Prévia do material em texto
OBJETIVAS
1a Questão (Ref.: 201401764741)
Fórum de Dúvidas (0) Saiba (0)
Um determinado objeto possui o módulo da força resultante F = +10 N, onde α = 60 º, β = 60º e γ = 90º são seus ângulos diretores coordenados referente aos eixos x, y, e z, respectivamente. Sendo o vetor posição da força resultante R = ( +1, +4, +8 ) m. Determine o momento gerado pela força resultante em relação ao eixos x, y e z.
Mx = -40Nm ; My = +40 Nm e Mz = -10 Nm
Mx = -40 Nm ; My = +40 Nm e Mz = -15 Nm
Mx = zero; My = zero e Mz = zero
Mx = zero; My = +40 Nm e Mz = -15 Nm
Mx = +40 Nm ; My = -40 Nm e Mz = +15 Nm
2a Questão (Ref.: 201401764732)
Fórum de Dúvidas (0) Saiba (0)
Em um determinado objeto o vetor força resultante é F = ( -40, +20, +10 ) N e o seu vetor posição éR = (-3, +4, +6 ) m. Determine o momento dessa força em relação ao eixo z do plano cartesiano.
Mz = +100 Nm
Mz = zero
Mz = -80 Nm
Mz = -100 Nm
Mz = -210 Nm
3a Questão (Ref.: 201401764735)
Fórum de Dúvidas (0) Saiba (0)
Duas forças atuam em um determinado objeto F1 = ( +15, -10, +2 ) N e F2 = ( +15, -10, +2 ) N. Sendo o vetor posição da força resultante R = ( +10, +4, +8 ) m. Determine o momento gerado pela força resultante em relação ao eixo y.
My = +176 Nm
My = +200 Nm
My = -320 Nm
My = -200 Nm
My = zero
4a Questão (Ref.: 201401764736)
Fórum de Dúvidas (0) Saiba (0)
Duas forças atuam em um determinado objeto F1 = ( +15, -10, +2 ) N e F2 = ( +15, -10, +2 ) N. Sendo o vetor posição da força resultante R = ( +10, +4, +8 ) m. Determine o momento gerado pela força resultante em relação ao eixo z.
Mz = -320 Nm
Mz = -200 Nm
Mz = zero
Mz = +320 Nm
Mz = +176Nm
5.
Uma força de 50 kN, que atua sobre uma partícula, está sendo aplicada sobre uma partícula. Essa força encontra-se no plano xy e a mesma faz um ângulo de 30º com o eixo y. Determine as componentes desse vetor nos eixos x e y.
Fx = 25,0 kN Fy = 43,3 kN
Fx = 30,0 kN Fy = 20,0 kN
Fx = 43,3 kN Fy = 25,0 kN
Fx = 20,0 kN Fy = 30,0 kN
Fx = -43,3 kN Fy = -30,0 kN
6a Questão (Ref.: 201301706392)
Analisando as alternativas abaixo assinale a verdadeira em relação a um ESCALAR.
É uma grandeza biológica
Uma grandeza física que fica completamente especificada por vários números
É uma grandeza química.
Não é uma grandeza
Uma grandeza fsica que
fica completamente especificada por um unico número.
7.
São grandezas escalares todas as quantidades físicas a seguir, EXCETO:
massa de um objeto;
peso de um objeto;
temperatura de um corpo
densidade de uma liga metálica;
intervalo de tempo entre dois eventos;
8a Questão (Ref.: 201401764740)
Fórum de Dúvidas (0) Saiba (0)
Três forças atuam em um determinado objeto F1 = ( +15, -10, +2 ) N, F2 = ( +15, -10, +2) N e F3 = ( +10, -1, +20 ) N. Sendo o vetor posição da força resultante R = ( +1, +4, +8 ) m. Determine o momento gerado pela força resultante em relação aos eixos x, y e z.
Mx = +296 Nm ; My = +264 Nm e Mz = -181 Nm
Mx = -264 Nm ; My = -296 Nm e Mz = +181 Nm
Mx = +264 Nm ; My = +296 Nm e Mz = -181 Nm
Mx = zero; My = zero e Mz = zero
Mx = -181 Nm ; My = +296 Nm e Mz = -181 Nm
9a Questão (Ref.: 201202348424)
Determine a coordenada y do centróide associado ao semicírculo de raio 6 centrado no ponto (0,0)
Y = 6/Pi
Y = 10/Pi
Y = 8/Pi
Y = 2/Pi
Y = 4/Pi
10a Questão (Ref.: 201202348420)
Determine as coordenadas x e y do centróide associado ao semicírculo de raio 3 centrado no ponto (0,0)
X = 0 , Y = 4/Pi
X = 4/Pi , Y = 0
X = 0 , Y = 3/Pi
X = 3/Pi , Y = 0
X = 0 , Y = 0
11a Questão (Ref.: 201401698473)
Fórum de Dúvidas (0) Saiba (0)
Com relação ao centroide e o centro de massa, podemos afirmar que:
O centroide C é o centro geométrico do corpo. Ele sempre coincide com o centro de massa.
O centroide C é o centro geométrico do corpo. Ele nunca coincide com o centro de massa.
O centroide C é o centro geométrico do corpo. Ele coincide com o centro de massa se o corpo tiver massa específica uniforme.
O centroide C é o centro geométrico do corpo. Ele coincide com o centro de massa se o corpo tiver massa específica disforme.
O centro de massa C é o centro geométrico do corpo. Ele nunca coincide com o centroide se o corpo tiver massa específica uniforme.
