Prévia do material em texto
A2- ESTATÍSTICA DESCRITIVA 1- O conceito de variância e desvio-padrão para amostra e população permanece o mesmo, contudo, na parte algébrica e estrutural, as fórmulas para encontrar tais medidas de dispersão são diferenciadas. Nesse contexto, avalie as proposições a seguir. I. Desvio-padrão amostral é representado pela letra grega e desvio padrão populacional, pela letra grega . II. Variância amostral é o resultado do desvio-padrão populacional elevado ao quadrado. III. Para calcular o desvio-padrão amostral, utiliza-se a média e o tamanho de conjunto . É correto o que se afirma em: I, apenas. Resposta correta: a proposição é II incorreta, pois afirma que a variância amostral é o resultado do desvio-padrão populacional elevado ao quadrado, sendo que o correto seria afirmar que, em uma mesma fórmula, não é possível mesclar dados amostrais com populacionais. A preposição III também é incorreta, pois, para calcular o desvio-padrão amostral, é utilizada a média e o tamanho do conjunto . 2- Modelar algebricamente uma reta de ajuste linear possibilita a análise de regressão linear, pois resume uma relação linear. Nessa técnica, uma variável dependente é interligada a uma variável independente por intermédio de uma reta, cuja equação típica é dada por: . Assim, essa relação é descrita por um gráfico chamado de reta de regressão, reta de melhor ajuste ou ainda reta de mínimos quadrados. Diante desse contexto, assinale V para a(s) verdadeira(s) e F para a(s) falsa(s). I. As relações são expressas por e II. O ajuste de curvas no processo de regressão linear é deduzido pelo método dos mínimos quadrados. III. A reta de regressão é a que melhor se ajusta aos pontos amostrais. IV. A reta de regressão passa sempre pelo centroide . V. b é o coeficiente angular e m é o intercepto em y. Agora, assinale a alternativa que apresenta a sequência correta. V, V, V, V, F. Resposta correta: estudamos que a reta de regressão linear descreve a relação entre duas variáveis e que é representada por uma reta cujo coeficiente angular é m e o intercepto em y é b e que ela sempre passará pelo par ordenado . 3- O dispositivo de regressão linear possibilita previsões de valores a partir de dados passados. Dessa forma, é possível identificar as maiores tendências apresentadas por variáveis observadas, modelando matematicamente as informações numéricas que se deseja analisar a partir da equação de regressão linear. A tabela a seguir apresenta o descarte de plástico (libras) em relação ao tamanho da residência. Tabela: Distribuição entre quantidade de plástico descartado (lb) em função do tamanho da família (pessoas) Fonte: Elaborada pela autora, baseada em TRIOLA, 2017. TRIOLA, M. Introdução à Estatística. Rio de Janeiro: LTC, 2017 De acordo com a tabela, questionamos qual é a melhor predição do tamanho de uma residência que descarta 0,50 lb de plástico? aproximadamente 1,3 pessoas. Resposta correta: você primeiramente deverá encontrar a equação da reta de regressão linear dada por: . Sabemos que e . Assim, vem: e Portanto, a equação é igual a . Portanto, a melhor predição do tamanho de uma residência que descarta 0,50 lb de plástico é igual a pessoas ou 1,3 pessoas. 4- Conforme aponta Triola (2017), a correlação entre os dados é determinada quando queremos saber se existe, ou não, algum relacionamento entre duas variáveis. Em estatística, esse relacionamento é chamado de correlação e define a relação entre as variáveis x (independente) e y (dependente). TRIOLA, M. Introdução à Estatística. Rio de Janeiro: LTC, 2017. Diante da conceituação exposta pelo autor, evidenciamos o gráfico a seguir, que se refere às idades de uma amostra de casais. GRAÇA MARTINS, M. E., PONTE, J. P. Organização e tratamento de dados. Lisboa: MEC. 2010. p.111. Disponível em: https://mat.absolutamente.net/joomla/images/recursos/documentos_curriculares/3ciclo/otd.p df. Acesso em: 4 jan. 2021. Analisando os dados do gráfico anterior, pode-se afirmar que: • contém a análise de duas variáveis qualitativas. • as variáveis analisadas são determinadas pelo tempo de casamento. • trata-se de um gráfico de setores. • a maior parte dos casais possuem de 20 a 30 anos de idade. • a maior parte dos homens são mais jovens que as mulheres. a maior parte dos casais possuem de 20 a 30 anos de idade. Resposta correta: a alternativa correta diz que a maior parte dos casais possuem de 20 a 30 anos de idade. Na representação anterior, que chamamos diagrama de dispersão, é perceptível que à medida que a idade da mulher aumenta, também aumenta a idade do marido. Assim, existe uma tendência, embora nem sempre isso aconteça, de que homens mais velhos estejam casados com mulheres mais velhas. 