Logo Passei Direto
Buscar

Cálculos de Integrais e Momento de Inércia

Ferramentas de estudo

Questões resolvidas

Assim como as integrais dupla, quando calculamos uma integral tripla precisamos utilizar as regras estudadas. Qual é o valor da integral tripla da função f(x, y) = x na região limitada pelas curvas x + y + z = 3, x = 0, y = 0 e z = 0.

A 54/8
B 27/8
C 27/4
D 189/8

Um sistema de coordenadas esféricas relaciona um ponto do espaço com dois ângulos e uma distância, esse sistema de coordenadas é muito utilizado para calcular integrais triplas na qual a região é uma esfera ou parte de uma. Utilizando a mudança de variável esférica, podemos afirmar que a integral

A Somente a opção I está correta.
B Somente a opção III está correta.
C Somente a opção II está correta.
D Somente a opção IV está correta.

O centro de massa de um objeto é o ponto onde este objeto fica em equilíbrio, caso esse objeto seja homogêneo. Determine a coordenada y do centro de massa de uma lâmina triangular com vértices (0, 0), (1, 0) e (0, 2), sabendo que a função densidade é f (x, y) = 3 - x + 2y e que a massa do objeto é igual a m = 4:

A 6/19
B 24/19
C 19/24
D 19/6

Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Experimente o Premium!star struck emoji

Acesse conteúdos dessa e de diversas outras disciplinas.

Libere conteúdos
sem pagar

Ajude estudantes e ganhe conteúdos liberados!

left-side-bubbles-backgroundright-side-bubbles-background

Experimente o Premium!star struck emoji

Acesse conteúdos dessa e de diversas outras disciplinas.

Libere conteúdos
sem pagar

Ajude estudantes e ganhe conteúdos liberados!

left-side-bubbles-backgroundright-side-bubbles-background

Experimente o Premium!star struck emoji

Acesse conteúdos dessa e de diversas outras disciplinas.

Libere conteúdos
sem pagar

Ajude estudantes e ganhe conteúdos liberados!

left-side-bubbles-backgroundright-side-bubbles-background

Experimente o Premium!star struck emoji

Acesse conteúdos dessa e de diversas outras disciplinas.

Libere conteúdos
sem pagar

Ajude estudantes e ganhe conteúdos liberados!

Questões resolvidas

Assim como as integrais dupla, quando calculamos uma integral tripla precisamos utilizar as regras estudadas. Qual é o valor da integral tripla da função f(x, y) = x na região limitada pelas curvas x + y + z = 3, x = 0, y = 0 e z = 0.

A 54/8
B 27/8
C 27/4
D 189/8

Um sistema de coordenadas esféricas relaciona um ponto do espaço com dois ângulos e uma distância, esse sistema de coordenadas é muito utilizado para calcular integrais triplas na qual a região é uma esfera ou parte de uma. Utilizando a mudança de variável esférica, podemos afirmar que a integral

A Somente a opção I está correta.
B Somente a opção III está correta.
C Somente a opção II está correta.
D Somente a opção IV está correta.

O centro de massa de um objeto é o ponto onde este objeto fica em equilíbrio, caso esse objeto seja homogêneo. Determine a coordenada y do centro de massa de uma lâmina triangular com vértices (0, 0), (1, 0) e (0, 2), sabendo que a função densidade é f (x, y) = 3 - x + 2y e que a massa do objeto é igual a m = 4:

