Prévia do material em texto
Uma canoa de alumínio se move horizontalmente ao longo da superfície de um lago a uma velocidade constante de 10 km/h. A temperatura da água do lago é de 20 ºC, especificamente naquela época do ano. O fundo da canoa tem 5 m de comprimento e é plano. A lagoa não apresenta ondas e a água somente é agitada pelos remos da canoa. Sabe-se que a viscosidade cinemática é igual a 1,407 x 10-5 m/s, todavia, deseja-se saber se a camada limite no fundo da canoa possui um escoamento laminar ou turbulento devido a qual número de Reynolds? É preciso estudar o escoamento de água em uma válvula que alimenta uma tubulação. A válvula possui diâmetro de 305 mm. A vazão na válvula é de 1,7 m3/s e o fluido utilizado no modelo também é água na mesma temperatura da que escoa no protótipo. A semelhança entre o modelo e o protótipo é completa e o diâmetro da seção de alimentação no modelo é igual a 38,10 mm. Nesse sentido, a vazão de água no modelo um número entre: Leia o excerto a seguir. “O poder do uso da análise dimensional e da similaridade para suplementar a análise experimental pode ser ilustrado pelo fato de que os valores reais dos parâmetros dimensionais, como densidade ou velocidade, são irrelevantes. Desde que os ’s independentes sejam iguais entre si, a similaridade é atingida, mesmo que sejam usados fluidos diferentes”. ÇENGEL, Y.; CIMBALA, J. M. Mecânica dos Fluidos: Fundamentos e Aplicações. São Paulo: Mc Graw Hill Editora, 2007. p. 242. A partir do exposto, sobre a teoria da similaridade, analise as asserções a seguir e a relação proposta entre elas. I. Pode-se testar um modelo de avião ou automóvel em um túnel de água. Pois: II. Se os ’s independentes obtidos no teste foram iguais entre si, o fluido não importa. A seguir, assinale a alternativa correta. Leia o excerto a seguir. “A velocidade necessária no modelo também pode ser reduzida se a escala de comprimento não for pequena, ou seja, se o modelo for relativamente grande. A seção de teste para grandes modelos também é grande e isso provoca o aumento dos custos do túnel de vento”. MUNSON, B. R.; YOUNG, D. F.; OKIISHI, T. H. Fundamentos da Mecânica dos Fluidos. São Paulo: Edgard Blucher, 2004. p. 377. Considerando o exposto, sobre os parâmetros utilizados em modelos para estudos de escoamentos, analise as afirmativas a seguir. I. É possível utilizar o modelo para estudar as características de escoamentos de corpos totalmente imersos em fluidos. II. Nesses estudos, é necessário manter a semelhança geométrica entre o protótipo e o modelo. III. Um dos critérios utilizados é o número de Reynolds, o qual deve ser igual no modelo e no protótipo. IV. O número de Weber é importante para escoamentos em torno de corpos imersos. Está correto o que se afirma em: Leia o excerto a seguir. “Apesar da ideia geral que está por trás dos critérios de semelhança ser clara (nós simplesmente igualamos os termos ), não é sempre possível satisfazer todos os critérios conhecidos. Se um ou mais critérios de semelhança não forem satisfeitos, por exemplo, se , a equação não será verdadeira. Modelos em que uma ou mais condições de similaridade não são satisfeitas se denominam modelos distorcidos”. MUNSON, B. R.; YOUNG, D. F.; OKIISHI, T. H. Fundamentos da Mecânica dos Fluidos. São Paulo: Edgard Blucher, 2004. p. 371-372. A partir do exposto, sobre modelos distorcidos, analise as asserções a seguir e a relação proposta entre elas. I. Os modelos distorcidos são bastante utilizados. Pois: II. É muito difícil atender a todos os critérios de semelhança, ainda mais para escoamentos de rios e vertedouros. A seguir, assinale a alternativa correta. Em uma teoria, compreende-se a radiação como a propagação de ondas eletromagnéticas com as propriedades de uma onda, por exemplo, frequência e comprimento. Os raios gama, os raios X e a radiação ultravioleta (UV) que possuem pequeno comprimento de onda são de interesse dos físicos de alta energia e dos engenheiros nucleares, enquanto as micro-ondas e as ondas de rádio que possuem grandes comprimentos de onda são de interesse dos engenheiros da área elétrica. MORAN, M. J. et al. Introdução à Engenharia de Sistemas Térmicos: Termodinâmica, Mecânica dos fluidos e Transferência de calor. Rio de Janeiro: LTC, 2005. A respeito do exposto, especificamente sobre o espectro eletromagnético das ondas, verifica-se que ele está delineado na seguinte figura: Fonte: Moran et al. (2005, p. 514). Quanto ao espectro de radiação, analise as afirmativas a seguir e assinale V para a(s) Verdadeira(s) e