Text Material Preview
F O U R
Time Response
SOLUTIONS TO CASE STUDIES CHALLENGES
Antenna Control: Open-Loop Response
The forward transfer function for angular velocity is,
G(s) =
0
P
(s)
V (s)
=
24
(s 150)(s 1.32)
a. 0(t) = A + Be
-150t + Ce-1.32t
b. G(s) =
2
24
s 151.32s 198
. Therefore, 2n =151.32, n = 14.07, and = 5.38.
c. 0(s) =
2
24
s(s 151.32s 198)
=
24 1 1 1
0.12121 0.0010761 0.12229
( 150)( 1.32) 150 1.32s s s s s s
Therefore, 0(t) = 0.12121 + .0010761 e
-150t - 0.12229e-1.32t.
d. Using G(s),
0 0 0151.32 198 24 ( )pv t
Defining,
x1 0
x2 0
•
Thus, the state equations are,
•
1 2
•
2 1 2
1
198 151.32 24 ( )p
x x
x x x v t
y x
In vector-matrix form,
• 0 1 0
( ); 1 0
198 151.32 24
pv t y
x x x
4-2 Chapter 4: Time Response
e.
Program:
'Case Study 1 Challenge (e)'
num=24;
den=poly([-150 -1.32]);
G=tf(num,den)
step(G)
Computer response:
ans =
Case Study 1 Challenge (e)
Transfer function:
24
-------------------
s^2 + 151.3 s + 198
Ship at Sea: Open-Loop Response
a. Assuming a second-order approximation: n
2 = 2.25, 2n = 0.5. Therefore = 0.167, n = 1.5.
Ts =
n
4
= 16; TP =
ωn 1
= 2.12 ;
%OS = e- / 1 x 100 = 58.8%; nTr = 1.169 therefore, Tr = 0.77.
b.
2
2.25
( )
0.5 2.25
s
s s s
=
2
1 0.5
0.5 2.25
s
s s s
=
2
0.25
( 0.25) 2.1875
1 2.1875
( 0.25) 2.1875
s
s s
Answers to Review Questions 4-3
=
2
1 ( 0.25) 0.16903 1.479
( 0.25) 2.1875
s
s s
Taking the inverse Laplace transform,
(t) = 1 - e-0.25t (cos1.479t +0.16903 sin1.479t)
c.
Program:
'Case Study 2 Challenge (C)'
'(a)'
numg=2.25;
deng=[1 0.5 2.25];
G=tf(numg,deng)
omegan=sqrt(deng(3))
zeta=deng(2)/(2*omegan)
Ts=4/(zeta*omegan)
Tp=pi/(omegan*sqrt(1-zeta^2))
pos=exp(-zeta*pi/sqrt(1-zeta^2))*100
t=0:.1:2;
[y,t]=step(G,t);
Tlow=interp1(y,t,.1);
Thi=interp1(y,t,.9);
Tr=Thi-Tlow
'(b)'
numc=2.25*[1 2];
denc=conv(poly([0 -3.57]),[1 2 2.25]);
[K,p,k]=residue(numc,denc)
'(c)'
[y,t]=step(G);
plot(t,y)
title('Roll Angle Response')
xlabel('Time(seconds)')
ylabel('Roll Angle(radians)')
Computer response:
ans =
Case Study 2 Challenge (C)
ans =
(a)
Transfer function:
2.25
------------------
s^2 + 0.5 s + 2.25
4-4 Chapter 4: Time Response
omegan =
1.5000
zeta =
0.1667
Ts =
16
Tp =
2.1241
pos =
58.8001
Tr =
0.7801
ans =
(b)
K =
0.1260
-0.3431 + 0.1058i
-0.3431 - 0.1058i
0.5602
p =
-3.5700
-1.0000 + 1.1180i
-1.0000 - 1.1180i
0
Answers to Review Questions 4-5
k =
[]
ans =
(c)
ANSWERS TO REVIEW QUESTIONS
1. Time constant
2. The time for the step response to reach 67% of its final value
3. The input pole
4. The system poles
5. The radian frequency of a sinusoidal response
6. The time constant of an exponential response
7. Natural frequency is the frequency of the system with all damping removed; the damped frequency of
oscillation is the frequency of oscillation with damping in the system.
8. Their damped frequency of oscillation will be the same.
9. They will all exist under the same exponential decay envelop.
10. They will all have the same percent overshoot and the same shape although differently scaled in time.
11. , n, TP, %OS, Ts
12. Only two since a second-order system is completely defined by two component parameters
13. (1) Complex, (2) Real, (3) Multiple real
14. Pole's real part is large compared to the dominant poles, (2) Pole is near a zero
15. If the residue at that pole is much smaller than the residues at other poles
16. No; one must then use the output equation
17. The Laplace transform of the state transition matrix is (sI -A)-1
4-6 Chapter 4: Time Response
18. Computer simulation
19. Pole-zero concepts give one an intuitive feel for the problem.
20. State equations, output equations, and initial value for the state-vector
21. Det(sI-A) = 0
SOLUTIONS TO PROBLEMS
1.
a. Overdamped Case:
C(s) =
2
9
s(s 9s 9)
Expanding into partial fractions,
9 1 0.171 1.171
C(s)
s(s 7.854)(s 1.146) s (s 7.854) (s 1.146)
Taking the inverse Laplace transform,
c(t) = 1 + 0.171 e-7.854t - 1.171 e-1.146t
b. Underdamped Case:
2 31
2 2
K s KK9
C(s)
s(s 3s 9) s (s 3s 9)
K2 and K3 can be found by clearing fractions with K1 replaced by its value. Thus,
9 = (s2 + 3s + 9) + (K2s + K3)s
or
9 = s2 + 3s +9 + K2s
2 + K3s
Hence K2 = -1 and K3 = -3. Thus,
2
1 s 3
C(s)
s (s 3s 9)
2
1 s 3 27
C(s)
3s 4
(s )
2
Solutions to Problems 4-7
2 2
3 3s
1 2 2C(s)
s 3 27 3 27
s s
2 4 2 4
2 2
3 3 27
s
1 2 427
C(s)
s 3 27 3 27
s s
2 4 2 4
3 3
t t
2 2
27 3 27
c(t) 1 e cos t e sin t
4 427
c(t) = 1 -
2
3
e-3t/2 cos (
27
4
t -
= 1 - 1.155 e -1.5t cos (2.598t - )
where
= arctan (
3
27
) = 30o
c. Oscillatory Case:
2
9
C(s)
s(s 9)
2 31
2 2
K s KK9
C(s)
ss(s 9) (s 9)
The evaluation of the constants in the numerator are found the same way as they were for the
underdamped case. The results are K2 = -1 and K3 = 0. Hence,
2
1 s
C(s)
s (s 9)
Therefore,
c(t) = 1 - cos 3t
d. Critically Damped
2
9
C(s)
s(s 6s 9)
31 2
2 2
KK K9
C(s)
s (s 3)s(s 6s 9) (s 3)
4-8 Chapter 4: Time Response
The constants are then evaluated as
Now, the transform of the response is
2 2
9 1 3 1
C(s)
s (s 3)s(s 6s 9) (s 3)
c(t) = 1 - 3t e-3t - e-3t
2.
a. C(s) =
5
s(s 5)
=
1
s
-
1
s 5
. Therefore, c(t) = 1 - e-5t.
Also, T =
1
5
, Tr =
2.2
a
=
2.2
5
= 0.44, Ts =
4
a
=
4
5
= 0.8.
b. C(s) =
20
s(s 20)
=
1
s
-
1
s 20
. Therefore, c(t) = 1 - e-20t. Also, T =
1
20
,
Tr =
2.2
a
=
2.2
20
= 0.11, Ts =
4
a
=
4
20
= 0.2.
3.
Program:
'(a)'
num=5;
den=[1 5];
Ga=tf(num,den)
subplot(1,2,1)
step(Ga)
title('(a)')
'(b)'
num=20;
den=[1 20];
Gb=tf(num,den)
subplot(1,2,2)
step(Gb)
title('(b)')
Computer response:
ans =
(a)
Transfer function:
5
-----
s + 5
Solutions to Problems 4-9
ans =
(b)
Transfer function:
20
------
s + 20
4.
Using voltage division,
1
( ) 1
1( ) 1
C
i
V s RC
V s s
s
RC
. Since
5
( )
i
V s
s
5 1 5 5
( )
1 1
C
V s
s s s s
.
Therefore: ( ) 5 5 t
c
v t e .
Also,
1 2.2 4
1sec; 2.2sec; 4sec
1 1 1
r s
T T T .
5.
4-10 Chapter 4: Time Response
Program: clf
num=1;
den=[1 1];
G=tf(num,den);
G;
step(5*G)
Computer response:
G =
1
-----
s + 1
Continuous-time transfer function.
6.
Writing the equation of motion,
2( 6 ) ( ) ( )Ms s X s F s
Thus, the transfer function is,
2
( ) 1
( ) 6
X s
F s Ms s
Differentiating to yield the transfer function in terms of velocity,
( ) 1 1/
6( ) 6
sX s M
F s Ms
s
M
Solutions to Problems 4-11
Thus, the settling time, Ts, and the rise time, Tr, are given by
4 2 2.2 1.1
0.667 ; 0.367
6 / 3 6 / 3
s r
T M M T M M
M M
7.
Program:
Clf
M=1
num=1/M;
den=[1 6/M];
G=tf(num,den)
step(G)
pause
M=2
num=1/M;
den=[1 6/M];
G=tf(num,den)
step(G)
Computer response:
M =
1
Transfer function:
1
-----
s + 6
M =
2
Transfer function:
0.5
-----
s + 3
4-12 Chapter 4: Time Response
From plot, time constant =.0.16 s.
Solutions to Problems 4-13
From plot, time constant = 0.33 s.
8.
a. Pole: -2; c(t) = A + Be-2t ; first-order response.
b. Poles: -3, -6; c(t) = A + Be-3t + Ce-6t; overdamped response.
c. Poles: -10, -20; Zero: -7; c(t) = A + Be-10t + Ce-20t; overdamped response.
d. Poles: (-3+j3 15 ), (-3-j3 15 ) ; c(t) = A + Be-3t cos (3 15 t + ); underdamped.
e. Poles: j3, -j3; Zero: -2; c(t) = A + B cos (3t + ); undamped.
f. Poles: -10, -10; Zero: -5; c(t) = A + Be-10t + Cte-10t; critically damped.
9.
Program:
p=roots([1 6 4 7 2])
Computer response:
p =
4-14 Chapter 4: Time Response
-5.4917
-0.0955 + 1.0671i
-0.0955 - 1.0671i
-0.3173
10.
3 4 2
2 1
4 7 5
s
s s
s
I A
2
2
2
1
5 7 4 6 2 4
2 6 2 23 7
4 14 7 37 3 8
s s s s
s s s s
s s s s
s
I A
Where
3 22 38 25s s s
2
1 2
2
9 7
1
2 31
3 27 64
s s
s s s
s s
X s I A B
1 7 1y X
So
2
3 2
12 11 288
2 38 25
s s
G s
s s s
The poles are found by obtaining the roots in the denominator of G(s) and are 0.692, 4.8144
and -7.5062
11.
