido.
3/7/2012 Resistência dos Materiais 6
corpo rígido.
� Introduzir o conceito de diagrama de corpo 
livre (D.C.L.) para um corpo rígido. 
� Mostrar como resolver problemas de 
equilíbrio de corpos rígidos utilizando as 
equações de equilíbrio. 
Equilíbrio de Um Corpo Rígido
Equações vetoriais de equilíbrio
0F =∑
3/7/2012 Resistência dos Materiais 7
0M
0F
O =
=
∑
∑
Procedimento para a Elaboração de 
um Diagrama de Corpo Livre
1. Selecionar eixos coordenados.
2. Desenhar esboço da estrutura analisada livre 
das suas restrições ou ligações 
3. Mostrar todas as forças e momentos atuando 
sobre o corpo. Incluir cargas aplicadas e 
3/7/2012 Resistência dos Materiais 8
sobre o corpo. Incluir cargas aplicadas e 
reações.
4. Identificar cada carregamento e fornecer 
dimensões. Rotular forças e momentos com 
as magnitudes e direções apropriadas. 
Rotular incógnitas
Exemplo de Diagrama de Corpo Livre
3/7/2012 Resistência dos Materiais 9
Exemplo de Diagrama de Corpo Livre
Efeito do 
Efeito da carga aplicada 
agindo sobre a viga
3/7/2012 Resistência dos Materiais 10
Efeito do 
suporte fixo 
atuando sobre 
a viga
Efeito da gravidade sobre 
a viga (peso próprio)
Diagrama de 
Corpo Livre
3/7/2012 Resistência dos Materiais 11
Exemplo de Diagrama de Corpo Livre
3/7/2012 Resistência dos Materiais 12
Exemplo de Diagrama de Corpo Livre
3/7/2012 Resistência dos Materiais 13
Exemplo de Diagrama de Corpo Livre
3/7/2012 Resistência dos Materiais 14
Exemplo de Diagrama de Corpo Livre
3/7/2012 Resistência dos Materiais 15
Exemplo de Diagrama de Corpo Livre
Efeito de B agindo sobre A
Efeito da chapa 
inclinada sobre A
3/7/2012 Resistência dos Materiais 16
Efeito da gravidade (peso) 
sobre A
Efeito da chapa 
inferior sobre A
Exemplo de Diagrama de Corpo Livre
3/7/2012 Resistência dos Materiais 17
Exemplo de Diagrama de Corpo Livre
3/7/2012 Resistência dos Materiais 18
Exemplo de 
Diagrama de 
Corpo Livre
3/7/2012 Resistência dos Materiais 19
Exemplo de 
Diagrama de 
Corpo Livre
3/7/2012 Resistência dos Materiais 20
Exemplo de Diagrama de Corpo Livre
3/7/2012 Resistência dos Materiais 21
Exemplo de Diagrama de Corpo Livre
3/7/2012 Resistência dos Materiais 22
Exemplo de Diagrama de Corpo Livre
3/7/2012 Resistência dos Materiais 23
Exemplo de 
Diagrama de 
Corpo Livre
3/7/2012 Resistência dos Materiais 24
Exemplo de 
Diagrama de 
Corpo Livre
3/7/2012 Resistência dos Materiais 25
Nota : Forças internas de uma barra 
sobre outra são forças colineares iguais 
e opostas, as quais não devem ser 
incluídas uma vez que elas se anulam
Pontos Importantes
1. Nenhum problema de equilíbrio deve ser 
resolvido sem a elaboração prévia de um 
D.C.L. apropriado. 
2. Se um suporte restringe uma translação em 
uma determinada direção, então ele exerce 
3/7/2012 Resistência dos Materiais 26
uma determinada direção, então ele exerce 
uma força no corpo nesta direção. 
3. Se um suporte restringe uma rotação do corpo, 
então ele exerce um momento sobre o corpo.
4. Estudar a tabela fornecida acima para 
entender as reações de apoio. 