12a Questão (Ref.: 201401631631)
Fórum de Dúvidas (0) Saiba (0)
A força V, o binário M e o binário T são chamados, respectivamente de:
Força cisalhante, momento torçor e momento fletor;
Momento fletor, força cisalhante, e momento torçor;
Força cisalhante, momento fletor e momento torçor;
Força cortante, momento torçor e momento fletor;
Força cisalhante, Força cortante e momento torçor;
13a Questão (Ref.: 201401316203)
Fórum de Dúvidas (0) Saiba (0)
Uma viga de 6 m biapoiada em suas extremidades sofre um carregamento de 300 KN a 4 m da sua extremidade da esquerda. Calcular o módulo do momento fletor em um ponto localizado a 1 m da sua extremidade da esquerda
75 KN*m
150 KN*m
125 KN*m
100 KN*m
50 KN*m
Gabarito Comentado
14a Questão (Ref.: 201401316194)
Fórum de Dúvidas (0) Saiba (0)
Uma viga de 4m biapoiada em suas extremidades sofre um carregamento de 100 KN no seu centro. Calcular o módulo do momento fletor em um ponto localizado a 1 m da sua extremidade da esquerda
37,5 KN*m
62,5 KN*m
25,0 KN*m
75,0 KN*m
50,0 KN*m
15a Questão (Ref.: 201401316201)
Fórum de Dúvidas (0) Saiba (0)
Uma viga de 5 m biapoiada em suas extremidades sofre um carregamento de 200 KN a 3 m da sua extremidade da esquerda. Calcular o módulo do momento fletor em um ponto localizado a 2 m da sua extremidade da esquerda
120 KN*m
140 KN*m
150 KN*m
160 KN*m
130 KN*m
16a Questão (Ref.: 201401270529)
Fórum de Dúvidas (0) Saiba (0)
Considere uma viga bi-apoiada de 5 m de comprimento carregada em toda a sua extensão por uma carga distribuída 8 kN/m e por uma carga concentrada de 50kN. A que distância do apoio esquerdo deve ser posicionada a carga concentrada para que a sua reação seja o dobro da reação do apoio direito?
0,75 m
1,50 m
0,50 m
1,25 m
1,0 m
17a Questão (Ref.: 201202322797)
Pontos: 0,5 / 0,5
Uma viga posicionada sobre eixo x possui as suas extremidades definidas no plano cartesiano XY por (0,0) e (L,0). Uma força F1 = 100 (-j) N é aplicada no ponto r1 = L/4 (i) m. Uma força F2 = 200 (-j) N é aplicada no ponto r2 = L/2 (i) m. Uma força F3 = 300 (-j) N é aplicada no ponto r3 = L (i) m. Estas 3 forças serão substituidas por uma única força F = F0 (-j) N aplicada no ponto r = L/3 (i) m. Para que o momento total aplicado na viga não seja alteradocom a substituição das 3 forças (F1, F2 e F3) pela força F, calcular o valor do módulo desta força:
1425 N
600 N
425 N
1025 N
1275 N
18a Questão (Ref.: 201308435409)
Pontos: 1,5 / 1,5
Uma peça de 3m de comprimento, com peso desprezível e apenas um apoio equilibra um corpo de peso 400N, colocado numa das extremidades, através de uma força com intensidade de 80N aplicada na outra extremidade. Qual a localização do ponto de apoio, medido a partir da extremidade de aplicação da força?
1,75m
2,5m
2,0m
2,25m
1,5m
19a Questão (Ref.: 201202178492)
Pontos: 0,0 / 0,5
Determine a força resultante que atua no olhal, onde F1 = 250lb e forma ãngulo de 30° com o eixo do Y (vertical), considerando o sentido anti-horário de rotação a partir do eixo do x. F2 = 375 lb forma ângulo de 45° a partir do eixo X (horizontal), no sentido horário.
487 lb
437 lb
393 lb
288 lb
367 lb
20a Questão (Ref.: 201202282293)
Pontos: 0,5 / 0,5
Analisando as alternativas abaixo assinale a verdadeira em relação a um ESCALAR.
É uma grandeza química.
Uma grandeza fsica que
fica completamente especificada por um unico número.
É uma grandeza biológica
Não é uma grandeza
Uma grandeza física que fica completamente especificada por vários números
21a Questão (Ref.: 201202268418)
Três forças coplanares estão aplicadas sobre um corpo. Sabendo que duas delas, de intensidades 12N e 16N, são perpendiculares entre si, e que o corpo está em equilíbrio estático, determine aproximadamente a intensidade da terceira força. 18N. 20N. 22N. 24N. 26N.
18
25
20
22
16
22 MECÂNICA
46752 / 1a sem.
Pontos: 0,5 / 0,5
Três forças coplanares estão aplicadas sobre um corpo. Sabendo que duas delas, de intensidades 10N e 15N, são perpendiculares entre si, e que o corpo está em equilíbrio estático, determine aproximadamente a intensidade da força F3.
20N.
18N.
24N.
26N.
22N.
23a Questão (Ref.: 201307103879)
Pontos: 0,5 / 0,5
Uma força de 20 N deve ser decomposta em duas componentes perpendiculares entre si de modo que uma das componentes tenha intensidade de 16 N. Qual a intensidade da outra componente?
14N.
12N.
10N.
18N.
16N.
24.) VETOR FORÇA
108336 / 2a sem.