5- As medidas de dispersão avaliam o quanto uma entrada típica desvia-se da média. Quanto mais espalhados estiverem os dados, maior será o desvio. Ele é o resultado da raiz quadrada da variância, logo, o cálculo da variância é um passo intermediário para obtê-lo. É a medida de dispersão mais utilizada em estatística. O trecho acima refere-se: • à medida de dispersão. • à média. • à frequência absoluta. • à variância. • ao desvio-padrão. ao desvio-padrão. Resposta correta: o trecho refere-se ao desvio-padrão, o resultado da raiz quadrada da variância. Ele corresponde a medida de variação mais útil e mais largamente utilizada e identifica a dispersão de um conjunto de dados em torno da média. https://mat.absolutamente.net/joomla/images/recursos/documentos_curriculares/3ciclo/otd.pdf https://mat.absolutamente.net/joomla/images/recursos/documentos_curriculares/3ciclo/otd.pdf 6- Dada uma coleção de dados amostrais emparelhados, a equação de regressão é expressa a partir da relação , em que é o valor previsto a partir de um valor de x, de m que é a inclinação da reta e de b que é o intercepto em y, ou seja, é o valor de y no ponto onde a reta cruza esse eixo. Diante esse contexto, apresentamos a relação entre a variável peso (em libras) do plástico descartado (x) e a variável tamanho das residências (em pessoas) que o descartam (y): Mediante os calculo efetuado, a equação da reta de regressão linear que melhor ajusta esses valores é igual a: • • • • • Resposta correta: lembrando que a equação da reta de regressão linear é dada por , devemos encontrar os valores de m e de b. Sabemos que e . Assim, vem: E Portanto, a resposta correta é 7- De acordo com Triola (2017), o desvio-padrão de um conjunto de valores amostrais é uma medida de variação dos valores em relação à média, sendo calculado pela relação: . TRIOLA, M. Introdução à Estatística. Rio de Janeiro: LTC, 2017 Diante desse contexto e do conjunto de dados 420, 450, 380, 510, 580, 392 e 388, é correto afirmar que o desvio-padrão referente a esses valores é igual a: • 435. • 4769,28. • 69,06. • 446. • 33380. 69,06. Resposta correta: o desvio-padrão é igual a 69,06, sendo seu cálculo igual a: 8- De acordo com Freund e Simon (2009), na maioria dos conjuntos, os dados não são todos iguais entre si, sendo que a extensão de sua variabilidade é um problema a ser estudado dentro da estatística. Nesse sentido, é importante avaliar a extensão da dispersão dos dados a partir das medidas de dispersão ou variabilidade. FREUND, J. E.; SIMON, G. A. S. Estatística Aplicada: economia, administração e contabilidade. Porto Alegre: Bookman, 2009. Entre essas medidas encontramos a variância e o desvio-padrão. Nesse sentido, assinale V para a(s) verdadeira(s) e F para a(s) falsa(s). I. corresponde a variância de um conjunto de dados amostrais. II. Uma dificuldade da variância é que ela não é expressa nas mesmas unidades dos dados originais. III. Se o valor da variância de uma determinada população é 144, o desvio-padrão dessa mesma população vale 14. IV. Para encontrarmoso valor do desvio-padrão de uma determinada população, é necessário que encontremos a variância. V. Variância é a média aritmética dos quadrados dos desvios. Nesse sentido, assinale a alternativa que apresenta a sequência correta. F, V, F, V, V. Resposta correta: estudamos nessa unidade as medidas de dispersão, entre elas o desvio- padrão e a variância. Vimos que o desvio-padrão é a mais importante medida de dispersão e é calculado pela raiz quadrada da variância, assim, é necessário que tenhamos primeiro a variância para poder chegar ao valor do desvio-padrão. Além disso, estudamos que o desvio- padrão leva em conta todos os valores do conjunto de dados, correspondendo a uma variação dos valores em relação à média. 9- De acordo com Triola (2017), o coeficiente de correlação linear r mede o grau de relacionamento linear entre os valores emparelhados x e y em uma amostra. Esse coeficiente também recebe a denominação de coeficiente de correlação momento-produto de Pearson, em homenagem a Karl Pearson (1857-1936). TRIOLA, M. Introdução à Estatística. Rio de Janeiro: LTC, 2017 De acordo com a tabela a seguir, é correto afirmar que o coeficiente de correlação linear é igual a: • 0,997 • 0,897 • 0,597 • 0,797 • 0,697 0,897 Resposta correta: todos os cálculos foram feitos de maneira correta. Seu cálculo é descrito pela fórmula: ,em que x é a variável independente (comprimento), y é a variável dependente (peso) e é o total de elementos. O cálculo leva a: 10- Avaliar a média somente, sem estabelecer uma relação entre os outros dados pertencentes a um grupo, não nos possibilita elaborar uma afirmação precisa acerca das particularidades do conjunto. Para melhorar a informação da média, existem as medidas de dispersão, entre elas a amplitude de variação, a variância e o desvio-padrão. Sobre as medidas de dispersão, é correto afirmar que: • representam a diferença entre o maior e menor valor de uma série de dados. • são parâmetros que avaliam o grau de variabilidade ou dispersão dos valores em torno da média. • são os valores do resultado de uma pesquisa que acontece com maior frequência. • representam a soma dos resultados obtidos dividida pela quantidade de resultados. • representam o valor central de um conjunto, colocados em ordem crescente. são parâmetros que avaliam o grau de variabilidade ou dispersão dos valores em torno da média. Resposta correta: estudamos que as medidas de dispersão nos auxiliam a avaliar a extensão da dispersão dos dados em torno da média, pois o resumo do conjunto de dados, considerando unicamente sua medida de posição central, não nos fornece informação suficiente sobre a variabilidade do conjunto de informações. A2- ESTATÍSTICA DESCRITIVA