Engenharia Estrutural
�Introdução à Engenharia Estrutural
�Forças em Estruturas
3/7/2012 Resistência dos Materiais 27
�Sistemas Estruturais
�Materiais Típicos na Engenharia Civil
Engenharia Estrutural
� Qual a função de um engenheiro estrutural?
ִUm engenheiro de estruturas projeta sistemas 
estruturais e elementos estruturais em edifícios, 
3/7/2012 Resistência dos Materiais 28
estruturais e elementos estruturais em edifícios, 
pontes, estádios, túneis e outras obras de engenharia 
civil (esqueleto) 
ִProjeto(Design): processo de determinação da 
geometria, material e dimensão de elementos 
estruturais para resistir as forças que atuam em uma 
estrutura 
Processo do Projeto Estrutural
� Identificar o problema (desafio)
� Explorar soluções alternativas
ִPesquisar experiência do passado
ִ“Brainstorm”
ִProjeto preliminar das soluções mais promissoras
3/7/2012 Resistência dos Materiais 29
ִProjeto preliminar das soluções mais promissoras
� Analisar e projetar uma ou mais soluções viáveis
� Testar e avaliar a solução
ִTeste Experimental (protótipo) ou teste de campo
ִAvaliação pelos pares
� Desenvolver solução utilizando recursos disponíveis (materiais, 
equipamentos, mão-de-obra)
Processo do Projeto Estrutural
� Selecionar material para construção
� Determinar sistema estrutural apropriado para o caso 
particular
3/7/2012 Resistência dos Materiais 30
particular
� Determinar forças atuando na estrutura
� Dimensionar (calcular dimensões) os elementos e 
conexões para evitar falha (colapso) ou deformação 
excessiva
Exemplos de Estruturas
3/7/2012 Resistência dos Materiais 31
Forças Agindo nas Estruturas
� Forças induzidas pela gravidade
ִCargas Permanentes(Dead Loads): peso próprio da 
estrutura e acessórios
ִCargas variáveis (Live loads): cargas móveis (por ex.. 
3/7/2012 Resistência dos Materiais 32
ִCargas variáveis (Live loads): cargas móveis (por ex.. 
ocupantes, veículos, etc..)
� Forças induzidas pelo vento
� Forças induzidas por terremoto
� Forças induzidas por variação de temperatura
� Pressões de Fluídos (Empuxos)
� Outros
Forças Agindo nas Estruturas
3/7/2012 Resistência dos Materiais 33
Vertical: Gravidade Lateral: Vento, Terremoto
Estabilidade Global
3/7/2012 Resistência dos Materiais 34
Escorregamento TombamentoEscorregamento Tombamento
Forças em Elementos Estruturais
100 
kg
100 
kg
100 
kg
3/7/2012 Resistência dos Materiais 35
Compression
100 
kg
Tension CompressionTension CompressãoTração
Forças em Elementos Estruturais (cont.)
100 
kg
Flexão
3/7/2012 Resistência dos Materiais 36
Flexão
Torção
Sistemas Estruturais Típicos (1)
3/7/2012 Resistência dos Materiais 37
Arco
Sistemas Estruturais Típicos (2)
Treliças3/7/2012 Resistência dos Materiais 38
C
T
CC
T
Forças nos membros da Treliça
Treliças
Sistemas Estruturais Típicos (3)
3/7/2012 Resistência dos Materiais 39
Quadro
Sistemas Estruturais Típicos (4)
3/7/2012 Resistência dos Materiais 40
Placas Planas
Sistemas Estruturais Típicos (5)
3/7/2012 Resistência dos Materiais 41
Placas Dobradas
Sistemas Estruturais Típicos (6)
3/7/2012 Resistência dos Materiais 42
Cascas
Conceitos da Resistência dos Materiais
3/7/2012 Resistência dos Materiais 43
Definição de Tensão
T Exemplo (Unidades Inglesas):
T = 1,000 lb (1 kip)
A = 10 in2.