Pontos: 0,5 / 0,5
Determine a magnitude da resultante das forças F1 = 600N e F2 = 800N, sabendo-se de estas forças formam ãngulos de 45° e 150°, respectivamente, medidos no sentido anti-horário a partir do eixo X positivo.
897N
867N
767N
777N
788N
25a Questão (Ref.: 201401675877)
Fórum de Dúvidas (0) Saiba (0)
Num corpo estão aplicadas apenas 3 forças de intensidades 15N, 13N e 7,0N. Uma possível intensidade da resultante será:
zero
40N
1 N
21N
55 N
26.) MECÂNICA
46777 / 1a sem.
Pontos: 0,5 / 0,5
É correto afirmar que:
newton x segundo² = quilograma / metro.
newton x segundo² = quilograma x metro.
m/segundo² = newton x quilograma.
quilograma/metro² = newton/segundo².
newton/metro² = quilograma²/segundo².
27a Questão (Ref.: 201202343187)
Uma viga posicionada sobre eixo x possui as suas extremidades definidas no plano cartesiano XY por (0,0) e (L,0). Uma força F1 = 300 (-j) N é aplicada no ponto r1 = L/3 (i) m. Uma força F2 = 400 (j) N é aplicada no ponto r2 = L/2 (i) m. Uma força F3 = 500 (-j) N é aplicada no ponto r3 = L (i) m. Estas 3 forças serão substituidas por uma única força F = F0 (-j) N aplicada no ponto r = 5L/8 (i) m. Para que o momento total aplicado na viga não seja alterado com a substituição das 3 forças (F1, F2 e F3) pela força F, calcular o valor do módulo desta força:
960 N
400 N
640 N
320 N
800 N
28a Questão (Ref.: 201301699073)
Considere uma viga bi-apoiada de 5 m de comprimento carregada em toda a sua extensão por uma carga distribuída 8kN/m e por uma carga concentrada de 50kN. A que distância do apoio esquerdo deve ser posicionada a carga concentrada para que a sua reação seja o dobro da reação do apoio direito?
1,0 m
1,50 m
1,25 m
0,75 m
0,50 m
29a Questão (Ref.: 201301699039)
Seja uma viga bi-apoiada com 6 m de vão submetida apenas a uma carga concentrada. A que distância do apoio esquerdo devemos posicionar a carga de forma que a reação neste apoio seja o dobro da reação do apoio direito?
2,5
2
1
1,5
30a Questão (Ref.: 201202348544)
Uma viga de 5 m biapoiada em suas extremidades sofre um carregamento de 200 KN a 3 m da sua extremidade da esquerda. Calcular o módulo do momento fletor em um ponto localizado a 2 m da sua extremidade da esquerda
160 KN*m
150 KN*m
120 KN*m
140 KN*m
130 KN*m
31a Questão (Ref.: 201202348546)
Uma viga de 6 m biapoiada em suas extremidades sofre um carregamento de 300 KN a 4 m da sua extremidade da esquerda. Calcular o módulo do momento fletor em um ponto localizado a 1 m da sua extremidade da esquerda
100 KN*m
150 KN*m
125 KN*m
75 KN*m
50 KN*m
32a Questão (Ref.: 201202343210)
Uma viga horizontal de 700 kg e 10 m está apoiada somente por suas extremidades. Estes dois pontos de apoio são representados no plano cartesiano XY por A = (0 , 0) e B = (10 , 0). No ponto P = (8 , 0) há uma força F = 2500 (j) N aplicada. Se o sistema se encontra em equilíbrio, calcular as reações nos apoios A e B. Utilize o módulo da aceleração da gravidade como |g| = 10 m/s^2.
RA = 1500 N e RB = 3000 N
RA = 3000 N e RB = 1500 N
RA = 2250 N e RB = 2250 N
RA = 2000 N e RB = 2500 N
RA = 2500 N e RB = 2000 N
33a Questão (Ref.: 201202343205)
Uma viga horizontal de 600 kg e 10 m está apoiada somente por suas extremidades. Estes dois pontos de apoio são representados no plano cartesiano XY por A = (0 , 0) e B = (10 , 0). No ponto P = (7 , 0) há uma força F = 3000 (-j) N aplicada. Se o sistema se encontra em equilíbrio, calcular as reações nos apoios A e B. Utilize o módulo da aceleração da gravidade como |g| = 10 m/s^2.
RA = 4600 N e RB = 4400 N
RA = 4300 N e RB = 4700 N
RA = 3900 N e RB = 5100 N
RA = 4400 N e RB = 4600 N
RA = 5100 N e RB = 3900 N
34a Questão (Ref.: 201202343188)
Uma viga posicionada sobre eixo x possui as suas extremidades definidas no plano cartesiano XY por (0,0) e (L,0). Uma força F1 = 100 (-j) N é aplicada no ponto r1 = L/4 (i) m. Uma força F2 = 200 (-j) N é aplicada no ponto r2 = L/2 (i) m. Uma força F3 = 300 (-j) N é aplicada no ponto r3 = L (i) m. Estas 3 forças serão substituidas por uma única força F = F0 (-j) N aplicada no ponto r = L/3 (i) m. Para que o momento total aplicado na viga não seja alterado com a substituição das 3 forças (F1, F2 e F3) pela força F, calcular o valor do módulo desta força:
1275 N
425 N
600 N
1025 N
1425 N
35a Questão (Ref.: 201202348537)
Uma viga de 4m biapoiada em suas extremidades sofre um carregamento de 100 KN no seu centro. Calcular o módulo do momento fletor em um ponto localizado a 1 m da sua extremidade da esquerda37,5 KN*m
75,0 KN*m
25,0 KN*m
50,0 KN*m
62,5 KN*m
Questão 36
Questão 37
38.