F para a(s) Falsa(s). I. ( ) Os raios gama possuem o menor espectro de radiação. II. ( ) A radiação infravermelha possui um espectro de radiação maior do que a radiação ultravioleta. III. ( ) O raio-X possui o maior espectro de radiação. IV. ( ) A ordem da luz visível do maior espectro para o menor é: violeta, azul, verde, amarelo e vermelho. Assinale a alternativa que apresenta a sequência correta. É preciso prever o arrasto aerodinâmico de um automóvel esportivo. Essa previsão deve ser feita a 50 km/h com temperatura de 25ºC. Assim, engenheiros automotivos desenvolveram um túnel de vento para testar um protótipo modelado em uma escala 1 : 4, conforme a figura a seguir. Esse túnel de vento está localizado em um prédio sem aquecimento. A temperatura do ar nesse túnel é de 5ºC. Fonte: Çengel e Cimbala (2007, p. 240). Sabe-se que o modelo é geometricamente similar ao protótipo. Além disso, é similar ao ar em relação à pressão atmosférica e a temperatura é igual a 25 ºC. Com isso, temos = 1,1849 kg/m3 e = 1,89 x 10-5 kg/m.s. Equivalentemente, temos uma temperatura T = 5 ºC, = 1,269 kg/m3 e = 1,754 x 10-5 kg/m.s. Nesse sentido, a velocidade do vento que os engenheiros devem colocar no túnel para atingir a similaridade entre o modelo e o protótipo deverá ser um número entre: A figura a seguir ilustra que existe uma enorme distância entre a equação de Euler (que admite o deslizamento nas paredes) e a equação de Navier-Stokes (que mantém a condição de não escorregamento). Na parte “(a)” da figura, mostra-se essa distância e, na parte “(b)”, a camada limite é mostrada como a ponte que veio preencher a referida distância. Fonte: Çengel e Cimbala (2007, p. 445). A respeito da teoria da camada limite e dessa ilustração, analise as afirmativas a seguir e assinale V para a(s) Verdadeira(s) e F para a(s) Falsa(s). I. ( ) A teoria da camada limite preenche o espaço entre a equação de Euler e a equação de Navier- Stokes. II. ( ) As regiões denominadas escoamento sem viscosidade possuem número de Reynolds muito alto. III. ( ) Essa ilustração compara a equação de Euler e a equação de Navier-Stokes a duas montanhas. IV. ( ) A teoria da camada limite é comparada a uma ponte que diminui o espaço entre as duas equações citadas. Assinale a alternativa que apresenta a sequência correta. O problema da falta de acesso de água potável foi estudado por vários pesquisadores. Nesse contexto, um projeto vem se destacando por limpar a água de cisternas somente com a utilização da luz solar. As cisternas captam a água da chuva por meio de tubulações que utilizam telhados e calhas e, ao tomarem contato com esses elementos, verifica-se que a água limpa da chuva se contamina com os resíduos de poluição presentes nessas edificações. O processo para limpeza da água da cisterna consiste em expor à intensa luz solar, por meio de um recipiente de alumínio, a água captada pela cisterna. Como o semiárido nordestino apresenta um intenso índice de radiação solar, essa radiação purifica a água, eliminando a sujeira que poderia ter. Referente ao exposto, sobre o uso da luz solar para purificara água, analise as asserções a seguir e a relação proposta entre elas. I. Esse processo funciona devido à luz solar que pode ser utilizada para purificar a água. Pois: II. Quando expomos essa água à luz solar, ela se aquece devido à radiação emitida pelo sol. A seguir, assinale a alternativa correta. Leia o excerto a seguir. “A Lei de Fourier é oriunda da observação fenomenológica, ou seja, ela foi desenvolvida a partir de fenômenos observados: a generalização de evidências experimentais exaustivas, ao invés da dedução a partir de princípios gerais. Essa lei define a propriedade do material que se denomina condutividade térmica”. MORAN, M. J. et al. Introdução à Engenharia de Sistemas Térmicos: Termodinâmica, Mecânica dos fluidos e Transferência de calor. Rio de Janeiro: LTC, 2005. p. 402. Alguns valores tabelados dessa propriedade estão mostrados na seguinte figura: Fonte: Moran et al. (2005, p. 402). A respeito da condutividade térmica, analise as afirmativas a seguir e assinale V para a(s) Verdadeira(s) e F para a(s) Falsa(s). I. ( ) As maiores condutividades térmicas são apresentadas pelos metais puros. II. ( ) O hidrogênio possui uma maior condutividade térmica do que o dióxido de carbono. III. ( ) O mercúrio possui uma menor condutividade térmica do que a água. IV. ( ) Os sólidos não metálicos apresentam menor condutividade térmica do que os gases. Assinale a alternativa que apresenta a sequência correta.