Tensão = 1,000/10 = 100 
lb/in2
Exemplo (Unidades SI):
Seção
Transv.
Tensão = Força/Área
3/7/2012 Resistência dos Materiais 44
Seção
Transv.
T
Exemplo (Unidades SI):
1 lb = 4.448 N (Newton)
1 in = 25.4 mm
T = 1,000 lb x 4.448 N/lb = 4448 N
A = 10 in2 x (25.4 mm)2 = 6450 mm2
(1 in)2
Tensão = 4448/6450 = 0.69 N/mm2 (MPa)T
Definição de Deformação
∆L
T
Deformação = ∆∆∆∆L / Lo
Exemplo:
Lo = 1000 mm
∆∆∆∆L = 12 mm
3/7/2012 Resistência dos Materiais 45T
Lo
∆∆∆∆L = 12 mm
Deformação = 12 / 1000 = 0.012 
mm/mm
Deformação é adimensional!!
(independente unidades SI ou Inglesas)
Comportamento Tensão-Deformação 
de Materiais Elásticos-Lineares
Tensão
3/7/2012 Resistência dos Materiais 46
Deformação
E
E = Módulo de Elasticidade = Tensão / Deformação
Materiais Utilizados na Engenharia Civil
� Pedras e Alvenaria
� Metais
ִFerro Fundido
3/7/2012 Resistência dos Materiais 47
ִFerro Fundido
ִAço
ִAlumínio
� Concreto
� Madeira
Propriedades dos Materiais
� Aço
ִTensão Máxima: 275 – 900 MPa
ִDeformação Máxima: 0.2 – 0.4
ִMódulo de Elasticidade: 200000 MPa
� Concreto
3/7/2012 Resistência dos Materiais 48
� Concreto
ִTensão Máxima : 20 – 90 MPa
ִDeformação Máxima : 0.004
ִMódulo de Elasticidade : 20000 – 35000 MPa
� Madeira
Valores dependem do tipo de madeira. Por exemplo:
ִTensão de Tração : 8 MPa
ִTensão de Compressão : 10 MPa
ִMódulo de Elasticidade: 10000 MPa
Suportes bi-dimensionais
Reações de Apoio
Regra Geral: Se um suporte previne a
translação de um corpo em uma direção
3/7/2012 Resistência dos Materiais 49
translação de um corpo em uma direção
específica, então como conseqüência uma
força surgirá nesta mesma direção. De
forma análoga se uma rotação é impedida,
um momento correspondente surgirá como
reação a esta restrição.
Suportes Típicos
3/7/2012 Resistência dos Materiais 50
Suportes Típicos
3/7/2012 Resistência dos Materiais 51
Apoio do 1° gênero
3/7/2012 Resistência dos Materiais 52
pino
3/7/2012 Resistência dos Materiais 53
ou
Suporte Fixo ou engaste
3/7/2012 Resistência dos Materiais 54
Cabo
3/7/2012 Resistência dos Materiais 55
Apoio Intermediário
3/7/2012 Resistência dos Materiais 56
Console
3/7/2012 Resistência dos Materiais 57
Ligação Rotulada
3/7/2012 Resistência dos Materiais 58
Ligação Rotulada (Treliça)
3/7/2012 Resistência dos Materiais 59
Ligação Rotulada (Treliça)
3/7/2012 Resistência dos Materiais 60
3/7/2012 Resistência dos Materiais 61
Ligação Rotulada (Treliça)
3/7/2012 Resistência dos Materiais 62
3/7/2012 Resistência dos Materiais 63
Fixo 
3/7/2012 Resistência dos Materiais 64
Modelagem
3/7/2012 Resistência dos Materiais 65
Modelagem
3/7/2012 Resistência dos Materiais 66
Evolução Histórica
� Início do Século XVII – Galileu – efeitos de 
cargas em hastes e vigas
� Início do Século XVIII – Métodos para 
descrições das propriedades mecânicas dos 
3/7/2012 Resistência dos Materiais 67
descrições das propriedades mecânicas dos 
materiais
� Estudos experimentais e teóricos desenvolvidos 