Quando dizemos que a velocidade de uma bola é de 20 m/s, horizontal e para a direita, estamos definindo a velocidade como uma grandeza:
algébrica
linear
escalar
vetorial
como um número
39.
O módulo da resultante de duas forças de módulos F1 = 4kgf e F2 = 3kgf perpendiculares entre si vale:
100kgf
6kgf
10kgf
4kgf
5kgf
40a Questão (Ref.: 201401631593)
Fórum de Dúvidas (0) Saiba (0)
Qual da alternativa abaixo é a definição do principio de transmissibilidade?
Somente uma força externa qualquer pode ser aplicada em qualquer ponto sobre sua linha de ação sem alterar os efeitos resultantes da força externa ao corpo rígido no qual ela atua.
Somente uma força interna qualquer pode ser aplicada em qualquer ponto sobre sua linha de ação sem alterar os efeitos resultantes da força externa ao corpo rígido no qual ela atua.
Uma força qualquer pode não ser aplicada em qualquer ponto sobre sua linha de ação sem alterar os efeitos resultantes da força externa ao corpo rígido no qual ela atua.
Uma força qualquer pode ser aplicada em qualquer ponto sobre sua linha de ação sem alterar os efeitos resultantes da força externa ao corpo rígido no qual ela atua
Uma força qualquer pode ser aplicada em apenas um ponto de aplicação sem alterar os efeitos resultantes da força externa ao corpo rígido no qual ela atua, mas não podemos trata-la como um vetor móvel.
41a Questão (Ref.: 201401632846)
Fórum de Dúvidas (0) Saiba (0)
Podemos citar como exemplo de forças internas em vigas:
força de cisalhamento e peso
peso e força cortante
momento fletor e peso
Força normal e força cortante
força axial e peso
42.
Em um determinado objeto a sua força resultante é F na direção ( +k ) e o seu vetor posição é R na direção ( +i ). Determine o vetor momento gerado por essa força.
1. O vetor Momento será o produto da componente em z do vetor força resultante com componente em x do vetor posição;
2. O vetor momento terá a direção do eixo y no sentido negativo;
3. O vetor momento terá a direção do eixo y no sentido positivo.
Somente a afirmativa 1 esta correta
Somente as afirmativas 1 e 2 estão corretas
Somente a afirmativa 2 esta correta
Somente as afirmativas 1 e 3 estão corretas
Somente a afirmativa 3 esta correta
43.
Sobre o método de análise de treliças pelo método das seções, podemos afirmar que:
Uma porção inteira da treliça é considerada como um único corpo em equilíbrio e as forças em elementos internos à seção não estão envolvidas na análise da seção como um todo.
Uma porção inteira da treliça é considerada como um único corpo em equilíbrio e as forças em elementos internos à seção estão envolvidos na análise da seção como um todo, já que fazem parte da treliça.
Deve-se considerar a treliça inteira como um único corpo em equilíbrio e as forças em elementos internos à seção não estão envolvidas na análise da seção como um todo.
Uma porção inteira da treliça é considerada como um único corpo fora do equilíbrio e as forças em elementos internos à seção não estão envolvidas na análise da seção como um todo.
Uma porção inteira da treliça é considerada como dois corpos em equilíbrio e as forças em elementos internos à seção não estão envolvidas na análise da seção como um todo.
44.
A força V, o binário M e o binário T são chamados, respectivamente de:
Força cisalhante, momento torçor e momento fletor;
Momento fletor, força cisalhante, e momento torçor;
Força cisalhante, momento fletor e momento torçor;
Força cortante, momento torçor e momento fletor;
Força cisalhante, Força cortante e momento torçor;
45a Questão (Ref.: 201401243924)
Fórum de Dúvidas (0) Saiba (0)
Um binário atua nos dentes da engrenagem mostrada na figura abaixo.
Calcule o momento do binário.
M = 2,4 Nm.
M = 0,24Nm.
M - 2400 Nm.
M = 24 Nm.
M = 240 Nm.
46.
Um binário atua nos dentes da engrenagem mostrada na figura. Qual será o valor do binário equivalente, composto por um par de forças que atuam nos pontos A e B.
90N
100N
150N
120N
80N
47a Questão (Ref.: 201401634287)
Fórum de Dúvidas (0) Saiba (0)
Determine a componente vertical da força que o pino em C exerce no elemento CB da estrutura mostrada na figura abaixo.
1.200N
1.154N
1237N
577N
1000N
48.) MECÂNICA
84215 / 6a sem.
Pontos: 0,0 / 1,0
Um tarugo de metal é montado em um torno para usinagem de uma peça. A ferramenta de corte exerce a força de 60 N, no ponto D, como indicado na figura a baixo. Determine o ângulo e expresse a força como um vetor cartesiano.
β = 90° e F = - 31 i - 52 k (N)
β = 80° e F = 31 i + 90 j - 52 k (N)
β = 90° e F = 58 i + 290 j + 200 k (N)
β = 70° e F = 181 i + 190 j - 120 k (N)
β = 97° e F = - 31 i + 90 j - 52 k (N)
49a Questão (Ref.: 201308341823)
Pontos: 1,5 / 1,5
Dois binários agem na viga. Determine a magnitude de F para que o momento resultante dos binários seja de 450 lb.ft no sentido anti-horário.