>> A=[3 -4 2;-2 0 1;4 7 -5];
>> B=[-1;-2;3];
>> C=[1 7 1];
>> D=0;
>> G=ss2tf(A,B,C,D,1);
>> [nG,dG]=ss2tf(A,B,C,D,1);
>> G=tf(nG,dG)
G =
-12 s^2 - 11 s + 288
-----------------------
s^3 + 2 s^2 - 38 s + 25
Continuous-time transfer function.
Solutions to Problems 4-15
>> poles=roots(dG)
poles =
-7.5062
4.8144
0.6918
12.
Writing the node equation at the capacitor, VC(s) (
2
1
R
+
1
Ls
+ Cs) + C
1
V (s)-V(s)
R
= 0.
Hence, C
V (s)
V(s)
=
1
1 2
1
1 1 1
Cs
R R Ls
R
=
2
10s
s 20s 500
. The step response is
2
10
s 20s 500
.The poles are at
-10 ± j20. Therefore, vC(t) = Ae
-10t cos (20t + ).
13.
Program:
num=[10 0];
den=[1 20 500];
G=tf(num,den)
step(G)
Computer response:
Transfer function:
10 s
----------------
s^2 + 20 s + 500
4-16 Chapter 4: Time Response
14.
The equation of motion is: (Ms2+fvs+Ks)X(s) = F(s).
Hence,
X(s)
F(s)
=
2
v s
1
Ms f s K
=
2 2
1 0.5
2 2 6 3s s s s
.
The step response is now evaluated:
X(s) =
2
0.5
( 3)s s s
=
2
1 1
1
6 6 6
1 11
( )
2 4
s
s
s
=
2
1 1 1 11
( )
1 / 6 6 2 26 11
1 11
( )
2 4
s
s
s
.
Taking the inverse Laplace transform,
0.5 11 1 11
2 211
1 1
( ) cos sin
6 6
t
t tx t e
=
0.51 111 1.091 cos 16.78
6 2
t oe t
.
15.
Solutions to Problems 4-17
C(s) =
2
n
22
n ns(s 2 s )
=
1
s
-
n
22
n n
s 2
s 2 s
=
1
s
-
n
2 22 2
n n n
s 2
(s ) -
=
1
s
-
n n
2 2 2
n n
(s )
(s ) ( 1- )
=
1
s
-
2n
n n2
n
2 2 2
n n
(s ) 1-
1-
(s ) ( 1- )
Hence,
n 2 2
n n
2
c(t) = 1-e cos 1- t + sin 1- t
1
t
= 1 - e-n
t
2
2
1
1-
cos (n
21- t - ) = 1 - e-n
t
2
1
1-
cos (n
21- t - ),
where = tan-1
21-
16. %OS = e- / 21- x 100. Dividing by 100 and taking the natural log of both sides,
ln (
%OS
100
) = -
21-
. Squaring both sides and solving for 2, 2 =
2
2 2
%OS
ln ( )
100
%OS
ln ( )
100
. Taking the
negative square root, =
2 2
%OS
-ln( )
100
%OS
ln ( )
100
.
17.
a.
2
C( )
( 2)
s
s s
1 1
C( )
2
s
s s
2( ) 1 tc t e
b.
5
C( )
( 3)( 6)
s
s s s
5 1 5 1 5 1
C( )
18 9 3 18 6
s
s s s
3 6
5 5 5
( )
18 9 18
t tc t e e
c.
10( +7)
C( )=
( +10)( +20)
s
s
s s s
7 1 3 1 13 1
C( )= +
20 10 +10 20 +20
s
s s s
10 20
7 3 13
( )= +
20 10 20
t tc t e e
d.
2
20
C( )=
( +6 +144)
s
s s s
4-18 Chapter 4: Time Response
2
5 1 5 +6
( )=
36 36 6 +144
s
C s
s s s
2
3
( +3)+ 135
5 1 5 135
C( )=
36 36 ( +3) +135
s
s
s s
35 5 3( )= cos 135 + sin 135
36 36 135
tc t e t t
e.
2
+2
C( )=
( +9)
s
s
s s
2
2 1 1 2 +9
C( )= +
9 9 +9
s
s
s s
2
2 1 1 2 3.3
C( )
9 9 9
s
s
s s
2 2 1
( ) cos.3 sin.3
9 9 3
c t t t
f.
2
5
C( )
( 10)
s
s
s s
2
1 1 1 1 1 1
C( )= +
20 20 10 2 ( +10)
s
s s s
10 10
1 1 1
( ) te
20 20 2
t tc t e
18.
a. N/A
b. s2+9s+18, n
2 = 18, 2n = 9, Therefore = 1.06, n = 4.24, overdamped.
c. s2+30s+200, n
2 = 200, 2n = 30, Therefore = 1.06, n = 14.14, overdamped.
d. s2+6s+144, n
2 = 144, 2n = 6, Therefore = 0.25, n = 12, underdamped.
e. s2+9, n
2 = 9, 2n = 0, Therefore = 0, n = 3, undamped.
f. s2+20s+100, n
2 = 100, 2n = 20, Therefore = 1, n = 10, critically damped.
19.
2 2 22
400 1 6 1 3 3 391
6 400 3913 391 3 391 3 391
s s
X s
s ss s s s s s
3 3 11 (cos19.77 0.152sin19.77 ) 1 1.048 (cos19.77 tan 0.314)t tx t e t t e t
20.
Solutions to Problems 4-19
a. n
2 = 16 r/s, 2n = 3. Therefore = 0.375, n = 4. Ts =
n
4
= 2.667 s; TP =
2n 1- .
=
0.8472 s; %OS = e- / 21- x 100 = 28.06 %; nTr = (1.76
3
- 0.417
2
+ 1.039+ 1) = 1.4238;
therefore, Tr = 0.356 s.
b. n
2 = 0.04 r/s, 2n = 0.02. Therefore = 0.05, n = 0.2. Ts =
n
4
= 400 s; TP =
2n 1- .
= 15.73 s; %OS = e- / 21- x 100 = 85.45 %; nTr = (1.76
3
- 0.417
2
+ 1.039+ 1); therefore,
Tr = 5.26 s.
c. n
2 = 1.05 x 10
7
r/s, 2n = 1.6 x 10
3
. Therefore = 0.247, n = 3240. Ts =
n
4
= 0.005 s; TP
=
2
n 1-
= 0.001 s; %OS = e- / 21- x 100 = 44.92 %; nTr = (1.76
3
- 0.417
2
+ 1.039+
1); therefore, Tr = 3.88x10
-4 s.
21.
Program:
'(a)'
clf
numa=16;
dena=[1 3 16];
Ta=tf(numa,dena)
omegana=sqrt(dena(3))
zetaa=dena(2)/(2*omegana)
Tsa=4/(zetaa*omegana)
Tpa=pi/(omegana*sqrt(1-zetaa^2))
Tra=(1.76*zetaa^3 - 0.417*zetaa^2 + 1.039*zetaa + 1)/omegana
percenta=exp(-zetaa*pi/sqrt(1-zetaa^2))*100
subplot(221)
step(Ta)
title('(a)')
'(b)'
numb=0.04;
denb=[1 0.02 0.04];
Tb=tf(numb,denb)
omeganb=sqrt(denb(3))
zetab=denb(2)/(2*omeganb)
Tsb=4/(zetab*omeganb)
Tpb=pi/(omeganb*sqrt(1-zetab^2))
Trb=(1.76*zetab^3 - 0.417*zetab^2 + 1.039*zetab + 1)/omeganb
percentb=exp(-zetab*pi/sqrt(1-zetab^2))*100
subplot(222)
step(Tb)
title('(b)')
'(c)'
numc=1.05E7;
denc=[1 1.6E3 1.05E7];
Tc=tf(numc,denc)
4-20 Chapter 4: Time Response
omeganc=sqrt(denc(3))
zetac=denc(2)/(2*omeganc)
Tsc=4/(zetac*omeganc)
Tpc=pi/(omeganc*sqrt(1-zetac^2))
Trc=(1.76*zetac^3 - 0.417*zetac^2 + 1.039*zetac + 1)/omeganc
percentc=exp(-zetac*pi/sqrt(1-zetac^2))*100
subplot(223)
step(Tc)
title('(c)')
Computer response:ans =
(a)
Transfer function:
16
--------------
s^2 + 3 s + 16
omegana =
4
zetaa =
0.3750
Tsa =
2.6667
Tpa =
0.8472
Tra =
0.3559
percenta =
28.0597
ans =
(b)
Transfer function:
0.04
-------------------
s^2 + 0.02 s + 0.04
omeganb =
Solutions to Problems 4-21
0.2000
zetab =
0.0500
Tsb =
400
Tpb =
15.7276
Trb =
5.2556
percentb =
85.4468
ans =
(c)
Transfer function:
1.05e007
-----------------------
s^2 + 1600 s + 1.05e007
omeganc =
3.2404e+003
zetac =
0.2469
Tsc =
0.0050
Tpc =
0.0010
Trc =
3.8810e-004
4-22 Chapter 4: Time Response
percentc =
44.9154
22.
Program:
T1=tf(16,[1 3 16])
T2=tf(0.04,[1 0.02 0.04])
T3=tf(1.05e7,[1 1.6e3 1.05e7])
ltiview
Computer response:
Transfer function:
16
--------------
s^2 + 3 s + 16
Transfer function:
0.04
-------------------
s^2 + 0.02 s + 0.04
Transfer function:
1.05e007
-----------------------
s^2 + 1600 s + 1.05e007
Solutions to Problems 4-23
4-24 Chapter 4: Time Response
23.
a. =
2 2
%OS
- ln ( )
100
%OS
+ ln ( )
100
= 0.56, n =
s
4
T
= 11.92. Therefore, poles = -n ± jn
21-
= -6.67 ± j9.88.
b. =
2 2
%OS
- ln ( )
100
%OS
+ ln ( )
100
= 0.591, n =
π
2PT 1-
= 0.779.
Therefore, poles = -n ± jn
21- = -0.4605 ± j0.6283.
c. n =
s
4
T
= 0.571, n
21- =
p
= 1.047. Therefore, poles = -0.571 ± j1.047.
24.
The corresponding damping factor is
2 2
(- ln(0.15)
0.517
(0.15)ln
. The settling
time is
4
0.7
s
n
T
sec, so 11.053
n
. The transfer function is
2
2 2 2
122.164
( )
2 11.43 122.164
n
n n
G s
s s s s
.
Solutions to Problems 4-25
25.
a. Adding impedances 2(5 2 20) ( ) ( )s s X s F s . So the transfer function is
2 2
1 0.2
5 2 20 0.4 4
X s
F s s s s s
.
b. Follows that 2 4n , or 2n . 2 0.4n , so 0.1. %OS =
21
100 72.93%e
.
4
20s
n
T
sec.
2
1.58
1
p
n
T
sec. To obtain the rise time Figure 4.16 is used 1.104n rT , or
0.552rT sec. The dc gain of the system is
0.2
0.05
4
maxc .
26.
a. The impedance equations are:
2 1 22s s s T
1 21 0s s
Solving for
2
2
2 22
2
0
2 2 12
1
s s T
s T
s ss s s
s s
So
2
2
1
2
1
2
s
T s
s s
b.
1
2
n , 2 1n or
1
2
.
4
8s
n
T
sec.
2
4.44
1
p
n
T
sec and %OS =
21
100 4.32%e
.