por Saint-Venant, Poisson, Lamé e Navier
� Século XIX e XX, Teoria da Elasticidade e 
Plasticidade
Evolução Histórica
3/7/2012 Resistência dos Materiais 68
Viga de Galileu - 1638
Estruturas Históricas
3/7/2012 Resistência dos Materiais 69
Estruturas Históricas
3/7/2012 Resistência dos Materiais 70
Estruturas Históricas
3/7/2012 Resistência dos Materiais 71
Panteão - Roma
Estruturas Históricas
3/7/2012 Resistência dos Materiais 72
Estruturas Históricas
3/7/2012 Resistência dos Materiais 73
La Sagrada Familia - Barcelona
Estruturas Funiculares
3/7/2012 Resistência dos Materiais 74
Estruturas Funiculares
3/7/2012 Resistência dos Materiais 75
Estruturas Funiculares
3/7/2012 Resistência dos Materiais 76
Estruturas Funiculares
3/7/2012 Resistência dos Materiais 77
Estruturas 
Funiculares
3/7/2012 Resistência dos Materiais 78
Concepção Estrutural
3/7/2012 Resistência dos Materiais 79
Concepção 
Estrutural
3/7/2012 Resistência dos Materiais 80
Concepção Estrutural
Carga
3/7/2012 Resistência dos Materiais 81
Arranjo Estrutural : Tábuas 
apoiadas sobre vigas
Concepção Estrutural
Largura Unitária
3/7/2012 Resistência dos Materiais 82
Tábua típica : As cargas e 
reações se tornam cargas nas 
vigas
Concepção Estrutural
3/7/2012 Resistência dos Materiais 83
Cargas Suportadas pelas Vigas
A Viga central recebe reações 
das tábuas dos dois lados
Concepção Estrutural
Área carregada assumida 
suportada pela viga B Carga
Área carregada assumida 
suportada pela viga A
3/7/2012 Resistência dos Materiais 84
Cargas Suportadas pelas Vigas
Área carregada assumida 
suportada pela viga C
Áreas de Contribuição : para cada viga é 
assumida a suportação de uma 
determinada área como indicado.
Concepção Estrutural
3/7/2012 Resistência dos Materiais 85
Faixas de carga : 
Comprimento Unitário de Carga= (largura da 
faixa de carga) x (área unitária de carga)
Concepção Estrutural
3/7/2012 Resistência dos Materiais 86
Representação diagramática das vigas e cargas. 
A “carga/unidade de comprimento”, ou wa, em 
lb/ft ou N/m, é freqüentemente denotado 
simplesmente como w. 
Concepção 
Estrutural
3/7/2012 Resistência dos Materiais 87
Concepção 
Estrutural
3/7/2012 Resistência dos Materiais 88
Terças
Concepção 
Estrutural
3/7/2012 Resistência dos Materiais 89
Concepção 
Estrutural
3/7/2012 Resistência dos Materiais 90
Treliça de telhado
Piso - Deck
Concepção 
Estrutural
3/7/2012 Resistência dos Materiais 91
Longarinas
Piso - Deck
Transversinas
Concepção 
Estrutural
3/7/2012 Resistência dos Materiais 92
Treliça de 
Ponte
Estruturas Modernas
3/7/2012 Resistência dos Materiais 93
Estruturas Modernas
3/7/2012 Resistência dos Materiais 94
Estruturas Modernas
3/7/2012 Resistência dos Materiais 95
Estruturas Modernas
3/7/2012 Resistência dos Materiais 96
Estruturas Modernas
3/7/2012 Resistência dos Materiais 97
Estruturas Modernas
3/7/2012 Resistência dos Materiais 98
Estruturas Modernas
3/7/2012 Resistência dos Materiais 99

Mais conteúdos dessa disciplina