F = 139 lb
F = 197 lb
F = 130 lb
F = 200 lb
F = 97 lb
50a Questão (Cód.: 84259)
6a sem.: MECÂNICA
Pontos: 0,0 / 0,5
A força de F={600 i + 300j ¿ 600k} N age no fim da viga. Determine os momentos da força sobre o ponto A.
M = 781 i + 290 j + 700 k (N.m)
M = 640 i + 120 j + 770 k (N.m)
M = -720 i + 120 j - 660 k (N.m)
M = -282 i + 128 j - 257 k (N.m)
M = -160 i -120 j + 190 k (N.m)
51.) MECÂNICA
84224 / 6a sem.
Pontos: 1,0 / 1,0
Uma força de 80 N age no punho que corta o papel. Determine o momento criado por esta força no pino O, se o ângulo teta for de 60 graus.
MF = 18 N.m
MF = 27 N.m
MF = 28,1 N.m
MF = 58,5 N.m
MF = 36,2 N.m
52) MECÂNICA
84212 / 4a sem.
Pontos: 1,0 / 1,0
No cabo do guindaste atua uma força de 250 lb, como indicado na figura, expresse a força F como um vetor cartesiano.
F = 181 i + 290 j + 200 k (lb)
F = 218 i + 90 j - 120 k (lb)
F = - 381 i - 290 j - 100 k (lb)
F = 217 i + 85,5 j - 91,2 k (lb)
F = - 217 i + 85,5 j + 91,2 k (lb)
53.) VETOR POSIÇÃO
108343 / 3a sem.
Pontos: 1,0 / 1,0
Em dado momento, a posição do avião em A e o trem em B são medidos em relação ao radar da antena em O. Determine o vetor posição dirigido de A para B.
R = (3,213 i + 2,822 j + 5,175 k) km
R = (2,223 i + 4,822 j + 3,775 k) km
R = (2,213 i + 3,822 j + 5,175 k) km
R = (6,213 i + 1,822 j + 4,175 k) km
R = (3,553 i + 2,992 j + 3,275 k) km
54.
Determine a tensão no cabo AB para que o motor de 250kg mostrado na figura esteja em equilíbrio . Considere a aceleração da gravidade 9,81m/s2
Quest.: 6
2123,5 N C
4247 N1226 N
4904 N
2452 N
55a Questão (Cód.: 84252)
5a sem.: MECÂNICA
Pontos: 0,5 / 0,5
O guindaste tem uma haste extensora de 30 ft e pesa 800 lb aplicado no centro de massa G. Se o máximo momento que pode ser desenvolvido pelo motor em A é de M = 20 (103) lb. Ft. Determine a carga máxima W aplicada no centro de massa G¿ que pode ser levantado quando teta for 30 graus.
W = 508,5 lb
W = 366,2 lb
W =5 18 lb
W = 370 lb
W = 319 lb
56 Questão (Ref.: 201401684744)
Fórum de Dúvidas (0) Saiba (0)
A tora de madeira é rebocada pelos dois tratores mostrados. Sabendo que a força resultante é igual a 10 KN e está orientada ao longo do eixo x positivo, determine a intensidade das forças Fa e Fb. Considere θ = 15 0 ( cosseno 45 0 = 0,71 e seno 45 0= 0,71).
Fa = 114,94 KN
Fb = 103,09 KN
Fa = 214,94 KN
Fb = 203,09 KN
Fa = 118,94 KN
Fb = 109,09 KN
Fa = 314,94 KN
Fb = 303,09 KN
Fa = 124,94 KN
Fb = 113,09 KN
57) MECÂNICA
84261 / 7a sem.
Pontos: 1,0 / 1,0
Um momento de 4 N.m é aplicado pela a mão do operário. Determine o binário de forças F, que age na mão do operário e, P que atua na ponta da chave de fenda.
F = 197,8 N e P= 180N
F = 133 N e P= 800N
F = 97,8 N e P= 807N
F = 197,8 N e P= 820N
F = 97,8 N e P= 189N
58a Questão (Cód.: 84220)
3a sem.: MECÂNICA
Pontos: 0,5 / 0,5
A chave é usada para soltar um parafuso, conforme figura abaixo. Determine o momento de cada força sobre o eixo do parafuso passando pelo ponto O.
MF1 = 27 N.m e MF2 = 30 N.m
MF1 = 24,1 N.m e MF2 = 14,5 N.m
MF1 = 17 N.m e MF2 = 10 N.m
MF1 = 26 N.m e MF2 = 31 N.m
MF1 = 37 N.m e MF2 = 20 N.m
59a Questão (Cód.: 84191)
3a sem.: MECÂNICA
Pontos: 0,5 / 0,5
Determine a força resultante que atua no olhal da figura abaixo:
97,8 N
115 N
187 N
85,1 N
199,1N
60.) MECÂNICA
81950 / 3a sem.
Pontos: 0,5 / 0,5
Determine a força resultante que atua no olhal da figura abaixo:
487 lb
499 lb
521 lb
393 lb
687 lb
61a Questão (Ref.: 201307141264)
Pontos: 1,0 / 1,0
Expresse as forças , da figura abaixo, como vetores cartesianos:
F1= 15 i + 26 j (kN) e F2 = -20 i + 26 j (kN)
F1= -15 i - 26 j (kN) e F2 = -10 i + 24j (kN)
F1= 15 i + 23 j (kN) e F2 = 10 i + 26 j (kN)
F1= 18 i + 29 j (kN) e F2 = 10 i + 26 j (kN)
F1= -15 i + 26 j (kN) e F2 = 10 i - 26 j (kN)
62.) MECÂNICA
84257 / 5a sem.
