Logo Passei Direto
Buscar
Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Prévia do material em texto

• Não existe abono de faltas. 
• O aluno não poderá faltar mais do que 25% das aulas. Neste percentual estão incluídas eventuais 
doenças, pequenas cirurgias, lutos e imprevistos pessoais e profissionais. 
• O professor não tem autorização para abonar faltas.
• Os alunos só recebem presença se estiverem em sala de aula no dia/horário que estão matriculados.
• Merecerão tratamento excepcional, relacionado à frequência obrigatória às aulas, os alunos amparados 
pelo Regime Especial.
FREQUÊNCIA DO ALUNO
Regime Especial: 
Têm direito ao regime especial:
1. Alunos portadores de afecções congênitas ou adquiridas, infecções, traumatismo ou outras 
condições mórbidas, determinando distúrbios agudos, desde que superiores a 15 dias.
2. Gestantes a partir do oitavo mês de gestação, concedido tal benefício pelo prazo de 90 dias. 
3. Militares na ativa em serviço da nação.
Compete ao aluno:
• Fazer requerimento solicitando o benefício na Central de Atendimento da UVA , em até 5 dias úteis
após o início da doença ou contados a partir do primeiro dia de afastamento. 
• Outras informações na Central de Atendimento.
Misturam-se homogeneamente massas iguais de dois líquidos de densidades d1 e d2. 
Determine a densidade da mistura.
O barômetro básico pode ser usado para medir a altura 
de um prédio. Se as leituras barométricas nas partes 
superior e inferior de um prédio são de 730 mmHg e 755 
mmHg, respectivamente, determine a altura do prédio. 
Considere a densidade média do ar de 1,18 kg/m3
Água de um tanque é pressurizada a ar, e a pressão é medida 
por um manômetro de vários fluidos. O tanque está localizado 
em uma montanha, a uma altitude de 1400 m, onde a pressão 
atmosférica é de 85,6 kPa. Determine a pressão absoluta do ar 
no tanque se h1 = 0,1 m, h2 =0,2 m, h3 = 0,35 m. Considere as 
densidades da água, óleo e do mercúrio como 1000, 850 e 
13600 kg/m3, respectivamente.
Dado o esquema da figura:
1) Qual é a leitura no manômetro metálico?
2) Qual é a força que age sobre o topo do 
reservatório?
1) Leitura no manômetro metálico
Um gás esta contido em um cilindro vertical sem 
atrito. O pistão tem massa de 4 kg e sua área da seção 
transversal é de 35 cm². Uma mola comprida é 
conectada sobre o pistão e produz ema força de 60 N 
sobre ele. Se a pressão atmosférica é de 95 kPa, qual é 
a pressão dentro do cilindro?
Duas câmaras com o mesmo fluido na base estão 
separadas por um pistão com peso de 25 N, 
como mostra a seguinte figura. Calcule as 
pressões manométricas das câmaras A e B.
Densidade da água 1000 kg/m3, g=9,81 m/s2. 
ã
ã
ã
ã
Na Figura, a comporta de cobertura AB fecha uma abertura 
circular de 80 cm de diâmetro. A comporta é mantida 
fechada por uma massa de 200 kg como mostra a figura. 
Qual o nível h da água para deslocar a comporta?
Suponha peso especifico da água 9790 N/m3, g=9,81 m/s2. 
Despreze o peso da comporta
 
