Logo Passei Direto
Buscar
Seja A a matriz formada pelos coeficientes do sistema linear λx + y + z = λ + 2, x + λy + z = λ + 2 e x + y + λz = λ + 2. a) Ache as raízes da equação: detA = 0. b) Ache a solução geral desse sistema para λ = –2.
a) As raízes da equação detA = 0 são λ = 1 e λ = 4.
b) A solução geral do sistema para λ = -2 é x = 1 - y - z, y = y e z = z.

User badge image
Matematicamente

há 2 anos

Respostas

User badge image

Ed Verified user icon

há 2 anos

a) Para encontrar as raízes da equação detA = 0, precisamos calcular o determinante da matriz A e igualá-lo a zero. Temos: | λ 1 1 | | 1 λ 1 | = λ³ - 6λ² + 9λ = λ(λ-3)³ | 1 1 λ | Portanto, as raízes da equação são λ = 0 e λ = 3. b) Para λ = -2, precisamos resolver o sistema linear dado. Podemos fazer isso encontrando a matriz inversa de A e multiplicando-a pelo vetor coluna B = [λ+2, λ+2, λ+2]. Temos: A = | -2 1 1 | | 1 -2 1 | | 1 1 -2 | detA = -12 ≠ 0, portanto, A é invertível. Podemos encontrar a matriz inversa de A usando o método de eliminação de Gauss-Jordan: | -2 1 1 | 1 0 0 | | 1 -2 1 | 0 1 0 | | 1 1 -2 | 0 0 1 | | 1 -1/2 -1/2 | -1/2 1/2 1/2 | | 0 -3/2 3/2 | 1/2 -1/2 1/2 | | 0 3/2 -3/2 | 1/2 1/2 -1/2 | | 1 0 -1 | -1/3 -1/3 -1/3 | | 0 1 -1 | -1/6 5/6 -1/6 | | 0 0 0 | 1/2 1/2 1/2 | Portanto, a matriz inversa de A é: A^-1 = | -1/3 -1/3 -1/3 | | -1/6 5/6 -1/6 | | 1/2 1/2 1/2 | Multiplicando A^-1 por B, obtemos a solução geral do sistema para λ = -2: | -1/3 -1/3 -1/3 | | 0 | | -1/6 5/6 -1/6 | |-4 | | 1/2 1/2 1/2 | |-4 | x = -1/3(0) - 1/3(-4) - 1/3(-4) = 4/3 y = -1/6(0) + 5/6(-4) - 1/6(-4) = -3 z = 1/2(0) + 1/2(-4) + 1/2(-4) = -4 Portanto, a solução geral do sistema para λ = -2 é x = 4/3 - y - z, y = -3 e z = -4.

Essa resposta te ajudou?

0
Dislike0
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar essa resposta. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

3. UFPB A metade do número 221 + 412 é:

O enunciado apresenta uma pergunta clara e objetiva.
a) 220 + 223
b) 221/2 + 46
c) 212 + 421
d) 220 + 46
e) 222 + 413

9. U.E. Maringá-PR Com relação aos números reais, é correto afirmar que:

O enunciado apresenta uma pergunta clara e objetiva.
Somente a soma das alternativas corretas é a resposta.

12. Fatec-SP Se o número real x é tal que x = a + 1, então a3 + 1 é igual a:

O enunciado apresenta uma pergunta clara e objetiva.
O enunciado apresenta a expressão matemática de forma clara e objetiva.
a) x3 – 3x
b) x3 – 2x
c) x3 – x
d) x3 + x
e) x3

13. UFMT Julgue as sentenças abaixo. ( ) 10 > 323 ( ) Se a, b ∈ |R∗+ , a/b + b/a = 1 ( ) {x ∈ |R | x2 4+ = x – 4} = ∅

O enunciado apresenta uma pergunta clara e objetiva.
O enunciado apresenta as sentenças de forma clara e objetiva.

14. UEMS A navegação da sentença ∀x, x + a ≠ b é:

O enunciado apresenta uma pergunta clara e objetiva.
O enunciado apresenta a sentença de forma clara e objetiva.
a) ∃x, x + a ≠ b
b) ∃x, x + a = b
c) ∀x, x + a = b
d) ∃x, x – a ≠ b
e) ∀x, x – a ≠ b

Mais conteúdos dessa disciplina