Pontos: 0,0 / 1,0
A haste está dobrada no plano x-y e tem raio de 3 metros. Se uma força de 80 N age em sua extremidade, determine o momento desta força no ponto O.
M = 181 i + 290 j + 200 k (N.m)
M = 400 i + 220 j + 990 k (N.m)
M = -160 i -120 j + 190 k (N.m)
M = - 128 i + 128 j - 257 k (N.m)
63a Questão (Cód.: 125462)
9a sem.: binário
Pontos: 1,0 / 1,0
Encontre uma força F vertical aplicada no ponto B que substitua o binário.
300 N.
500 N.
400 N.
600 N.
800 N.
64.) BINÁRIO
125437 / 7a sem.
Pontos: 0,0 / 1,0
Determine o Momento em A devido ao binário de forças.
60 Nm.
50 Nm.
30 Nm
40 Nm.
20 Nm
65a Questão (Ref.: 201308383625)
Pontos: 1,0 / 1,0
Qual deve ser a intensidade da força F para que atue no parafuso um momento de 40 N.m.
Dado cos 230 = 0.9216.
194,1 N
180,1 N
190,1 N
200,1 N
184,1 N
66a Questão (Ref.: 201202348585)
Considere a figura a baixo. Calcular o módulo da força que atua no segmento CD.
30 KN
20 KN
40 KN
60 KN
50 KN
67a Questão (Ref.: 201202348583)
Considere a figura a baixo. Calcular o módulo da força que atua no segmento BF.
65,5 KN
70,7 KN
60,3 KN
50,1 KN
54,8 KN
68a Questão (Ref.: 201202348586)
Considere a figura a baixo. Calcular o módulo da força que atua no segmento AB
150 KN
125 KN
100 KN
50 KN
75 KN
69.
Quais devem ser as reações de apoio e as forças normais nas barras.
VE = 0; VE = 80 KN e VA = 80 KN.
HE = 0; VE = 100 KN e VA = 100 KN.
VE = 0; VE = 70 KN e VA = 70 KN.
HE = 100 KN; VE = 0 e VA = 100KN.
VE = 0; VE = 50 KN e VA = 50 KN.
70a Questão (Ref.: 201401698507)
Fórum de Dúvidas (0) Saiba (0)
Determine as coordenadas do centróide do perfi ilustrado abaixo:
x = 100,00 e y = 32,22
x =150,00 e y = 40,00
x = 32,22 y = 100,00
x = 30,00 e y = 70,00
x = 40,00 e y = 150,00
71a Questão (Ref.: 201401698474)
Fórum de Dúvidas (0) Saiba (0)
Determine as coordenadas do centroide do perfil ilustrado abaixo em relação ao ponto O:
X= zero e Y= 103,33 mm
X= zero e Y= zero
X= 20 mm e Y= 103,33 mm
X= 50 mm e Y= 80 mm
X= 50 mm e Y= 103,33 mm
72a Questão (Ref.: 201401698506)
Fórum de Dúvidas (0) Saiba (0)
Determine as coordenadas do centróide do perfi ilustrados abaixo:
x = 50 mm e y = 103,33 mm
x = 500 mm e y = 1033,3 mm
x = 150 mm e y = 100 mm
x = 5 mm e y = 10 mm
x = 103,33 mm e y = 50 mm
73
A estrutura mostrada na figura abaixo é uma treliça, que está apoiada nos pontos A e C. Perceba que o ponto A está engastado na superfície e o ponto C é basculante. Determine as força que atua haste BC da treliça, indicando se o elemento está sob tração ou compressão.
609,N (tração)
729,3N (compressão)
707,1N (compressão)
753,1N (tração)
787,6N (compressão)
74.
A estrutura mostrada na figura abaixo é uma treliça, que está apoiada nos pontos A e C. Perceba que o ponto A está engastado na superfície e o ponto C é basculante. Determine as força que atua haste AB da treliça, indicando se o elemento está sob tração ou compressão.
650N (çompressão)
707N (compressão)
500N (tração)
500N (compressão)
707N (tração)
75a Questão (Ref.: 201308443098)
Pontos: 0,0 / 1,5
Dado a figura abaixo, determine o momento dessa força em relação ao ponto C.
9x103 Nm
9,99x103 Nm
99,9x103 Nm
0,999x103 Nm
999x103 Nm
76a Questão (Ref.: 201401296960)
Fórum de Dúvidas (0) Saiba (0)
Considere a figura abaixo e determine a força que atua nos cabos AB e CD. Adote g = 10 m/s2.
100 kN
300 kN
200 kN
400 kN
500 kN
77a Questão (Ref.: 201401684752)
Fórum de Dúvidas (0) Saiba (0)
Sabe-se que o sistema representado abaixo está em equilíbrio. Se a tração na corda 1 é 300 N qual deve ser a intensidade da tração na corda 2?
Dados: sen 37o = cos 53o = 0,6
sen 53o = cos 37o = 0,8
200 N
100 N
500 N
400 N
300 N
78a Questão (Ref.: 201401684450)
Fórum de Dúvidas(0) Saiba (0)
Um corpo de peso P é sustentado por duas cordas inextensíveis, conforme a figura. Sabendo que a intensidade da tração na corda AB é de 80 N, calcule o valor do peso P
60N.