27.
a. Applying the input to the transfer function, and using a partial fraction expansion
2
2 2
a A B C
C s
s s as s a s a
2
02
| 1s
a
A
s a
2
|s a
a
C a
s
Substituting we have
2
2 2
1a B a
C s
s s as s a s a
To equate coefficients the above equation is multiplied on both sides by
2
s s a so
4-26 Chapter 4: Time Response
2 2 21 2a B s a Ba a s a from which it is readily apparent that 1B . So
2
2 2
1 1a a
C s
s s as s a s a
The inverse Laplace transform of this equation is
1 1 1at at atc t e ate e at
b. The settling time will be achieved when 0.98sc T or 1 1 0.98s
aT
s
e aT
or
1 0.02.saT se aT
c.
>> x=linspace(0,7,2000);
>> y=exp(-x).*(1+x);
>> plot(x,y)
So, 5.834
s
x T a . We have that
5.834
s
T
a
.
Solutions to Problems 4-27
28.
Note that
22
53.176 11.56
4.6 31.281 53.176 3.4ref s s s
So the system is critically damped. Therefore %OS=0,
P
T does not exist, and
5.834 5.834
1.72
3.4
s
T
a
sec. For a unit step input 1finalc . So the output for an
input with a magnitude of 3 will look as follows:
29.
The peak times are visually identified as 0.15, 0.2, 0.25, 0.35 and 0.45 sec. A %OS = 20% corresponds to a
damping factor of =0.456. Using
21
n
pT
the corresponding natural frequencies are 25.53,
17.65 14.12, 10.09 and 7.84 rad/sec. The real part of the poles is n = -10.7311 -8.0483 -6.4386 -
4.5990 -3.5770. The imaginary part of the poles is 21n = 20.9440 15.7080 12.5664 8.9760
6.9813. The corresponding plot is:
4-28 Chapter 4: Time Response
30.
a.
2
24.542
s(s 4s 24.542)
=
1
s
-
2
s 4
(s 2) 20.542
=
1
s
-
2
2
(s 2) 4.532
4.532
(s 2) 20.542
.
Thus c(t) = 1 - e-2t (cos4.532t+0.441 sin 4.532t) = 1-1.09e-2t cos(4.532t -23.80).
b.
2 2
245.42 1 1 0.70971 5.7418
0.29029
( 10)( 4 24.542) 10 4 24.542
s
s s s s s s s s
2 2
245.42 1 1 0.70971 5.7418
0.29029
( 10)( 4 24.542) 10 ( 2) 20.542
s
s s s s s s s
2 2
4.3223
0.70971( 2) 20.542
245.42 1 1 20.542
0.29029
( 10)( 4 24.542) 10 ( 2) 20.542
s
s s s s s s s
Solutions to Problems 4-29
2 2
245.42 1 1 0.70971( 2) 0.95367 20.542
0.29029
( 10)( 4 24.542) 10 ( 2) 20.542
s
s s s s s s s
Therefore, c(t) = 1 - 0.29e-10t - e-2t(0.71 cos 4.532t + 0.954 sin 4.532t)
= 1 - 0.29e-10t - 1.189 cos(4.532t - 53.34o).
c.
2 2
73.626 1 1 0.13926 2.8607
1.1393
( 3)( 4 24.542) 3 4 24.542
s
s s s s s s s s
2 2
3.1393
0.13926( 2) 20.542
73.626 1 1 20.542
1.1393
( 3)( 4 24.542) 3 ( 2) 20.542
s
s s s s s s s
2 2
73.626 1 1 0.13926( 2) 0.69264 20.542
1.1393
( 3)( 4 24.542) 3 ( 2) 20.542
s
s s s s s s s
Therefore, c(t) = 1 - 1.14e-3t + e-2t (0.14 cos 4.532t - 0.69 sin 4.532t)
= 1 - 1.14e-3t + 0.704 cos(4.532t +78.53o).
31.
Since the third pole is more than five times the real part of the dominant pole,
s2+0.842s+2.829 determines the transient response.
Since 2n = 0.842, and n = 93.2 = 1.71 = 0.246,
2/ 1
%OS x100 44.4%e
, Ts =
4
n
= 9.50 sec,
Tp =
21
n
= 1.895 sec;
nTr = (1.76
3
- 0.417
2
+ 1.039+ 1) = 1.257, therefore, Tr = 0.735.
32.
a. Measuring the time constant from the graph, T = 0.0244 seconds.
4-30 Chapter 4: Time Response
Estimating a first-order system, G(s) =
K
s a
. But, a = 1/T = 40.984, and
K
a
= 2. Hence, K =
81.967. Thus,
G(s) =
81.967
s 40.984
b. Measuring the percent overshoot and settling time from the graph: %OS = (13.82-11.03)/11.03 =
25.3%,
Solutions to Problems 4-31
and Ts = 2.62 seconds. Estimating a second-order system, we use Eq. (4.39) to find = 0.4 , and Eq.
(4.42) to find n = 3.82. Thus, G(s) = 2
n n
K
s 2 s 2
. Since Cfinal = 11.03, 2
n
K
= 11.03.
Hence, K = 160.95. Substituting all values,
G(s) =
2
160.95
s 3.056s 14.59
c. From the graph, %OS = 40%. Using Eq. (4.39), = 0.28. Also from the graph,
2
4.
1
p
n
T
Substituting = 0.28, we find n = 0.818.
Thus,
G(s) =
2 2
n n
K
s 2 s
=
2
0.669
s 0.458s 0.669
.
33.
a.
22
4 0.2 0.125 ( 1.5) 0.1302 7.75
0.075
( 2)( 3 10) 2 1.5 7.75
s s
s s s s s s s
Since the amplitudes of the sinusoids are of the same order of magnitude as the
residue of the pole at -2, pole-zero cancellationcannot be assumed.
b.
2 2
2.5 1 1 1 1 1 3 14
( 2)( 4 20) 16 64 2 64 4 20
s s
s s s s s s s s
2 2
2.5 1 1 1 1 1 3( 2) 2 16
( 2)( 4 20) 16 64 2 64 ( 2) 16
s s
s s s s s s s
Since the amplitude of the sinusoids are of the same order of magnitude as the
residue of the pole at -2, pole-zero cancellation cannot be assumed.
c.
2 2
( 2.2) 0.22 0.0143 0.2057 0.2629
( )
( 2)( 5) 2 5
s s
C s
s s s s s s s s
22
1 19
0.2057 0 07344
( 2.2) 0.22 0.0143 2 4
( )
( 2)( 5) 2 1 19
2 4
s .
s
C s
s s s s s s
s
4-32 Chapter 4: Time Response
Since the amplitudes of the sinusoids are of 1.5 orders of magnitude larger than
the residue of the pole at -2, pole-zero cancellation can be assumed. Since 2n
= 1, and n = 5 = 2.236, = 0.224,
2/ 1
%OS x100 48.64%e , Ts =
n
4
= 8 sec, Tp =
2n 1-
= 1.44
sec; nTr = 1.23, therefore, Tr = 0.55.
d.
22
2.01 1 1 0.049893 0.25018
0.05025 0.00035714
( 2)( 5 20) 2 5 55
2 4
s s
s s s s s s
s
22
5 55
0.049893 0.03383
2.01 1 1 2 4
0.05025 0.00035714
( 2)( 5 20) 2 5 55
2 4
s
s
s s s s s s
s
Since the amplitude of the sinusoids are of two orders of magnitude larger than the residue of the
pole at -2, pole-zero cancellation can be assumed. Since 2n = 5, and n = 20 = 4.472, =
0.559,
2/ 1
%OS x100 12.03%e
, Ts =
n
4
= 1.6 sec, Tp =
2n 1-
= 0.847 sec;
nTr = 1.852, therefore, Tr = 0.414.
34.
Program:
%Form sC(s) to get transfer function
clf
num=[1 3];
den=conv([1 3 10],[1 2]);
T=tf(num,den)
step(T)
Computer response:
Transfer function:
s + 3
-----------------------
s^3 + 5 s^2 + 16 s + 20
Solutions to Problems 4-33
%OS =
(0.163-0.15)
0.15
= 8.67%
35.
Only part c can be approximated as a second-order system. From the exponentially decaying cosine
the poles are located at
1,2
2 9.796s j . Thus,
4 4
2 s; 0.3207 s
Re 2 Im 9.796
s p
T T
Also,
2 22 9.796 10
n
and Re 2
n
. Hence, 0.2 , yielding 52.66 percent
overshoot.
36.
a.
(1)
1 2 2 2 2
1
33.75
1 0.17213 33.75 0.17213 5.809533.75
( )
3 36 ( 1.5) 33.75 ( 1.5) 33.75 ( 1.5) 33.75
aC s
s s s s s
Taking the inverse Laplace transform
Ca1(t) = 0.17213 e
-1.5t sin 5.8095t
(2)
2 2
2
( )
( 3 36)
aC s s
s s s
=
2
1 1
1 1 18 6
18 3 36
s
s s s
=
4-34 Chapter 4: Time Response
2
1 3 0.083333
33.75
1 1 18 2 33.75
18 3
33.75
2
s
s
s
=
2
3
0.055556 0.014344 33.75
1 2
0.055556
3
33.75
2
s
s
s
Taking the inverse Laplace transform
Ca2(t) = 0.055556 - e
-1.5t (0.055556 cos 5.809t + 0.014344 sin 5.809t)
The total response is found as follows:
Cat(t) = Ca1(t) + Ca2(t) = 0.055556 - e
-1.5t (0.055556 cos 5.809t - 0.157786 sin 5.809t)
Plotting the total response:
b.
(1) Same as (1) from part (a), or Cb1(t) = Ca1(t)
(2) Same as the negative of (2) of part (a), or Cb2 (t) = - Ca2(t)
The total response is
Cbt(t) = Cb1(t) + Cb2(t) = Ca1(t)- Ca2(t) = -0.055556 + e
-1.5t (0.055556 cos 5.809t + 0.186474 sin
5.809t)
Solutions to Problems 4-35
Notice the nonminimum phase behavior for Cbt(t).
4-36 Chapter 4: Time Response
37.
Solutions to Problems 4-37
38.
1 3
4 2
s
s
s
I A and 2det 1 2 12 3 14s s s s s I A . Solving for the roots the
two poles are -1.5j3.428.
39.
a.
1 0 0 0 2 3 2 3
0 1 0 0 6 5 0 ( 6) 5
0 0 1 1 4 2 1 4 ( 2)
s
s s s
s
I A
3 28 11 8s s s s I A
4-38 Chapter 4: Time Response
b. Factoring yields poles at 9.111, 0.5338, and –1.6448.
40.
x = (sI - A ) -1 (x0 + B u )
1
2
1 0 1 2 3 1 3
0 1 3 1 1 1 9
s
s
X
3 2
2 2
3 2
2 2
3 5 30 54
( 5)( 9)
10 12 102
( 5)( 9)
s s s
s s
s s s
s s
X
( ) 1 2Y s X
3 2
2 2
5 15 54 150
( )
( 5)( 9)
s s s
Y s
s s
41.
x = (sI - A ) -1 (x0 + B u )
1
1 0 0 0 1 0 0 0
1
0 1 0 2 4 1 0 0
1
0 0 1 0 0 6 0 1
s
s
x
2
1
[ 6][ 1][ 0.58579][ 3.4142]
[ 6][ 1][ 0.58579][ 3.4142]
4 2
[ 6][ 1][ 0.58579][ 3.4142]
s s s s
s
s s s s
s s
s s s s
x
( ) [1 0 0]
1
( )
( 6)( 1)( 0.58579)( 3.4142)
Y s
Y s
s s s s
X
42.