 
𝐻20
 
3
 
 
Por um duto está escoando um fluido de densidade 𝜌1.Foi colocado, como 
mostrado na figura, um manômetro de coluna que contem um fluido de 
densidade 𝜌2, e a diferença de altura do fluido manométrico é ℎ. 
Determine a queda de pressão, 𝑃1 − 𝑃2, registrada pelo manômetro nas 
condições estabelecidas na figura.
Observar que a cota 𝑎 não tem efeito sobre o resultado
Quando o fluido escoando no 
duto é um gás: 𝜌1 ≪ 𝜌2
𝑒
2
𝑒
Uma mola de constante elástica 3×104 N/m liga uma viga 
rígida ao êmbolo de saída de um macaco hidráulico. Um 
recipiente vazio de massa desprezível está sobre o êmbolo 
de entrada. O êmbolo de entrada tem uma área Ae e o 
êmbolo de saída tem uma área de 18 Ae. Inicialmente a 
mola está relaxada. Quantos quilogramas de areia devem 
ser despejados (lentamente) no recipiente para que a mola 
sofra uma compressão de 5 cm? g=9.8 m/s2.
𝑒
𝑒 𝑒
O elevador hidráulico de uma oficina mecânica está cheio de óleo. Um carro se encontra sobre 
um pistão com 25 cm de diâmetro. Para levantar o carro, utiliza-se ar comprimido para 
pressionar um pistão de 6,0 cm de diâmetro. Densidade do óleo 900 kg/m3.
a. Que força de pressão do ar sustentará um carro de 1.300 kg com o pistão de ar comprimido?
b. Em quanto deve ser aumentada a força de pressão do ar para levantar o carro em 2,0 m?
R. a) 733,8 N b) 915,8 N
Considerando
1
1
2
2
2
O elevador hidráulico de uma oficina mecânica está cheio de óleo. Um carro se encontra sobre 
um pistão com 25 cm de diâmetro. Para levantar o carro, utiliza-se ar comprimido para 
pressionar um pistão de 6,0 cm de diâmetro. Densidade do óleo 900 kg/m3.
a. Que força de pressão do ar sustentará um carro de 1.300 kg com o pistão de ar comprimido?
b. Em quanto deve ser aumentada a força de pressão do ar para levantar o carro em 2,0 m?
R. a) 733,8 N b) 915,8 N
∆𝐹 = 915,8 N
𝑝 = 𝑝 (Posição Inicial, ℎ ≈ 0)
𝐹 + ∆𝐹
𝐴
= 𝜌𝑔 𝑑 + ℎ + 𝑑 +
𝑚 𝑔
𝐴
𝐹
𝐴
+
∆𝐹
𝐴
= 𝜌𝑔 𝑑 + ℎ + 𝑑 + 𝑝
∆𝐹
𝐴
= 𝜌𝑔 𝑑 + 𝑑 𝐴 𝑑 = 𝐴 𝑑
∆𝐹 = 𝜌𝑔 𝐴 𝑑 + 𝐴 𝑑 ∆𝐹 = 𝜌𝑔𝑑 𝐴 + 𝐴
Posição Final:
𝐹1
𝐴1
=
𝐹2
𝐴2
A força de flutuação (ou força de empuxo) que age sobre a placa é 
igual ao peso do líquido deslocado pela placa. 
 é o peso do líquido cujo volume é igual ao volume da placa
• A força de flutuação não depende da distância entre o corpo e a 
superfície livre. 
• Ela também não depende da densidade do corpo sólido.
𝐹 = 𝐹 − 𝐹 = 𝜌 𝑔 𝑠 + ℎ 𝐴 − 𝜌 𝑔𝑠𝐴 = 𝜌 𝑔ℎ𝐴 = 𝜌 𝑔𝑉
𝜌 𝑔𝑉
A bóia esférica, com diâmetro de 1,5m e pesando 8,5 kN
é ancorada no fundo do mar por um cabo. Para as 
condições da figura, sabendo-se que o peso específico da 
água do mar é 10,1 kN/m3.
Um balão de hidrogênio de peso igual a 400 N está preso a um 
fio, em equilíbrio estático vertical. O volume do balão é igual a 
50 m³ e a aceleração local da gravidade vale 10 m/s². Determine: 
a) o empuxo exercido pelo ar sobre o balão, sabendo se que a 
massa específica do ar vale 1,2 kg/m³. 
b) a tração no fio. 
Vsub=A h 
Vtotal=A (h+0.10)
Considere um grande bloco de gelo cúbico flutuando na 
água do mar. As densidades do gelo e da água do mar são 
0,92 e 1,025, respectivamente. Se uma parte com 10 cm de 
altura do bloco de gelo ficar acima da superfície da água, 
determine a altura do bloco abaixo da superfície. 
W
FB
A densidade de um líquido deve ser determinada por um velho hidrômetro cilíndrico 
com 1 cm de diâmetro cujas marcas de divisão foram completamente apagadas. A 
princípio o hidrômetro é colocado na água e o nível de água é marcado. Em seguida, 
o hidrômetro é solto no outro liquido e observa -se que a marca da água fica a 0,5 cm 
acima da interface entre o liquido e o ar. Se a altura da marca da água for 10 cm, 
determine a densidade do liquido.
Um bloco de massa específica ρb = 800 kg/m3 flutua em um 
fluido de massa específica ρf = 1200 kg/m3 , ficando parte de 
seu volume submerso. O bloco tem uma altura H = 6cm. 
a) Qual a altura, h, da parte submersa do bloco?
b) Se o bloco é totalmente imerso e depois liberado, qual é o 
módulo da sua aceleração? 
a)
b)
Peso=Empuxo m g A H = ρf g A h A h é o volume submerso
 ρb g A H = ρf g A h 
O corpo da figura a está preso a uma mola não 
deformada e a um fio de peso desprezível. Seu volume é 
20 litros e está totalmente imerso em água. A constante 
elástica da mola é 50 N/cm. Na figura b, o fio foi 