80 N
50 N.
40 N.
70 N
79a Questão (Ref.: 201401684448)
Fórum de Dúvidas (0) Saiba (0)
) O corpo da figura tem peso 80 N e está em equilíbrio suspenso por fios ideais. Calcule a intensidade das forças de tração suportadas pelos fios AB e AC. Adote: cos 30o = 0,8 e sem 45o = cos 45o = 0,7.
Tab = 90,2 N
Tac = 81,5 N
Tab = 70,2 N
Tac = 61,5 N
Tab = 40,2 N
Tac = 51,5 N
Tab = 60,2 N
Tac = 71,5 N
Tab = 80,2 N
Tac = 71,5 N
80a Questão (Ref.: 201308443168)
Pontos: 0,0 / 1,5
Sabendo-se que o cabo AB está submetido a uma força de tração 2000 N e que as dimensões da placa são a = 3,0 m e b = 4,0 m, determinar: a) as componentes da força que age sobre a placa e a sua direção e b) o momento dessa força em relação ao ponto O e seu braço. Considere a distância OB = 5,0 m.
a) -849 N, -1,13x103 N, 1,41x103 N, 1150, 1240; b) 7,07x103 Nm, 3,54 m
a) 0,008 N, -0,001x103 N, 0,001x103 N, 0,001, 0,002; b) 0,007x103 Nm, 0,003 m
a) -8,49 N, -113x103 N, 141x103 N, 11,50, 12,40; b) 707x103 Nm, 354 m
a) +849 N, +1,13x103 N, 0,14x103 N, 0,11, 0,12; b) 0,7 x 103 Nm, 0,354 m
a) -84,9 N, -11,3x103 N, 14,1x103 N, 115, 124; b) 70,7x103 Nm, 35,4 m
80a Questão (Ref.: 201202255757)
Pontos: 0,0 / 0,5
Determine o momento da força de 500 N em relação ao ponto B. As duas hastes verticais têm, respectivamente, 0,24 e 0,12 m. O ponto B se encontra no ponto médio da haste de 0,24 m.
33,00 Nm
3,30 Nm
0,33 Nm
3300,00 Nm
330,00 Nm
81a Questão (Ref.: 201307182467)
Pontos: 0,5 / 0,5
Determine as forças nos cabos:
TAB = 600 N
TAC = 400 N
TAB = 747 N
TAC = 580 N
TAB = 657 N
TAC = 489 N
AB = 647 N
TAC = 480 N
TAB = 547 N
TAC = 680 N
82 Questão (Ref.: 201401633047)
Fórum de Dúvidas (0) Saiba (0)
Dois cabos seguram um bloco de massa 20kg, um deles, com intensidade F1, formando um ângulo de com a horizontal. O outro, F2, forma um ângulo β partindo da horizontal. Qual a força aplicada a estes cabos para que o bloco fique em equilíbrio?
Dados:
g = 10m/s2
Sen = 0,6 e Cos = 0,8
Sen β = 0,86 e Cos β = 0,5
F1 = 120N e F2 = 180N
F1 = 160N e F2 = 120N
F1 = 160N e F2 = 100N
F1 = 180N e F2 = 120N
F1 = 100N e F2 = 160N
83 MECÂNICA
84255 / 8a sem.
Pontos: 1,0 / 1,0
Determine o momento da Força F que atua em A sobre P. Expresse o momento como um vetor cartesiano.
M = 400 i + 250 j + 790 k (N.m)
M = 400 i + 220 j + 990 k (N.m)
M = 181 i + 290 j + 200 k (N.m)
M = 360 i + 220 j + 990 k (N.m)
M = 281 i + 190 j + 210 k (N.m)
84 5a Questão (Cód.: 177876)
Pontos: 0,0 / 0,5
Seja uma barra presa ao solo como mostra a figura. Determine o ângulo da força F que produzirá o maior valor de momento o ponto O.
60 graus
0 graus
135 graus
45 graus
90 graus
85a Questão (Ref.: 201301733246)
250 kNm
150 kNm
50 kNm
200 kNm
100 kNm
86a Questão (Ref.: 201301733298)
20 kN e 20 kN
10 Kn e 10 kN
2,0 kN e 2,0 kN
12 Kn e 18 kN
10 Kn e 20 kN
87a Questão (Ref.: 201301725671)
sem. N/A: Momento de uma Força
Pontos: 0,0 / 1,0
100 kNm
200 kNm
400 kNm
10,0 kNm
4,00 kNm
88a Questão (Ref.: 201301725719)
sem. N/A: Momento de uma Força
Pontos: 0,0 / 1,0
200 kNm, 100 kNm
100 kNm, 200 kNm
200 kNm, 200 kNm
100 kNm, 300 kNm
100 kNm, 100 kNm
89a Questão (Ref.: 201401297054)
Fórum de Dúvidas (0) Saiba (0)
70 kN, Compressão
100 kN, Tração
100 kN, Compressão
70 kN, Tração
10 kN, Compressão
90a Questão (Ref.: 201401684453)
Fórum de Dúvidas (0) Saiba (0)
A viga está sofrendo um carregamento uniformemente distribuído de 25 KN/m. Calcular o momento fletor na seção c indicada na viga.
7,5 KNm
27,5 KNm
47,5 KNm
17,5 KNm
37,5 KNm
91.
A estrutura mostrada na figura abaixo está apoiada nos pontos A e B. Perceba que o ponto A é basculante e o ponto B está engastado na superfície. Determine o módulo da reação no apoio B.
496,74N
586,35N
424,53N
405,83N
555,51N
92.