1
1
3 0 2 2 1
( ) ( ) ( ) ( )
1 1 0 1
2( 1)1 2 2
0
( 3)3
1 1 1 1
( 1)( 3) 1 ( 1)( 3)
s
s s u t
s s
ss
s ss s
s
s s s s s s s
0X I A x B
Solutions to Problems 4-39
2 1
3 2 1 2 1 5 1
1 0
3 3 3 31
1 3
s
s s s
Y s
s s s ss
s s s
Obtaining the inverse Laplace transform
3
2 5
3 3
ty t e
43.
1
1
( ) ( )
1 0 0 3 1 0 0 0
1
0 1 0 0 6 1 0 1
0 0 1 0 0 5 0 1
s u
s
s
0x I A x B
x
1
( 3)( 5)
1
( 5)
1
( 5)
s s s
s s
s s
x
3 5
5
5
1 1 1
15 6 10
1 1
( )
5 5
1 1
5 5
t t
t
t
e e
t e
e
x
5
2 2
( ) 0 1 1
5 5
ty t e x
44.
Program:
A=[-3 1 0;0 -6 1;0 0 -5];
B=[0;1;1];
C=[0 1 1];
D=0;
S=ss(A,B,C,D)
step(S)
Computer response:
a =
x1 x2 x3
x1 -3 1 0
x2 0 -6 1
4-40 Chapter 4: Time Response
x3 0 0 -5
b =
u1
x1 0
x2 1
x3 1
c =
x1 x2 x3
y1 0 1 1
d =
u1
y1 0
Continuous-time model.
45.
Program:
syms s %Construct symbolic object for
%frequency variable 's'.
'a' %Display label
A=[-3 1 0;0 -6 1;0 0 –5] %Create matrix A.
B=[0;1;1]; %Create vector B.
C=[0 1 1]; %Create C vector
X0=[1;1;0] %Create initial condition vector,X(0).
Solutions to Problems 4-41
U=1/s; %Create U(s).
I=[1 0 0;0 1 0;0 0 1]; %Create identity matrix.
X=((s*I-A)^-1)*(X0+B*U); %Find Laplace transform of state vector.
x1=ilaplace(X(1)) %Solve for X1(t).
x2=ilaplace(X(2)) %Solve for X2(t).
x3=ilaplace(X(3)) %Solve for X3(t).
y=C*[x1;x2;x3] %Solve for output, y(t).
y=simplify(y) %Simplify y(t).
'y(t)' %Display label.
pretty(y) %Pretty print y(t).Computer response:
ans =
a
A =
-3 1 0
0 -6 1
0 0 -5
X0 =
1
1
0
x1 =
7/6*exp(-3*t)-1/3*exp(-6*t)+1/15+1/10*exp(-5*t)
x2 =
exp(-6*t)+1/5-1/5*exp(-5*t)
x3 =
1/5-1/5*exp(-5*t)
y =
2/5+exp(-6*t)-2/5*exp(-5*t)
y =
2/5+exp(-6*t)-2/5*exp(-5*t)
ans =
y(t)
2/5 + exp(-6 t) - 2/5 exp(-5 t)
46.
|I - A | = 2 + 5 +1
|I - A | = ( + 0.20871) ( + 4.7913)
0.20871P
4-42 Chapter 4: Time Response
4.7913Q
0.20871 4.7913 0.20871 4.7913
1 2 5 6
0.20871 4.7913 0.20871 4.7913
3 4 7 8
t t t t
t t t t
A e A e A e A e
A e A e A e A e
2 1 6 5
0
4 3 8 7
A A A A
A A A A
0.20871 -4.7913 -0.20871 4.7913
1 2 5 6
0.20871 -4.7913 -0.20871 4.7913
3 4 7 8
0.20871 4.7913 0.20871 4.7913
0.20871 4.7913 0.20871 4.7913
t t t t
t t t t
A e A e A e A e
t A e A e A e A e
2 1 6 5
0
4 3 8 7
4.7913 0.20871 4.7913 0.20871
4.7913 0.20871 4.7913 0.20871
A A A Ad
A A A At
Therefore,
2 1 6 5
4 3 8 7
1 0
0 1
A A A A
A A A A
2 1 6 5
4 3 8 7
4.7913 0.20871 4.7913 0.20871 0 1
4.7913 0.20871 4.7913 0.20871 1 5
A A A A
A A A A
Solving for Ai's two at a time, and substituting into the state-transition matrix
0.20871 4.7913 0.20871 4.7913
0.20871 4.7913 0.20871 4.7913
1.0455 0.045545 0.21822 0.21822
0.21822 0.21822 0.045545 1.0455
t t t t
t t t t
e e e e
e e e e
To find x(t),
0x x
0.20871 4.7913 0.20871 4.7913
0.20871 4.7913 0.20871 4.7913
11.0455 0.045545 0.21822 0.21822
00.21822 0.21822 0.045545 1.0455
t t t t
t t t t
e e e e
x
e e e e
-0.20871 4.7913
-0.20871 -4.7913
1.0455 - 0.045545
-0.21822 0.21822
t t
t t
e e
x
e e
To find the output,
(1,2)y x
0.20871 4.7913
0.20871 4.7913
1.0455 0.045545
(1,2)
0.21822 0.21822
t t
t t
e e
y
e e
0.20871 4.7913(0.60911 0.39089 )t ty e e
47.
1
1
/ A
|I - A | = 2 + 1
Solutions to Problems 4-43
1 2 5 6
3 4 7 8
cos[ ] sin[ ] cos[ ] sin[ ]
cos[ ] sin[ ] cos[ ] sin[ ]
A t A t A t A t
A t A t A t A t
2 1 6 5
4 3 8 7
cos[ ] sin[ ] cos[ ] sin[ ]
cos[ ] sin[ ] cos[ ] sin[ ]
A t A t A t A td
A t A t A t A tt
1 5
0
3 7
A A
A A
2 6
0
4 8
A Ad
A At
1 5
3 7
1 0
0 1
A A
A A
2 6
4 8
0 1
1 0
A A
A A
Solving for the Ai's and substituting into the state-transition matrix,
cos[ ] sin[ ]
sin[ ] cos[ ]
t t
t t
To find the state vector,
0 [ ] [ ]
t
x t B d
0
cos( ) sin( ) 0
sin( ) cos( ) 1
t t t
x d
t t
0
sin[ ]
d
cos[ ]
t t
x
t
t
0 sin[ ]
cos[ ]t
x d
1 cos[ ]
sin[ ]
t
x
t
(3,4)
1 cos[ ]
(3,4)
sin[ ]
( 3cos[ ] 4sin[ ] 3)
y x
t
y
t
y t t
48.
|I - A | = ( + 2) ( + 0.5 - 2.3979i) ( + 0.5 + 2.3979i)
Let the state-transition matrix be
.5 t .5 t 2 t .5 t .5 t
1 2 3 10 11 12
.5 t .5 t 2 t .5 t .5 t
4 5 6 13 14 15
.5 t
7
A e cos(2.3979t) A e sin(2.3979t) A e A e cos(2.3979t) e sin(2.3979t) A
A e cos(2.3979t) A e sin(2.3979t) A e A e cos(2.3979t) A e sin(2.3979t) A
A e cos(2.3
A
.5 t 2 t .5 t .5 t
8 9 16 17 18979t) A e sin(2.3979t) A e A e cos(2.3979t) A e sin(2.3979t) A
4-44 Chapter 4: Time Response
Since (0) = I, (0) = A, and (0) = A2, we can evaluate the coefficients, Ai's. Thus,
3 1 12 10 21 19
6 4 15 13 24 22
9 7 18 16 27 25
A A A A A A 1 0 0
A A A A A A 0 1 0
A A A A A A 0 0 1
3 2 1 12 11 10 21 20 19
6 5 4 15 14 13 24 23 22
9 8 7 18 17 16 27 26 25
2A 2.3979A 0.5A 2A 2.3979A 0.5A 2A 2.3979A 0.5A
2A 2.3979A 0.5A 2A 2.3979A 0.5A 2A 2.3979A 0.5A
2A 2.3979A 0.5A 2A 2.3979A 0.5A 2A 2.3979A 0.5A
2 1 0
0 0 1
0 6 1
3 2 1 12 11 10 21 20 19
6 5 4 15 14 13 24 23 22
9 8 7 18 17 16 27 26
4A 2.3979A 5.4999A 4A 2.3979A 5.4999A 4A 2.3979A 5.4999A
4A 2.3979A 5.4999A 4A 2.3979A 5.4999A 4A 2.3979A 5.4999A
4A 2.3979A 5.4999A 4A 2.3979A 5.4999A 4A 2.3979A 5.
25
4 2 1
0 6 1
4999A 0 6 5
Solving for the Ai's taking three equations at a time,
2 0.5 0.5 2
0.5 0.5
0.5
0.5 0.5 2
0.125 cos[2.3979 ] 0.33884 sin[2.3979 ] 0.125
0 cos[2.3979 ] 0.20851 sin[2.3979 ]
0 2.502 sin[2.3979 ]
0.125 cos[2.3979 ] 0.078194 sin[2.3979 ] 0.125
t t t t
t t
t
t t
e e t e t e
e t e t
e t
e t e t e
0.5
0.5 0.5
0.41703 sin[2.3979 ]
cos[2.3979 ] 0.20852 sin[2.3979 ]
t
t
t t
e t
e t e t
t
0
Using (t) (t) (0) (t- ) ( ) d , and y [1 0 0] (t),x x Bu x
2( )
0
t
ty e d
=
1
2
-
1
2
e-2t
49.
Program:
syms s t tau %Construct symbolic object for
%frequency variable 's', 't', and 'tau.
'a' %Display label.
A=[-2 1 0;0 0 1;0 -6 -1] %Create matrix A.
B=[1;0;0] %Create vector B.
C=[1 0 0] %Create vector C.
X0=[1;1;0] %Create initial condition vector,X(0).
I=[1 0 0;0 1 0;0 0 1]; %Create identity matrix.
'E=(s*I-A)^-1' %Display label.
Solutions to Problems 4-45
E=((s*I-A)^-1) %Find Laplace transform of state
%transition matrix, (sI-A)^-1.
Fi11=ilaplace(E(1,1)); %Take inverse Laplace transform
Fi12=ilaplace(E(1,2)); %of each element
Fi13=ilaplace(E(1,3));
Fi21=ilaplace(E(2,1));
Fi22=ilaplace(E(2,2));
Fi23=ilaplace(E(2,3));
Fi31=ilaplace(E(3,1));
Fi32=ilaplace(E(3,2)); %to find state transition matrix.
Fi33=ilaplace(E(3,3)); %of (sI-A)^-1.
'Fi(t)' %Display label.
Fi=[Fi11 Fi12 Fi13 %Form Fi(t).
Fi21 Fi22 Fi23
Fi31 Fi32 Fi33];
pretty(Fi) %Pretty print state transition matrix, Fi.
Fitmtau=subs(Fi,t,t-tau); %Form Fi(t-tau).
'Fi(t-tau)' %Display label.
pretty(Fitmtau) %Pretty print Fi(t-tau).
x=Fi*X0+int(Fitmtau*B*1,tau,0,t);
%Solve for x(t).
x=simple(x); %Collect terms.
x=simplify(x); %Simplify x(t).
x=vpa(x,3);
'x(t)' %Display label.
pretty(x) %Pretty print x(t).
y=C*x; %Find y(t)
y=simplify(y);
y=vpa(simple(y),3);
y=collect(y);
'y(t)'
pretty(y) %Pretty print y(t).
Computer response:
ans =
a
A =
-2 1 0
0 0 1
0 -6 -1
B =
1
0
0
C =
1 0 0
X0 =
4-46 Chapter 4: Time Response
1
1
0
ans =
E=(s*I-A)^-1
E =
[ 1/(s+2), (s+1)/(s+2)/(s^2+s+6), 1/(s+2)/(s^2+s+6)]
[0, (s+1)/(s^2+s+6), 1/(s^2+s+6)]
[ 0, -6/(s^2+s+6), s/(s^2+s+6)]
ans =
Fi(t)
[ 13
[exp(-2 t) , - 1/8 exp(-2 t) + 1/8 %1 + --- %2 ,
[ 184
]
1/8 exp(-2 t) - 1/8 %1 + 3/184 %2]
]
[
[0 , 1/23 %2 + %1 , - 1/23
1/2 1/2 1/2
(-23) (exp((-1/2 + 1/2 (-23) ) t) - exp((-1/2 - 1/2 (-23) ) t))
]
]
[
[0 , 6/23
1/2 1/2 1/2
(-23) (exp((-1/2 + 1/2 (-23) ) t) - exp((-1/2 - 1/2 (-23) ) t))
]
, - 1/23 %2 + %1]
1/2
Solutions to Problems 4-47
%1 := exp(- 1/2 t) cos(1/2 23 t)
1/2 1/2
%2 := exp(- 1/2 t) 23 sin(1/2 23 t)
ans =
Fi(t-tau)
[
[exp(-2 t + 2 tau) ,
[
13 1/2
- 1/8 exp(-2 t + 2 tau) + 1/8 %2 cos(%1) + --- %2 23 sin(%1) ,
184
1/2 ]
1/8 exp(-2 t + 2 tau) - 1/8 %2 cos(%1) + 3/184 %2 23 sin(%1)]
]
[ 1/2 1/2
[0 , 1/23 %2 23 sin(%1) + %2 cos(%1) , - 1/23 (-23) (
1/2
exp((-1/2 + 1/2 (-23) ) (t - tau))
1/2 ]
- exp((-1/2 - 1/2 (-23) ) (t - tau)))]
[ 1/2 1/2
[0 , 6/23 (-23) (exp((-1/2 + 1/2 (-23) ) (t - tau))
1/2
- exp((-1/2 - 1/2 (-23) ) (t - tau))) ,
1/2 ]
- 1/23 %2 23 sin(%1) + %2 cos(%1)]
1/2
%1 := 1/2 23 (t - tau)
%2 := exp(- 1/2 t + 1/2 tau)
ans =
x(t)
[.375 exp(-2. t) + .125 exp(-.500 t) cos(2.40 t)
+ .339 exp(-.500 t) sin(2.40 t) + .500]
4-48 Chapter 4: Time Response
[.209 exp(-.500 t) sin(2.40 t) + exp(-.500 t) cos(2.40 t)]
[1.25 i (exp((-.500 + 2.40 i) t) - 1. exp((-.500 - 2.40 i) t))]
ans =
y(t)
.375 exp(-2. t) + .125 exp(-.500 t) cos(2.40 t)
+ .339 exp(-.500 t) sin(2.40 t) + .500
50.
The state-space representation used to obtain the plot is,
0 1 0
u(t); y(t) 1 0
-1 -0.8 1
x x x
Using the Step Response software,
Calculating % overshoot, settling time, and peak time,
Solutions to Problems 4-49
2n = 0.8, n = 1, = 0.4. Therefore,
2/ 1
%OS x100 25.38%e
, Ts =
n
4
= 10 sec,
Tp =
2n 1-
= 3.43 sec.
51.
Program:
A=[0 1 0;-12 -8 1;0 0 -2];
B=[0;0;1];
C=[1 1 0];
D=0;
S=ss(A,B,C,D);
stepplot(S)
Computer response:
S =
a =
x1 x2 x3
x1 0 1 0
x2 -12 -8 1
x3 0 0 -2
b =
u1
x1 0
x2 0
x3 1
c =
x1 x2 x3
y1 1 1 0
d =
u1
y1 0
Continuous-time state-space model.
4-50 Chapter 4: Time Response
52.
a. P(s) =
s 0.5
s(s 2)(s 5)
=
1 / 20
s
+
1 / 4
s 2
-
3 /10
s 5
. Therefore, p(t) =
1
20
+
1
4
e-2t -
3
10
e-5t.
b. To represent the system in state space, draw the following block diagram.
For the first block,
y 7y 10y v(t)
Let x1 = y, and x2 = y . Therefore,
x 1 = x2
x 2 = -10x1 - 7x2 + v(t)
Also,
p(t) = 0.5y + y = 0.5x1 + x2
Solutions to Problems 4-51
Thus,
0 1 0
1;p(t) 0.5 1
10 7 1
x x x
c.
Program:
A=[0 1;-10 -7];
B=[0;1];
C=[.5 1];
D=0;
S=ss(A,B,C,D)
step(S)
Computer response:
a =
x1 x2
x1 0 1
x2 -10 -7
b =
u1
x1 0
x2 1
c =
x1 x2
y1 0.5 1
d =
u1
y1 0
Continuous-time model.
4-52 Chapter 4: Time Response
53. Consider the un-shifted Laplace transform of the output
2 2 2 2
2.5(1 0.172 )(1 0.008 ) 280.82( 5.814)( 125)
( )
(1 0.07 ) (1 0.05 ) ( 14.286) ( 20)
s s s s
Y s
s s s s s s
2 2( 14.286) ( 14.286) ( 20) ( 20)
A B C D E
s s s s s
02 2
280.82( 5.814)( 125)
2.5
( 14.286) ( 20)
s
s s
A
s s
14.2862
280.82( 5.814)( 125)
564.7
( 20)
s
s s
B
s s
2
14.286 14.2862 3 2
280.82( 5.814)( 125) 280.82 36735.2 204085.94
( 20) 40 400
s s
d s s d s s
C
ds s s ds s s s
3 2 2 2
14.2863 2 2
( 40 400 )(561.64 36735.2) (280.82 36735.2 204085.94)(3 80 400)
( 40 400 )
s
s s s s s s s s
s s s
219.7
Solutions to Problems 4-53
202
280.82( 5.814)( 125)
640.57
( 14.286)
s
s s
D
s s
2
20 202 3 2
280.82( 5.814)( 125) 280.82 36735.2 204085.94
( 14.286) 28.572 204.09
s s
d s s d s s
E
ds s s ds s s s
3 2 2 2
203 2 2
( 28.572 204.09 )(561.64 36735.2) (280.82 36735.2 204085.94)(3 57.144 204.09)
( 28.572 204.09 )
s
s s s s s s s s
s s s
217.18
thus
2 2
2.5 564.7 219.7 640.57 217.18
( )
( 14.286) ( 14.286) ( 20) ( 20)
Y s
s s s s s
Obtaining the inverse Laplace transform of the latter and delaying the equation in time domain we
get
14.286( 0.008) 14.286( 0.008) 20( 0.008)
20( 0.008)
( ) [2.5 564.7( 0.008) 219.7 640.57( 0.008)
217.18 ] ( 0.008)
t t t
t
y t t e e t e
e u t
54.
a. The transfer function can be written as
0.1
2
2.5056( 3.33)
( )
( 1)( 0.72 1.44)
ss e
s
I s s s
It has poles at s=-0.36±j1.145 and s=-1. A zero at s=-3.33
The ‘far away’ pole at -1 is relatively close to the complex conjugate poles as 0.36*5>1 so a
dominant pole approximation can’t be applied.
b) In time domain the input can be expressed as:
4-54 Chapter 4: Time Response
( ) 250 ( ( ) ( 0.15))i t A u t u t
Obtaining Laplace transforms this can be expressed as
0.151
( ) 250
se
I s
s
We first obtain the response to an unshifted unit step:
2 2
2.5056( 3.33)
( )
( 1)( 0.72 1.44) 1 0.72 1.44
s A B Cs D
s
s s s s s s s s
02
2.5056( 3.33)
5.8
( 1)( 0.72 1.44)
s
s
A
s s s
12
2.5056( 3.33) 2.5056(2.33)
3.4
( 0.72 1.44) ( 1)(1.72)
s
s
B
s s s
We will get C and D by equating coefficients. Substituting these two values and multiplying both
sides by the denominator we get.
2 22.5056( 3.33) 5.8( 1)( 0.72 1.44) 3.4 ( 0.72 1.44) ( ) ( 1)s s s s s s s Cs D s s
3 2 3 2 3 22.5056( 3.33) 5.8( 1.72 2.16 1.44) 3.4( 0.72 1.44 ) ( ( ) )s s s s s s s Cs C D s Ds
3 22.5056( 3.33) (2.4 ) (7.528 ) (10.632 ) 8.352s C s C D s D s
We immediately get C=-2.4 and D=-5.128
Solutions to Problems 4-55
So
2 2
5.8 3.4 2.4 5.128 5.8 3.4 2.4 5.128
( )
1 0.72 1.44 1 ( 0.36)1.3104
s s
s
s s s s s s s
2 2 2
5.8 3.4 2.4( 0.15) 4.768 5.8 3.4 2.4( 0.15) 1.145
4.164
1 1( 0.36) 1.3104 ( 0.36) 1.3104 ( 0.36) 1.3104
s s
s s s ss s s
Obtaining inverse Laplace transform we get
0.36 0.36( ) 5.8 3.4 2.4 cos(1.145 ) 4.164 sin(1.145 )t t tt e e t e t
0.365.8 3.4 2.4 sin(1.145 30 )t te e t
So the actual (shifted) unit step response is given by
( 0.1) 0.36( 0.1)( ) [5.8 3.4 2.4 sin(1.145( 0.1) 30 )] ( 0.1)t tt e e t u t
The response to the pulse is given by:
( 0.1) 0.36( 0.1)( ) [1.45 0.85 0.6 sin(1.145( 0.1) 30 )] ( 0.1)t tt m me me t u t
( 0.25) 0.36( 0.25)[1.45 0.85 0.6 sin(1.145( 0.25) 30 )] ( 0.25)t tm me me t u t
55.
At steady state the input is 9V and the output is 6V Thus G(0) = 6/9 = 0.667
The maximum peak is achieved at 285 with a %OS = (7.5/6-1)*100 = 25%
This corresponds to a damping factor of
2 2 2
ln(% /100) 1.3863
0.4
ln (% /100) 1.9218
OS
OS
2
12027.2
(285 )(0.9165)1
n
p
T
So the approximated transfer function is
4-56 Chapter 4: Time Response
2 2 6
2 2 2 2 2 7
0.667*12027.2 96.5*10
( )
2 2*0.4*12027.2 12027.2 9622 14.5*10
n
n n
K
G s
s s s s s s
56.
The oscillation period is
22 1
n
T
and from the figure 0.0675 0.0506 0.0169
2
T
s s s
Thus T=0.0338 sec from which we get
21 185.8931
n
The peaks of the response occur when the ‘cos’ term of the step response is 1 thus from the figure
we have:
(0.0506)
2
1 1.1492
1
ne
and
(0.0675)
2
1 0.9215
1
ne
From which we get
(0.0506)
(0.0675)
0.1492
1.9006
0.0785
n
n
e
e
or (0.0169) 1.9006ne or 38
n
Substituting this result we get
2 2381 1 185.8931
n
or
2
2
1444
(1 ) 34556.2284
or 2 0.0436 or 0.21
Finally
38
180.9
n
57.
The step input amplitude is the same for both responses so it will just be assumed to be unitary.
For the ‘control’ response we have:
0.018
final
c , 0.024
pt
M from which we get
max 0.024 0.018% 100% 100% 33.33%
0.018
final
final
c c
OS
c
2 2 2 2
ln(% /100) ln(0.333)
0.33
ln (% /100) ln (0.333)
OS
OS
Solutions to Problems 4-57
2 2
33.3
1 0.1 1 0.333
n
p
T
Leading a transfer function
2
1108.9
( )
22 1108.9
c
G s
s s
Similarly for the ‘hot tail’:
0.023
final
c , 0.029ptM
0.029 0.023
% 100% 26.1%
0.023
OS
2 2
ln(0.261)
0.393
ln (0.261)
2 2
34.17
1 0.1 1 0.261
n
p
T
2
1167.6
( )
26.9 1167.6
h
G s
s s
Using MATLAB:
>> syms s
>> s=tf('s')
Transfer function:
s
>> Gc = 1108.89/(s^2+22*s+1108.89);
>> Gh = 1167.6/(s^2+26.9*s+1167.6);
>> step(Gc,Gh)
4-58 Chapter 4: Time Response
Both responses are equivalent if error tolerances are considered.
58.
The original transfer function has zeros at 7200 7400s j
And poles at 1900 4500s j ; 120 1520s j
With (0) 0.1864G
The dominant poles are those with real parts at -120, so a real pole is added at
-1200 giving the following approximation:
3 2 6
6 2 3
(1200)(2324.8 10 ) ( 14400 106.6 10 )
( ) 0.1864
106.6 10 ( 240 2324.8 10 )( 1200)
s s
G s
s s s
2 6
2 3
4.8782( 14400 106.6 10 )
( 240 2324.8 10 )( 1200)
s s
s s s
Using MATLAB:
>> syms s
>> s=tf('s');
Solutions to Problems 4-59
>>G=9.7e4*(s^2-14400*s+106.6e6)…
/(s^2+3800*s+23.86e6)/(s^2+240*s+2324.8e3);
>> Gdp=4.8782*(s^2-14400*s+106.6e6)/(s^2+240*s+2324.8e3)/(s+1200);
>> step(G,Gdp)
Both responses differ because the original non-dominant poles are very close to the complex pair of
zeros.
59.
M(s) requires at least 4 ‘far away’ poles that are added a decade beyond all original poles and zeros.
This gives
2 2 2 2
8 4 4
( 0.009) ( 0.018 0.0001) 1028.81( 0.009) ( 0.018 0.0001)
( )
9.72 10 ( 0.0001)(1 / 0.1) ( 0.0001)( 0.1)
s s s s s s
M s
s s s s
4-60 Chapter 4: Time Response
60.
2 2 2 2
ln(% /100) ln(0.30)
0.36
ln (% /100) ln (0.30)
OS
OS
2 2
0.026
1 127 1 0.30
n
p
T
2
2 2 2
0.00067
( )
2 0.0187 0.00067
n
n n
G s
s s s s
61.
a. Let the impulse response of T(s) be h(t). We have that
205)20)(5(
450
)(
s
B
s
A
ss
sH
30
20
450
5
s
s
A ; 30
5
450
20
s
s
B
20
30
5
30
)(
ss
sH . Obtaining the inverse Laplace transform we get
tt eeth 205 3030)(
b. Let the step response of the system be g(t). We have that
5 20 5 20
0 0
0 0 0
30 30
( ) ( ) 30 30
5 20
t t t
t t t t t tg t h t dt e dt e dt e e
5 20 5 206( 1) 1.5( 1) 4.5 6 1.5t t t te e e e
c.
450
( )
( 5)( 20) 5 20
A B C
G s
s s s s s s
0
450
4.5
( 5)( 20)
s
A
s s
; 5
450
6
( 20)
s
B
s s
; 20
450
1.5
( 5)
s
C
s s
Leading
4.5 6 1.5
( )
5 20
G s
s s s
. After the inverse Laplace we get
5 20( ) 4.5 6 1.5t tg t e e
62.
a. The poles given by
2 3 38.99 10 3.97 10 0s s have an 0.063 / sec
n
rad and
0.0714
Solutions to Problems 4-61
The poles given by
2 4.21 18.23 0s s have an 4.27 / sec
n
rad and 0.493 Thus
the former represent the Phugoid and the latter the Short Period modes.
b. In the original we have (0) 4.85
e
so the Phugoid approximation is given by:
2 3 3
1.965( 0.0098)
( 8.99 10 3.97 10 )
e
s
s s
c.
>> syms s
>> s=tf('s');
>>G=-26.12*(s+0.0098)*(s+1.371)/(s^2+8.99e-3*s+3.97e-3)/(s^2+4.21*s+18.23);
>> Gphug=-1.965*(s+0.0098)/(s^2+8.99e-3*s+3.97e-3);
>> step(G,Gphug)
Both responses are indistinguishable.
4-62 Chapter 4: Time Response
63.
a.
Program
numg=[33 202 10061 24332 170704];
deng=[1 8 464 2411 52899 167829 913599 1076555];
G=tf(numg,deng)
[K,p,k]=residue(numg,deng)
Computer Response
K =
0.0018 + 0.0020i
0.0018 - 0.0020i
-0.1155 - 0.0062i
-0.1155 + 0.0062i
0.0077 - 0.0108i
0.0077 + 0.0108i
0.2119
p =
-1.6971 +16.4799i
-1.6971 -16.4799i
-0.5992 +12.1443i
-0.5992 -12.1443i
-1.0117 + 4.2600i
-1.0117 - 4.2600i
-1.3839
k =
[]
b.
Therefore, an approximation to G(s)/ is:
0.2119
1.3839
( )
s
G s
c.
Program
numg=[33 202 10061 24332 170704];
deng=[1 8 464 2411 52899 167829 913599 1076555];
Solutions to Problems 4-63
G=tf(numg,deng);
numga=0.2119;
denga=[1 1.3839];
Ga=tf(numga,denga);
step(G)
hold on
step(Ga)
Computer Response
Approximation does not show oscillations and is slightly off of final value.
64.
Computer Response
Transfer function:
s^15 + 1775 s^14 + 1.104e006 s^13 + 2.756e008 s^12 + 2.272e010 s^11
+ 7.933e011 s^10 + 1.182e013 s^9 + 6.046e013 s^8 + 1.322e014 s^7
+ 1.238e014 s^6 + 3.977e013 s^5 + 5.448e012 s^4 + 3.165e011 s^3
+ 6.069e009 s^2 + 4.666e007 s + 1.259e005
----------------------------------------------------------------------------31.62 s^17 + 4.397e004 s^16 + 1.929e007 s^15 + 2.941e009 s^14
+ 1.768e011 s^13 + 4.642e012 s^12 + 5.318e013 s^11 + 2.784e014 s^10
+ 7.557e014 s^9 + 1.238e015 s^8 + 1.356e015 s^7 + 8.985e014 s^6
+ 2.523e014 s^5 + 3.179e013 s^4 + 1.732e012 s^3 + 3.225e010 s^2
+ 2.425e008 s + 6.414e005
4-64 Chapter 4: Time Response
65.
a. To find the step responses for these two processes, ya(t) and yp(t), we consider
first the un-shifted Laplace transform of their outputs for Xa(s) = Xp(s) = 1/s:
3
*
4 4
14.49 9.8 10
( )
(1478.26 1) ( 6.77 10 ) ( 6.77 10 )
a
A B
Y s
s s s s s s
(1),
where
3
4
9.8 10
14.49
6.77 10
0
A
s
s
and
3
4
9.8 10
14.49
6.77 10
B
s
s
(2)
Substituting the values of A and B into equation (1) gives:
*
4 4
1 1
( ) 14.49
( 6.76 10 ) ( 6.76 10 )
a
A B
Y s
s s s s
(3)
Taking the inverse Laplace transform of *( )
a
Y s and delaying the resulting response
in the time domain by 3.3 seconds, we get:
46.67 10 ( 3.3)( ) 14.49 1 ( 3.3)t
a
y t e u t
(4)
Solutions to Problems 4-65
Noting that the denominator of ( )
p
G s can be factored into
3 3( 0.174 10 )( 6.814 10 )s s , we have:
5
*
3 3 3 3
1.716 10
( )
( 0.174 10 )( 6.814 10 ) ( 0.174 10 ) ( 6.814 10 )
p
C D E
Y s
s s s s s s
(5),
where:
5
3 3
1.716 10
14.48
( 0.174 10 )( 6.814 10 )
0
C
s s
s
;
5
3
3
1.716 10
14.85
( 6.814 10 )
0.174 10
D
s s
s
;
5
3
3
1.716 10
0.37
( 0.174 10 )
6.814 10
E
s s
s
. (6)
Substituting the values of C, D and E into equation (5) and simplifying gives:
*
3 3 3 3
14.48 14.85 0.37 1 1.0256 0.0256
( ) 14.48
( 0.174 10 ) ( 6.814 10 ) ( 0.174 10 ) ( 6.814 10 )
pY s
s ss s s s
(7)
Taking the inverse Laplace transform of *( )
p
Y s and delaying the resulting response
in the time domain by 25 seconds, we get:
3 30.174 10 ( 25) 6.814 10 ( 25)( ) 14.48 1 1.0256 0.0256 ( 25)t t
p
y t e e u t
(8)
b. Using Simulink to model the two processes described above, ya(t) and yp(t) were
output to the “workspace.” MATLAB plot commands were then utilized to plot
ya(t) and yp(t) on a single graph. The model and graph are shown below.
4-66 Chapter 4: Time Response
Solutions to Problems 4-67
66.
a.
>> A=[-8.792e-3 0.56e-3 -1e-3 -13.79e-3; -0.347e-3 -11.7e-3 -0.347e-3 0; 0.261 -20.8e-3 -96.6e-3 0;
0 0 1 0]
A =
-0.0088 0.0006 -0.0010 -0.0138
-0.0003 -0.0117 -0.0003 0
0.2610 -0.0208 -0.0966 0
0 0 1.0000 0
>> eig(A)
ans =
-0.1947
0.0447 + 0.1284i
0.0447 - 0.1284i
-0.0117
b.
Given the eigenvalues, the state-transition matrix will be of the form
4-68 Chapter 4: Time Response
11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44
( )
K K K K
K K K K
t
K K K K
K K K K
with
0.1947 0.0117 0.0447 0.0447
1 2 3 4
sin(0.1284 ) cos(0.1284 )t t t t
ij ij ij ij ij
K K e K e K e t K e t
Thus 64 constants have to be found.
67.
a. The equations are rewritten as
1 1L
C s
di d
u E
dt L L
1 1C
L C
du d
i u
dt C RC
from which we obtain
1
10
1 1
0
L
L
s
CC
di d
idt L
EL
uddu
C RCdt
0 1 L
C
i
y
i
b. To obtain the transfer function we first calculate
1
1
2
1 1
1 1
( )
1 1 1 (1 )
( )
d
s
RC L
d d
s s
L C
s
d d
s ss
RC LCC RC
I A
So
Solutions to Problems 4-69
1 2
1 1
1
1
( ) ( ) 0 1
1 (1 )
0( )
d
s
RC L
d
s
C
G s s L
d
s s
RC LC
C I A B
2 2
2 2
1 11
1 (1 ) 1 (1 )
0
d ds
C LC
L
d d
s s s s
RC LC RC LC
68.
a. We have
8.34 2.26
( )
1
s
s
s
I A and
1
2
2.26 2.26
1 8.34 1 8.34
( )
8.34 2.26 ( 0.28)( 8.06)
s s
s s
s
s s s s
I A
We first find
-1 1L
( 0.28)( 8.06)s s
1 21
( 0.28)( 8.06) 0.28 8.06
K K
s s s s
1 0.28
1
0.129
8.06
s
K
s
;
2 8.06
1
0.129
0.28
s
K
s
so
-1 0.28 8.061L 0.129 0.129
( 0.28)( 8.06)
t te e
s s
Follows that
-1 -1 0.28 8.062.26 1L 2.26L 0.292 0.292
( 0.28)( 8.06) ( 0.28)( 8.06)
t te e
s s s s
4-70 Chapter 4: Time Response
-1 -1 0.28 8.061L L 0.036 1.04
( 0.28)( 8.06) ( 0.28)( 8.06)
t ts d e e
s s dt s s
And
-1 -1 -18.34 18.34
( 0.28)( 8.06) ( 0.28)( 8.06) ( 0.28)( 8.06)
s s
L L L
s s s s s s
0.28 8.06 0.28 8.06 0.28 8.060.036 1.04 1.076 1.076 1.04 0.036t t t t t te e e e e e
Finally the state transition matrix is given by:
0.28 8.06 0.28 8.06
0.28 8.06 0.28 8.06
0.036 1.04 0.292 0.292
( )
0.129 0.129 1.04 0.036
t t t t
t t t t
e e e e
t
e e e e
b.
0.28 8.06
0.28 8.06
0.036 1.04
( )
0.129 0.129
t t
t t
e e
t
e e
B
0.28 8.06 0.28 8.06 0.28 8.06( ) 0.451 13.04 0.292 0.292 0.159 12.748t t t t t tt e e e e e eC B
Since ( ) 1u t
0.28( ) 8.06( )
0 0
( ) ( ) [ 0.159 12.748 ]
t t
t ty t t d e e dC B
0.28 0.28 8.06 8.06
0 0
0.159 12.748
t t
t te e d e e d
0.28 0.28 8.06 8.06
0
0.159 12.748
0.28 8.06
t t te e e e
0.28 8.06 0.28 8.060.568[1 ] 1.582[1 ] 1.014 0.568 1.582t t t te e e e
c.
>> A=[-8.34 -2.26; 1 0];
>> B = [1; 0];
>> C = [12.54 2.26];
Solutions to Problems 4-71
>> D = 0;
>> t = linspace(0,15,1000);
>> y1 = step(A,B,C,D,1,t);
>> y2 = 1.014+0.568*exp(-0.28.*t)-1.582*exp(-8.06.*t);
>> plot(t,y1,t,y2)
69.
a. Assuming that the input step amplitude is 560 (N-m) and that the settling time is 0.4 sec the
transfer function is:
40
0.714560
0.1 1 10
G s
s s
b. 10 10* 1 560*0.0714 1 40 1at t tBRKT t M K e e e where M is the
input step amplitude.
4-72 Chapter 4: Time Response
c. 10 0.20.2 40 1 36.6BRKT e (Bar)
70.
From the problem statement
( ) ( ) ( ) ( ) ( )
c e a m cam
s G s E s G s T s (1)
45
( )
( ) 0.2 1
e
m m
K
G s
R Js D K K s
(2)
5
( )
( ) 0.2 1
m
m
m m
R k
G s
R Js D K K s
(3)
Substituting from equations (2) and (3) into (1) gives:
45 5
( ) ( ) ( )
0.2 1 0.2 1
c a cam
s E s T s
s s
(4)
The Laplace transforms of the inputs are:
100
( )
a
E s
s
and
0.410
( )
s
cam
e
T s
s
(5)
First, we find the response to ( ) 100 ( )
a
e t u t , c1(t):
1
4500 4500 900
( )
(0.2 1) (0.2 1)
c
s
s s s s
(5)
5
1
( ) 4500(1 ) ( )t
c
t e u t (6)
Next we find the response the un-shifted step in torque: ( ) 10 ( )
cam
T t u t , c2(t):
2
50 50 10
( )
(0.2 1) (0.2 1)
c
s
s s s s
(7)
5
2
( ) 50(1 ) ( )t
c
t e u t (8)
So the actual response to a shifted unit step in torque is given by:
5( 0.4)
2
( 0.4) 50(1 ) ( 0.4)t
c
t e u t (9)
Therefore, the final analytical expression for c(t) is:
Solutions to Design Problems 4-73
5 5( 0.4)
1 2
( ) ( ) ( 0.4) 4500(1 ) ( ) 50(1 ) ( 0.4)t t
c c c
t t t e u t e u t (10)
71.
From the problem statement
2
2
1
( ) 1
( )
( ) ( )
1
( )
L
T T
M Lem M L
T M L T
J D
s s
C Cs
G s
J J DT s s J J
s s
C J J C
(1)
Substituting the parameters given in the problem into equation (1) yields:
2
2
2
0.1287 0.15
1
( ) 1 1700 1700( )
1 0.15( ) 0.1625
1
17002 40.1
em
s s
s
G s
T s s
s s
(2)
or
2
2
( ) 29.578 ( 1.1655 13209)
( )
( ) ( 5.6013 63481.7)
em
s s s
G s
T s s s s
(3)
Since Tem(t) = 50 u(t), the Laplace transform of the shaft speed at no-load is:
2
2
1478.88 ( 1.1655 13209)
( ) ( ) ( ) ( )
( 5.6013 63481.7)
nl em
s s
s T s G s U s
s s s
(4)
With a load torque, TL = 0.2 (t), N.m., the speed, L(s), is given by:
( ) ( ) ( ) ( ) ( ) ( ) 0.2 ( ) ( )L em L em Ls T s T s G s T s G s s G s (5)
Solving equation (5) for L(s), substituting for G(s) from (3), and simplifying, we have:
4-74 Chapter 4: Time Response
2
3 2
( ) 1478.88 ( 1.1655 13209)
( ) ( ) ( )
1 0.2 ( ) ( 11.52 63489 78139)
L em
G s s s
s T s U s
G s s s s
(6)
The MATLAB M-file is:
num1=1478.88;
num2=[1 1.1655 13209];
den1=[1 0];
den2=[1 5.6013 63481.7];
num=conv(num1, num2);
den=conv(den1, den2);
Omega_nl=tf(num, den);
step(Omega_nl, 0:0.01:3);
hold on;
numL=num;
denL=[1 11.52 63489 78139];
Omega_L=tf(numL, denL);
step(Omega_L, 0:0.01:3);
hold off;
grid;
The MATLAB figure, shown below, illustrates the two step-responses obtained: the blue curve
corresponds to the n.l., while the green one shows that the angular speed drops markedly when a
load torque, TL = 0.2 (t), N.m., is applied (The steady-state value of Ls.s.
= 250 rad/second.).
Solutions to Design Problems 4-75
72.
From the problem in chapter 3
0 1 0 0
29.8615 0 0 0
0 0 0 1
0.9401 0 0 0
A ;
0
1.1574
B
0
0.4167
C 0 36 0 1 0. ; D = 0.
The MATLAB M-file is:
A=[0 1 0 0;29.8615 0 0 0;0 0 0 1;-0.9401 0 0 0];
B=[0;-1.1574;0; 0.4167];
C=[0.36 0 1 0];
4-76 Chapter 4: Time Response
D=0;
S=ss(A, B, C, D);
impulseplot(S,0:0.1:11.0);
The impulse response, xG(t), is shown below:
Note: As would be clear in chapter 6, such a response to a unit impulse indicates that this
system is unstable and needs to be stabilized.
SOLUTIONS TO DESIGN PROBLEMS
73.
Writing the equation of motion, ( 2) ( ) ( )
v
f s X s F s . Thus, the transfer function is
1 /( )
2( )
v
v
fX s
F s
s
f
. Hence,
4 4
2
2s v
v
T f
a
f
, or
2
s
v
T
f .
Solutions to Design Problems 4-77
74.
The transfer function is,
2
1 /
( )
1
M
F s
K
s s
M M
. Now,
4 4
4 8
1Re
2
s
T M
M
. Thus,
1
2
M . Substituting the value of M in the denominator of the transfer function yields,
2 2 2s s K . Identify the roots 1,2 1 2 1s j K . Using the imaginary part and substituting
into the peak time equation yields 1
Im 2 1
p
T
K
, from which 5.43K .
75.
Writing the equation of motion, 2( 1) ( ) ( )vMs f s X s F s . Thus, the transfer function is
2
( ) 1/
1( ) v
X s M
fF s
s s
M M
. Since
4
10 , 0.4s n
n
T
. But, 2 0.8.v n
f
M
Also, from Eq.
(4.39) 17% overshoot implies = 0.491. Hence, n = 0.815. Now, 1/M = n
2
= 0.664. Therefore, M
1.51. Since 2 0.8, 1.21v n v
f
f
M
.
76.
Writing the equation of motion: (Js2+s+K)(s) = T(s). Therefore the transfer function is
(s)
T(s)
=
2
1
J
1 K
s s
J J
.
=
2 2
%OS
- ln( )
100
%OS
ln ( )
100
= 0.358.
Ts =
n
4
=
4
1
2J
= 8J = 3.
Therefore J =
3
8
. Also, Ts = 3 =
n
4
=
n
4
(0.358)
. Hence, n = 3.724. Now,
K
J
= n2 = 13.868.
Finally, K = 5.2.
77.
Writing the equation of motion
[s2+D(5)2s+
21 (10)
4
](s) = T(s)
The transfer function is
(s)
T(s)
=
2
1
s 25Ds 25
4-78 Chapter 4: Time Response
Also,
=
π 2 2
%OS
- ln( )
100
%OS
ln ( )
100
= 0.358
and
2n = 2(0.358)(5) = 25D
Therefore D = 0.14.
78.
The equivalent circuit is:
where Jeq = 1+(
1
2
N
N
)2 ; Deq = (
1
2
N
N
)2; Keq = (
1
2
N
N
)2. Thus,
1
(s)
T(s)
=
2
eq eq eq
1
J s D s K
. Letting 1
2
N
N
= n and substituting the above values into the transfer
function,
1
(s)
T(s)
=
2
2 2
2
2 2
1
1 n
n n
s s
1 n 1 n
. Therefore, n =
2
2
n
2(1 n )
. Finally, Ts =
n
4
=
2
2
8(1 n )
n
=
16. Thus n = 1.
79.
Let the rotation of the shaft with gear N2 be L(s). Assuming that all rotating load
has been reflected to the N2 shaft, 2 ( ) ( ) ( )eqL eqL L eqJ s D s K s F s r T s , where F(s) is
the force from the translational system, r = 2 is the radius of the rotational member,
JeqL is the equivalent inertia at the N2 shaft, and DeqL is the equivalent damping at
the N2 shaft. Since JeqL = 1(2)
2
+ 1 = 5 and DeqL = 1(2)
2
= 4, the equation of motion
becomes, 25 4 ( ) 2 ( ) ( )L eqs s K s F s T s . For the translational system
2( ) ( ) ( )Ms s X s F s . Substituting F(s) into the rotational equation of motion,
2 25 4 ( ) 2 ( ) ( )L eqs s K s Ms s X s T s . But,
Solutions to Design Problems 4-79
( ) ( )
( ) and ( ) 2 ( ).
2
L eq
X s X s
s T s T s
r
Substituting these quantities in the equation
above yields 2
( )
(5 4 ) 8 ( )
4
X s
M s s K T s .
Thus, the transfer function is
2
( ) 4 /(5 4 )
8( )
(5 4 ) (5 4 )
X s M
KT s
s s
M M
.
Now,
4 4
20 (5 4 )
8
2(5 4 )
s
e
T M
R
M
. Hence, M = 15/4.
For 16% overshoot, = 0.504 from Eq. (4.39).
Therefore,
8
2 0.4
(5 4 )
n
M
. Solving for n yields n = 0.3968.
But, 0.3968
(5 4 ) 20
n
K K
M
. Thus, K = 3.15.
80.
The transfer function for the capacitor voltage is C
V (s)
V(s)
=
1
Cs
1
R Ls
Cs
=
6
2 6
10
s Rs 10
.
For 20% overshoot, =
2 2
%OS
- ln( )
100
%OS
ln ( )
100
= 0.456. Therefore, 2n = R = 2(0.456)(103) = 912.
81.
Solving for the capacitor voltage using voltage division,
1/ ( )
( ) ( )
1C i
CS
V s V s
R LS
CS
. Thus, the
transfer function is
2
( ) 1/( )
1( )
C
i
V s LC
RV s
s s
L LC
. Since 3
4
10 , Re 4000
Re 2
s
R
T
L
. Thus
8 KR . Also, since 20% overshoot implies a damping ratio of 0.46 and
n
1
2 8000, 8695.65n
LC
. Hence, 0.013 FC .
82.
Using voltage division the transfer function is,
2
1 1
( )
1 1( )
C
i
V s Cs LC
RV s
R Ls s s
Cs L LC
4-80 Chapter 4: Time Response
Also,
3 4 4 87 10
Re
2
s
L
T x
R R
L
. Thus, 1143
R
L
. Using Eq. (4.39) with 15% overshoot,
= 0.5169. But, 2n = R/L. Thus, 5
1 1
1105.63
(10 )
n
LC L
. Therefore, L = 81.8 mH
and R = 98.5 .
83.
For the circuit shown below
write the loop equations as
1 1 1 2
( ) ( ) ( ) ( )
i
R Ls I s RI s V s
1 1 1 2 2
1
( ) ( ) 0R I s R R I s
Cs
Solving for I2(s)
1
1
2
1 1
1 1 2
( )
0
( )
1
R Ls Vi s
R
I s
R Ls R
R R R
Cs
But,
2
1
( ) ( )
o
V s I s
Cs
. Thus,
1
2
2 1 2 1 1
( )
( ) ( ) ( )
o
i
V s R
V s R R CLs CR R L s R
Substituting component values,
2
2 2
2 2
1
( ) ( 1000000)
1000000
(1000000 1) 1( )
1000000
( 1000000) ( 1000000)
o
i
V s R C
CRV s
s s
R C R C
For 8% overshoot, = 0.6266. For Ts = 0.001, n =
4
0.001
= 4000. Hence, n = 6383.66. Thus,
Solutions to Design Problems 4-81
2
2
1
1000000 6383.66
( 1000000)R C
or,
2
1
0.0245
1000000
C
R
(1)
Also,
2
2
1000000 1
8000
( 1000000)
CR
R C
(2)
Solving (1) and (2) simultaneously,
2
8023R , and C = 2.4305 x 10-2 F.
84.
a. In Problem 3.31 we had
0 0 0 0
1* *
0 0 0 0
2*
0
( ) 0 0
0
0 0
T d v T T T v
u
T v T T T v
u
v k c v kT
*0 0 1
T
y T
v
When
2
0u the equations are equivalent to
0 0 0 0
* *
0 0 0 0 1
( ) 0
0 0
T d v T T T v
T v T T T v u
v k c v
*0 0 1
T
y T
v
Substituting parameter values one gets
4-82 Chapter 4: Time Response
* *
1
0.04167 0 0.0058 5.2
0.0217 0.24 0.0058 5.2
0 100 2.4 0
T T
T T u
v v
*0 0 1
T
y T
v
b.
1
1
0.04167 0 0.0058
( )
( ) 0.0217 0.24 0.0058
det( )
0 100 2.4
s
Adj s
s s
s
s
I A
I A
I A
3 2
2
0.24 0.0058 0.0217 0.24
det( ) ( 0.04167) 0.0058
100 2.4 0 100
( 0.04167) ( 0.24)( 2.4) 0.58 (0.0058)(2.17)
2.6817 0.11 0.0126
( 2.6419)( 0.0398 0.0048)
s s
s s
s
s s s
s s s
s s s
I A
To obtain the adjoint matrix we calculate the cofactors:
11
0.24 0.0058
( 2.64)
100 2.4
s
C s s
s
12
0.0217 0.0058
0.0217( 2.4)
0 2.4
C s
s
13
0.0217 0.24
2.17
0 100
s
C
21
0 0.0058
0.58
100 2.4
C
s
22
0.04167 0.0058
( 0.04167)( 2.4)
0 2.4
s
C s s
s
23
0.04167 0
100( 0.04167)
0 100
s
C s
31
0 0.0058
0.0058( 0.24)
0.24 0.0058
C s
s
2
32
0.04167 0.0058
2.4117 0.1001
0.0217 2.4
s
C s s
s
Solutions to Design Problems 4-83
2
33
0.04167 0
0.2817 0.01
0.0217 0.24
s
C s s
s
Then we have
2
2
( 2.64) 0.58 0.0058( 0.24)
( ) 0.0217( 2.4) ( 0.04167)( 2.4) ( 2.4417 0.1101)
2.17 100( 0.04167) 0.2817 0.01
s s s
Adj s s s s s s
s s s
I A
Finally
2
1
2
1
2 2
5.2
2.17 100( 0.04167) 0.28171 0.01
( ) ( ) 5.2
( 2.6419)( 0.0398 0.0048)
0
520 10.3844 0.02
520
( 2.6419)( 0.0398 0.0048) ( 2.6419)( 0.0398 0.0048)
s s sY
s s
U s s s
s s
s s s s s s
C I A B
c. 100% effectiveness means that
1
1u or
1
1
( )U s
s
, so by the final value theorem
20 0
520( 0.02) 1
( ) ( ) 820.1168
( 2.6419)( 0.0398 0.0048)s s
s
y Lim sY s Lim s
s s s s
(virus
copies per mL of plasma)
The closest poles to the imaginary axis are 0.0199 0.0661j so the approximate settling time
will be
4
210
0.0199
s
T days.
85.
a.
Substituting
2650
F(s)
s
into the transfer function and solving for V(s) gives:
F(s) 2650
V(s)
1908 (1908 10) (1908 10)
A B
s s s s s
Here:
2650
265
(1908 10) 0
A
s s
and
2650
505,620
1
190.8
B
s s
Substituting we have:
4-84 Chapter 4: Time Response
3
265 505620 1 1
V(s) 265
(1908 10) ( 5.24 10 )s s s s
Taking the inverse Laplace transform, we have:
35.24 10( ) 265(1 ) ( ), in m/s tv t e u t
b.
>> s=tf('s');
>> G=1/(1908*s+10);
>> t=0:0.1:1000;
>> y1=2650*step(G,t);
>> y2=265*(1-exp(-5.24e-3.*t));
>> plot(t,y1,t,y2)
>> xlabel('sec')
>> ylabel('m/s')
Solutions to Design Problems 4-85
Both plots are identical.
86.
Since no overshoot is observed in the response, for simplicity, we postulate a first order system with
some delay, namely
1
sTKG s e
s
.
The steady state change in temperature is of 8C, so the transfer function’s dc gain is -8 since the step
is negative. The time delay observed is approximately 0.017h=60sec. To find the systems time
constant we find the point at which the temperature reaches 0.63(8C)=5.04C.
This happens approximately 0.02hours = 75 seconds after the observed response delay. So the
approximate transfer function is
60 608 0.107
1 75 0.0133
s sG s e e
s s
.
ONLINEFFIRS 11/25/2014 13:29:37 Page 1
Copyright 2015 John Wiley & Sons, Inc. All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or
108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood
Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for permission should be addressed
to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201)748-6011,
fax (201)748-6008, website http://www.wiley.com/go/permissions.
Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more than
200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is built on a
foundation of principles that include responsibility to the communities we serve and where we live and work. In 2008,
we launched a Corporate Citizenship Initiative, a global effort to address the environmental, social, economic, and
ethical challenges we face in our business. Among the issues we are addressing are carbon impact, paper specifications
and procurement, ethical conduct within our business and among our vendors, and community and charitable support.
For more information, please visit our website: www.wiley.com/go/citizenship.
The software programs and experiments available with this book have been included for their instructional value. They
have been tested with care but are not guaranteed for any particular purpose. The publisher and author do not offer any
warranties or restrictions, nor do they accept any liabilities with respect to the programs and experiments.
AMTRAK is a registered trademark of National Railroad Passenger Corporation. Adobe and Acrobat are trademarks
of Adobe Systems, Inc. which may be registered in some jurisdictions. FANUC is a registered trademark of FANUC,
Ltd. Microsoft, Visual Basic, and PowerPoint are registered trademarks of Microsoft Corporation. QuickBasic is a
trademark of Microsoft Corporation. MATLAB and SIMULINK are registered trademarks of The MathWorks, Inc.
The Control System Toolbox, LTI Viewer, Root Locus Design GUI, Symbolic Math Toolbox, Simulink Control
Design, and MathWorks are trademarks of The MathWorks, Inc. LabVIEW is a registered trademark of NationalInstruments Corporation. Segway is a registered trademark of Segway, Inc. in the United States and/or other countries.
Chevrolet Volt is a trademark of General Motors LLC. Virtual plant simulations pictured and referred to herein are
trademarks or registered trademarks of Quanser Inc. and/or its affiliates. 2010 Quanser Inc. All rights reserved.
Quanser virtual plant simulations pictured and referred to herein may be subject to change without notice. ASIMO is a
registered trademark of Honda.
Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in their
courses during the next academic year. These copies are licensed and may not be sold or transferred to a third party.
Upon completion of the review period, please return the evaluation copy to Wiley. Return instructions and a free of
charge return shipping label are available at www.wiley.com/go/returnlabel. Outside of the United States, please contact
your local representative.
Library of Congress Cataloging-in-Publication Data
Nise, Norman S.
Control systems engineering / Norman S. Nise, California State Polytechnic University, Pomona. — Seventh edition.
1 online resource.
Includes bibliographical references and index.
Description based on print version record and CIP data provided by publisher; resource not viewed.
ISBN 978-1-118-80082-9 (pdf) — ISBN 978-1-118-17051-9 (cloth : alk. paper)
1. Automatic control–Textbooks. 2. Systems engineering–Textbooks. I. Title.
TJ213
629.8–dc23
2014037468
Printed in the United States of America
10 9 8 7 6 5 4 3 2 1
http://www.wiley.com/go/permissions
http://www.wiley.com/go/citizenship
http://www.wiley.com/go/returnlabel