A 6/19
B 24/19
C 19/24
D 19/6

Prévia do material em texto

Prova Impressa
GABARITO | Avaliação I - Individual (Cod.:955315)
Peso da Avaliação 2,00
Prova 84268876
Qtd. de Questões 10
Acertos/Erros 10/0
Nota 10,00
Há uma relação para escrever uma integral dupla em coordenadas polares. 
Assinale a alternativa CORRETA que apresenta essa relação (transformação) para cada x e y, 
utilizando-se novas vaiáveis de coordenadas polares:
A x = r sen (θ); y = r cos (θ)
B x = r cos (θ); y = r sen (θ)
C x = t sen (θ); y = t cos (θ)
D x = r sen (θ); y = t cos (θ)
Assim como as integrais dupla, quando calculamos uma integral tripla precisamos utilizar as regras 
estudadas.
Qual é o valor da integral tripla da função f(x, y) = x na região limitada pelas curvas x + y + z = 3, x = 
0, y = 0 e z = 0.
A 54/8
B 27/8
C 27/4
D 189/8
O momento de inércia de um corpo é o grau de dificuldade que o corpo tem de alterar o seu 
estado de movimento. Podemos calcular o momento de inércia em torno do eixo x e do eixo y. 
Determine o momento de inércia de um disco homogêneo com centro (0, 0) e raio igual a 2 e com 
densidade f (x, y) = 3 em torno do eixo x:
A 6 pi.
B 8 pi.
C 4 pi.
D 12 pi.
 VOLTAR
A+ Alterar modo de visualização
1
2
3
20/06/2024, 15:46 Avaliação I - Individual
about:blank 1/4
Tabela: Derivados, Integrais e Identidades Trigonométricas1Clique para baixar o anexo da questão
Exercícios envolvendo integrais duplas podem ser resolvidos por meio de integrais iteradas. 
Nesse sentido, assinale a alternativa CORRETA que apresenta o teorema que fornece condições de 
calcular uma integral dupla, de regiões não retangulares, através de integrais iteradas:
A Teorema de Iteração.
B Teorema de Newton.
C Teorema de Fubini.
D Teorema de Compartilhamento.
Utilizando as mesmas técnicas de integração simples podemos calcular integrais múltiplas de 
funções que dependam de múltiplas variáveis. Determine o valor da integral tripla a seguir, utilizando 
as técnicas de integrações conhecidas para integral simples:
A O valor da integral tripla é - 4.
B O valor da integral tripla é 3.
C O valor da integral tripla é cos(3).
D O valor da integral tripla é 4.
Um dos Teoremas mais utilizados para calcular integrais duplas e triplas é o Teorema de Fubini, 
ele nos permite inverter a ordem de integração. Essa mudança na ordem de integração pode em certas 
integrais diminuir a quantidade de cálculos necessários para a resolução. Utilizando o Teorema de 
Fubini, concluímos que o valor da integral:
A É igual a 5.
B É igual a - 3.
C É igual a 6.
D É igual a 0.
4
5
6
20/06/2024, 15:46 Avaliação I - Individual
about:blank 2/4
Assim como acontece com as integrais duplas, quando calculamos uma integral tripla, 
precisamos utilizar certas regras. Sobre o valor da integral tripla apresentada, analise as opções a 
seguir e, em seguida, assinale a alternativa CORRETA:
A Somente a opção II está correta.
B Somente a opção III está correta.
C Somente a opção IV está correta.
D Somente a opção I está correta.
Um sistema de coordenadas esféricas relaciona um ponto do espaço com dois ângulos e uma 
distância, esse sistema de coordenadas é muito utilizado para calcular integrais triplas na qual a região 
é uma esfera ou parte de uma. Utilizando a mudança de variável esférica, podemos afirmar que a 
integral
A Somente a opção I está correta.
B Somente a opção III está correta.
7
8
20/06/2024, 15:46 Avaliação I - Individual
about:blank 3/4
C Somente a opção II está correta.
D Somente a opção IV está correta.
Na análise matemática, o Teorema de Fubini, em homenagem a Guido Fubini, é um resultado que 
fornece condições sob as quais é possível calcular uma integral dupla por meio de integrais iteradas. 
Como consequência, ele permite a inversão da ordem de integração em integrais iteradas. 
 
Utilizando-o, calcule a integral dupla a seguir sabendo que R é uma região que consiste em todos os 
pontos (x,y) para os quais -1 ≤ x ≤ 2 e 1 ≤ y ≤ 3:
A 24.
B 23.
C 21.
D 22.
O centro de massa de um objeto é o ponto onde este objeto fica em equilíbrio, caso esse objeto 
seja homogêneo. Determine a coordenada y do centro de massa de uma lâmina triangular com 
vértices (0, 0), (1, 0) e (0, 2), sabendo que a função densidade é f (x, y) = 3 - x + 2y e que a massa do 
objeto é igual a m = 4:
A 6/19
B 24/19
C 19/24
D 19/6
9
10
Imprimir
20/06/2024, 15:46 Avaliação I - Individual
about:blank 4/4

Mais conteúdos dessa disciplina