cortado e o corpo atingiu o equilíbrio, deformando a 
mola de um comprimento x. Determine x. (Dados: 
densidade da água = 1g/cm3 = 1 kg/litro; massa do 
corpo = 8 kg)
O volume e a densidade média de um corpo de forma irregular devem ser 
determinados usando -se uma balança de mola. O corpo pesa 7200 N no ar e 4790 N 
na água. Determine o volume e a densidade do corpo. Densidade água 1000kg/m3, 
g=9,8 m/s2.
Ar entra em um bocal a 2,21 kg/m3 e 30 m/s e sai a 0,762 
kg/m3 e 180 m/s em um processo em regime permanente. Se a 
área de entrada do bocal for de 80 cm2, determine a) a vazão 
em massa através do bocal e b) a área de saída do bocal. 
Dois riachos se unempara formar um rio. Um dos riachos tem 
uma largura de 8,2 m, uma profundidade de 3,4 m e a velocidade 
da água é 2,3 m/s. O outro riacho tem 6,8 m de largura, 3,2 m de 
profundidade e a velocidade da água é 2,6 m/s. Se o rio tem uma 
largura de 10,5 m e a velocidade da água é de 2,9 m/s, qual é a 
profundidade do rio?
h=3,96 m
Os reservatórios (1) e (2) da figura são 
cúbicos. São enchidos pelos tubos 
respectivamente em 100 seg. e 500 seg. 
Determinar a velocidade da água na 
seção A indicada, sabendo-se que o 
diâmetro é 1m.
Um secador de cabelos é, basicamente, um duto 
com diâmetro constante no qual são colocadas 
algumas camadas de resistores elétricos. Um 
ventilador pequeno empurra o ar para dentro e 
o força a passar através dos resistores, onde ele é 
aquecido. Se a massa específica do ar é de 1,2 
kg/m3 na entrada e de 1,05 kg/m3 na saída, 
determine o aumento percentual na velocidade 
do ar quando ele escoa através do secador. 
Da cinemática: 
0 0
0 0=(28,6 cm/s)(1,2 cm2)=34 cm3/s
A figura mostra que o jato de água que sai de uma 
torneira fica progressivamente mais fino durante a 
queda. As áreas das seções retas indicadas são 
A0=1,2 cm2 e A=0,35 cm2. Os dois níveis estão 
separados por uma distância vertical h=45 mm. 
Qual é a vazão da torneira? 
A entrada da tubulação da Fig. tem uma seção reta 
de 0,74 m2 e a velocidade da água é 0,40 m/s. Na 
saída, a uma distância D = 180 m abaixo da entrada, 
a seção reta é menor que a da entrada e a velocidade 
da água é 9,5 m/s. Qual é a diferença de pressão 
entre a entrada e a saída?
2
Na Fig., a água atravessa um cano horizontal e sai para a atmosfera 
com uma velocidade v1 =15 m/s. Os diâmetros dos segmentos 
esquerdo e direito do cano são 5,0 cm e 3,0 cm. (a) Que volume de 
água escoa para a atmosfera em um período de 10 min? (b) Qual é a 
velocidade v2 e (c) qual é a pressão
manométrica no segmento esquerdo do tubo?
Um tanque pressurizado de água tem um orifício de 10 cm de 
diâmetro na parte inferior, onde a água é descarregada para a 
atmosfera. O nível da água está 3 m acima da saída. A pressão do ar 
no tanque é de 300 kPa (absoluta) enquanto que a pressão 
atmosférica é de 100 kPa. Desprezando os efeitos do atrito, 
determine a vazão de descarga inicial do tanque. 
O TUBO VENTURI
O tubo de Venturi é um aparato para medir 
a velocidade do escoamento e a vazão de 
um líquido incompressível através da 
variação da pressão durante a passagem 
deste líquido por um tubo de seção mais 
larga e depois por outro de seção mais 
estreita. 
Este efeito é explicado pelo princípio de 
Bernoulli e no princípio da continuidade da 
massa.
Água escoa em regime permanente através do tubo de Venturi mostrado. Considere no 
trecho mostrado que as perdas são desprezíveis. A área da seção (1) é 20cm² e a da seção 
(2) é 10cm². Um manômetro de mercúrio é instalado entre as seções (1) e (2) e indica o 
desnível mostrado. Determine a vazão de água que escoa pelo tubo. (g=10m/s2)
)
)
)
)
) ) )
) ) 
Tubo de Pitot 
A soma das pressões estática e dinâmica 
é chamada de pressão de estagnação. 
Um piezômetro e um tubo de Pitot são colocados em um 
tubo de água horizontal, como mostra a figura para medir 
a pressão estática e de estagnação (estática + dinâmica). 
Para as alturas de coluna indicadas, determine a velocidade
no centro do tubo. 
Uma sonda estática de Pitot é usada para medir a velocidade de um avião 
que voa a 3000 m. Se a leitura da pressão diferencial for de 3 kPa, determine 
a velocidade do avião. 
Densidade do ar a 3000 m: 0.909 kg/m3

Mais conteúdos dessa disciplina