Ed
mês passado
Vamos analisar cada afirmativa sobre funções racionais: I. O domínio de uma função racional não inclui os valores de \( x \) que tornam \( Q(x) = 0 \). Verdadeiro, pois os valores que tornam o denominador zero não estão no domínio da função. II. O gráfico de uma função racional pode apresentar descontinuidade. Verdadeiro, pois as descontinuidades podem ocorrer em pontos onde o denominador é zero, resultando em assíntotas verticais. III. O gráfico de uma função racional pode apresentar assíntotas verticais e/ou horizontais. Verdadeiro, as funções racionais podem ter assíntotas verticais (onde o denominador é zero) e assíntotas horizontais (dependendo do grau dos polinômios). IV. Na função racional, é um número entre 0 e 1. Falso, essa afirmação não é verdadeira em geral, pois o valor da função pode ser qualquer número real, dependendo dos polinômios \( P(x) \) e \( Q(x) \). Agora, vamos ver quais alternativas contêm apenas as afirmativas verdadeiras: - A) I, III e IV. (IV é falsa) - B) III e IV. (IV é falsa) - C) II e II. (não faz sentido) - D) I, II e III. (todas verdadeiras) - E) I e II. (III não está incluída) A alternativa correta que contém todas as afirmativas verdadeiras é: D) I, II e III.