A estrutura mostrada na figura abaixo está apoiada nos pontos A e B. Perceba que o ponto A é basculante e o ponto B está engastado na superfície. Determine o módulo da reação no apoio A.
302N
353N
530,6N
382N
319N
93 ° Questão
Determine o momento da força aplicada em A de 100N relativamente ao ponto B, conforme figura abaixo.
3N.m
23N.m
17N.m
20N.m
0N.m
94.) EQUILÍBRIO
126075 / 5a sem.
Pontos: 1,0 / 1,0
Sabe-se que sobre uma viga cujo peso é igual a 1000 N, estão sobrepostos dois corpos de pesos iguais a 50 N, cada um. Calcule a intensidade das reações de apoio da viga.
N1 e N2 = 500 N.
N1 e N2 = 850 N.
N1 e N2 = 750 N.
N1 e N2 = 400 N
N1 e N2 = 550 N.
95a Questão (Ref.: 201401183729)
Fórum de Dúvidas (0) Saiba (0)
Calcule as reações de apoio para a figura a seguir:
Xa = 0
Yb = P.a/L
Ya = P.b/L
Xa = 0
Yb = 0
Ya = 0
Xa = P.ab/L
Yb = P.a/L
Ya = P.b/L
Xa = 0
Yb = P.a/L
Ya = 0
Xa = P. a/L
Yb = P.a/L
Ya = P.b/L
96a Questão (Ref.: 201301612237)
Determine as reações no apoio da figura a seguir.
Xa = p.a
Ya = 0
Ma = p.a2/2
Xa = p.a/2
Ya = p.a
Ma = p.a2/2
Xa = 0
Ya = p.a/2
Ma = p.a2/2
Xa = 0
Ya = p.a
Ma = p.a2/2
Xa = 0
Ya = p.a/2
Ma = 0
DISCURSIVAS
97a Questão (Cód.: 91675)
Pontos: / 1,5
Calcule VA, VB e os esforços normais da treliça abaixo:
Resposta:
Gabarito:
VA = 40 kN
VB = 40 kN
NAC = NCD = - 136,4 kN
NAF = 132,3 kN
NFD = + 47,6 kN
NFG = + 89 kN
NDG = 0
NCF = + 20 Kn
QUESTÃO 98
99a Questão (Cód.: 91672)
13a sem.: TRELIÇAS
Pontos: 0,0 / 1,5
Calcule os esforços normais da treliça abaixo:
Resposta: 40N
Gabarito:
NAB = 0
NAC = + 20 kN
NAD = + 28,28 kN
NBD = - 60 kN
NCD = - 20 kN
NCE = 0
NCF = + 28,28 KN
NEF = - 20 kN
NDF = - 40 kN
100a Questão (Cód.: 53430)
5a sem.: Equilíbrio
Pontos: 0,0 / 1,5
Um homem e um menino se propõem a transportar um pedaço de madeira de 9m de comprimento e 500N de peso, cujo centro de gravidade está situado a 2m de uma das extremidades. Se o homem se colocar no extremo mais próximo do centro de gravidade, qual a posição que o menino deve ocupar, a contar do outro extremo, para que faça um terço da força do homem?
Resposta: 6m
Gabarito: 1m.QUESTÃO 101
102a Questão (Ref.: 201202156461)
Pontos: 0,0 / 1,5
Duas forças atuam sobre o gancho mostrado na figura. Especifique os ângulos diretores coordenados de F2, de modo que a força resultante FR atue ao longo do eixo y positivo e tenha intensidade de 800N.
Resposta: intensidade é igual raiz de i2 + j2+ k2 = 800 e F2y=
Gabarito:
103a Questão (Ref.: 201202167384)
Pontos: 0,0 / 1,5
Em uma empresa no qual você faz parte da equipe de Engenharia, devem ser estudadas as possibilidades para implantação de uma treliça, que irá suportar um esforço de 500 N na horizontal. Para saber quais serão as necessidades referentes a segurança do projeto é preciso o cálculo das reações nos apoios desta treliça, bem como o cálculo dos esforços em todas as barras da estrutura. Utilizando a teoria de equilíbrio da estática e o método dos nós, faça estes cálculos levando em consideração as forças de ação e reação aplicadas na treliça conforme o esboço apresentado.
Resposta: somatorio forcas horizontais = 0 => FHa + 500N = o => Fha = -500N somatorio dos momentos= 0 > 750 + FvB*1,5 => Fvb = 500N somatortio de forcas verticais = 0 => 500 + Fva => Fva = -500N
Gabarito:
104a Questão (Cód.: 86518)
Pontos: 1,5 / 1,5
A placa circular é parcialmente suportada pelo cabo AB. Sabe-se que a força no cabo em A é igual a 500N, expresse essa força como um vetor cartesiano.
Resposta: R = VETOR POSIÇÃO AB A= 0,02m RAB=(XB-YA)I+(YB-YA)J+(ZB-ZA) RAB=(1707I+0,707J-2K)m RAB=RAIZ I, 707ELV.2J+0,707ELEV.2+2ELEV.2 VALOR UNITÁRIO AB VAB=0,626I=0,259J-0,734K F=F.VAB F=(31,3I+130J-367K) B=(91,707;0,707;0)m RAB=(1,707-0)I+(0,707-0)J(0-2)K MODO VETOR POSIÇÃO RAB=2,723m VAB=RAB/RAB VETOR FORÇA F=500.(0,626I+0,259J-0,734K)
Gabarito: